Белки плазмы и их функции. Белки плазмы крови и их значение

БЕЛКИ ПЛАЗМЫ КРОВИ

В плазме крови открыто более 200 видов белков, которые составляют 7% объема плазмы. Белки плазмы крови синтезируются в основном в печени и макрофагах, а также в эндотелии сосудов, в кишечнике, лимфоцитах, почках, эндокринных железах. Разрушаются белки плазмы крови печенью, почками, мышцами и др. органами. Т½ белков плазмы крови составляет от нескольких часов до несколько недель.

В плазме крови белки выполняют следующие функции:

  1. Создают онкотическое давление. Оно необходимо для удержания воды в кровяном русле.
  2. Участвуют в свертывании крови.
  3. Образуют буферную систему (белковый буфер).
  4. Транспортируют в крови плохорастворимые в воде вещества (липиды, металлы 2 и более валентности).
  5. Участвуют в иммунных процессах.
  6. Образуют резерв аминокислот, который используется, например, при белковом голодании.
  7. катализируют некоторые реакции (белки-ферменты).
  8. Определяют вязкость крови, влияют на гемодинамику.
  9. Участвуют в реакциях воспаления.

Строение белков плазмы крови

По строению белки плазмы крови являются глобулярными, по составу они делятся на простые (альбумины) и сложные.

Среди сложных, можно выделить липопротеины (ЛПОНП, ЛППП, ЛПНП, ЛПВП, ХМ), гликопротеины (почти все белки плазмы) и металлопротеины (трансферин, церрулоплазмин).

Общее количество белка в плазме крови в норме составляет 70-90 (60-80) г/л, его определяют с помощью биуретовой реакции. Количество общего белка в крови имеет диагностическое значение.

Повышение общего количества белка в плазме крови называется гиперпротеинемия , снижение – гипопротеинемия . Гиперпротеинемия возникает при дегидратации (относительная), травмах, ожогах, миеломной болезни (абсолютная). Гипопротеинемия наступает при спаде отеков (относительная), голодании, патологии печени, почек, кровопотере (абсолютная).

Кроме общего содержания белков в плазме крови также определяют содержание отдельных групп белков или даже индивидуальных белков. Для этого их разделяют с помощью электроэлектрофореза.

Электрофорез – это метод, при котором вещества с различным зарядом и массой, разделяются в постоянном электрическом поле. Электрофорез проводят на различных носителях, при этом получают разное количество фракций. При электрофорезе на бумаге белки плазмы крови дают 5 фракций: альбумины, α 1 -глобулины, α 2 -глобулины, β-глобулины и γ-глобулины. При электрофорезе на агаровом геле получается 7-8 фракций, на крахмальном геле – 16-17 фракций. Больше всего фракций – более 30, дает иммуноэлектрофорез.

Белки плазмы можно также разделить с помощью высаливания нейтральными солями щелочных и щелочноземельных металлов (3 фракции: альбумины, глобулины и фибриноген) или осаждения в спиртовом растворе.

Денситограмма белков

сыворотки крови

Электрофореграмма белков

сыворотки крови (10 пациентов)

Целесообразность разделения белков на фракции связана с тем, что белковые фракции плазмы крови отличаются между собой преобладанием в них белков, с определенными функциями, местом синтеза или разрушения.

Нарушение соотношения белковых фракций плазмы крови называется диспротеинемия . Выявление диспротеинемии имеет диагностическое значение.

Фракции белков плазмы крови

I . Альбумины

Основным белком этой фракции является альбумин.

Альбумин . Простой белок из 585 АК с массой 69кДа, имеет 17 дисульфидных мостиков, много дикарбоновых АК, обладает высокой гидрофобностью. У альбумина наблюдается полиморфизм. Синтезируется в печени (12 г/сут), утилизируется почками, энтероцитами и др. тканями. Т½=20 дней. 60% альбуминов находиться в межклеточном веществе, 40% - в кровяном русле. В плазме альбуминов 40-50г/л, они составляют 60% всех белков плазмы крови. Функции: поддержание онкотического давления (вклад 80%), транспорт свободных жирных кислот, билирубина, жёлчных кислот, стероидных и тиреоидных гормонов, ХС, лекарств, неорганических ионов (Cu 2+ , Ca 2+ , Zn 2+ ), является источником аминокислот.

Транстиретин (преальбумин) . Тетрамер. В плазме 0,25г/л. Белок острой фазы (5 группа). Транспортирует тиреоидные гормоны и ретинолсвязывающий белок. Снижается при голодании.

Диспротеинемия альбуминовой фракции реализуется преимущественно за счет гипоальбуминемии.

Причиной гипоальбуминемии является снижение синтеза альбуминов при печеночной недостаточности (цирроз), при повышении проницаемости капилляров, при активации катаболизма вследствие ожогов, сепсисе, опухолях, при потере альбуминов с мочой (нефротический синдром), при голодании.

Гипоальбуминемия вызывает отек тканей, снижение почечного кровотока, активацию РААС, задержку воды в организме и усиление отека тканей. Резкий отток жидкости в ткани приводит к снижению АД и может вызвать шок.

Глобулины. Онисодержат липопротеины и гликопротеины.

II . α 1 -Глобулины

α 1 -Антитрипсин - гликопротеин, синтезируемый печенью. В плазме 2,5г/л. Белок острой фазы (2 группа). Важный ингибитор протеаз, в том числе эластаз нейтрофилов, которые разрушают эластин альвеол лёгких и печени. α 1 -Антитрипсин также ингибирует коллагеназу кожи, химотрипсин, протеазы грибков и лейкоцитов. При дефиците α 1 -антитрипсина могут возникнуть эмфизема лёгких и гепатит, приводящий к циррозу печени.

Кислый α 1 - гликопротеин , синтезируется печенью. В плазме 1 г/л. Белок острой фазы (2 группа). Транспортирует прогестерон и сопутствующие гормоны.

ЛПВП синтезируются в печени. В плазме 0,35 г/л. Транспортируют излишки ХС из тканей в печень, обеспечивают обмен других ЛП.

Протромбин - гликопротеид, содержащий около 12% углеводов; белковая часть молекулы представлена одной полипептидной цепью; молекулярная масса около 70000Да. В плазме 0,1 г/л. Протромбин - предшественник фермента тромбина, стимулирующего формирование тромба. Биосинтез протекает в печени и регулируется витамином К, образуемым кишечной флорой. При его недостатке витамина К уровень протромбина в крови падает, что может приводить к кровоточивости (ранняя детская геморрагия, обтурационная желтуха, некоторые болезни печени).

Транскортин - гликопротеин, синтезируемый в печени, масса 55700Да, Т½=5 суток. Переносит кортизол, кортикостерон, прогестерон, 17-альфа-гидроксипрогестерон и, в меньшей степени, тестостерон. В плазме 0,03 г/л. Концентрация в крови чувствительна к экзогенным эстрогенам и зависит от их дозы.

Тироксинсвязывающий глобулин (TBG ) - синтезируется в печени. Молекулярная масса 57 кДа. В плазме 0,02 г/л. Т½=5 суток. Он является главным транспортером тироидных гормонов в крови (транспортирует 75% тироксина и 85% трийодтиронина).

Диспротеинемия за счет α 1 -глобулиной фракции реализуется преимущественно за счет: 1). снижения синтеза α 1 -антитрипсина. 2). Потере белков этой фракции с мочой при нефротическом синдроме. 3). повышения белков острой фазы в период воспаления.

III . α 2 -Глобулины

α 2 -Макроглобулин очень крупный белок (725 кДа), синтезируется в печени. Белок острой фазы (4 группа). В плазме 2,6 г/л. Главный ингибитор множество классов протеиназ плазмы, регулирует свертывание крови, фибринолиз, кининогенез, иммунные реакции. Уровень α 2 -макроглобулина в плазме уменьшается в острой фазе панкреатита и карциномы простаты, увеличивается - в результате гормонального эффекта (эстрогены).

Гаптоглобин – гликопротеид, синтезируется в печени. В плазме 1 г/л. Белок острой фазы (2 группа). Связывает гемоглобин с образованием комплекса, обладающего пероксидазной активностью, препятствует потери железа из организма. Гаптоглобин эффективно ингибирует катепсины С, В и L, может участвовать в утилизации некоторых патогенных бактерий.

Витамин Д связывающий белок (БСВ) (масса 70кДа). В плазме 0,4 г/л. Обеспечивает транспорта витамина А в плазме и предотвращает его экскрецию с мочой.

Церулоплазмин - главный медьсодержащий белок плазмы (содержит 95% меди в плазмы) с массой 150кДа, синтезируется в печени. В плазме 0,35 г/л. Т½=6 суток. Церулоплазмин обладает выраженной оксидазной активностью; ограничивает освобождение железа, активирует окисление аскорбиновой кислоты, норадреналина, серотонина и сульфгидрильных соединений, инактивирует активные формы кислорода, предотвращая ПОЛ.

Церулоплазмин - белок острой фазы (3 группа). Он повышается у больных с инфекционными заболеваниями, циррозом печени, гепатитами, инфарктом миокарда, системными заболеваниями, лимфогранулематозом, при злокачественных новообразованиях различной локализации (рак легкого, молочной железы, шейки матки, желудочно-кишечного тракта).

Болезнь Вильсона – Коновалова. Недостаточность церулоплазмина возникает при нарушении его синтеза в печени. При дефиците церулоплазмина Cu 2+ уходит из крови, выводятся с мочой или накапливается в тканях (например, в ЦНС, роговице).

Антитромбин III . В плазме 0,3 г/л. Ингибитор плазменных протеаз.

Ретинолсвязывающий белок синтезируется в печени. В плазме 0,04 г/л. Связывает ретинол, обеспечивает его транспорт и предотвращает распад. Функционирует в комплексе с транстиретином. Ретинол связывающий белок фиксирует излишки витамина А, что предотвращает мембранолитическое действие высоких доз витамина.

Диспротеинемия за счет α 2 -глобулиной фракции может возникать при воспалении, т.к. в этой фракции содержатся белки острой фазы.

IV . β-Глобулины

ЛПОНП - образуются в печени. Транспорт ТГ, ХС.

ЛППП - образуются в крови из ЛПОНП. Транспорт ТГ, ХС.

ЛПНП – образуются в крови из ЛППП. В плазме 3,5 г/л. Транспортируют излишки ХС из периферических органов в печень.

Трансферрин – гликопротеин, синтезируется печенью. В плазме 3 г/л. Т½=8 суток. Главный транспортер железа в плазме, 1 молекула трансферрина связывает 2 Fe 3+ , а 1г трансферрина соответственно около 1,25 мг железа. При снижении концентрации железа синтез трансферрина возрастает. Белок острой фазы (5 группа). Снижается при печеночной недостаточности.

Фибриноген гликопротеин, синтезируется в печени. Молекулярная масса 340кДа. В плазме 3 г/л. Т½=100часов. Фактор I свёртывания крови, способен под действием тромбина превращаться в фибрин. Является источником фибринопептидов, обладающих противовоспалительной активностью. Белок острой фазы (2 группа). Содержание фибриногена увеличивается при воспалительных процессах и некрозе тканей. Снижается при ДВС синдроме, печеночной недостаточности. Фибриноген основной белок плазмы, влияющий на величину СОЭ (с повышением концентрации фибриногена скорость оседания эритроцитов увеличивается).

С-реактивный белок синтезируется преимущественно в гепатоцитах, его синтез инициируется антигенами, иммунными комплексами, бактериями, грибами, при травме (через 4-6 ч после повреждения). Может синтезироваться эндотелиоцитами артерий. В плазме <0,01 г/л. Белок острой фазы (1 группа). Способен связывать микроорганизмы, токсины, частицы поврежденных тканей, препятствуя тем самым их распространению. Эти комплексы активируют комплемент по классическому пути, стимулируя процессы фагоцитоза и элиминации вредных продуктов. С-реактивный белок может взаимодействовать с Т-лимфоцитами, фагоцитами и тромбоцитами, регулируя их функции в условиях воспаления. Обладает антигепариновой активностью, при повышении концентрации ингибирует агрегацию тромбоцитов. СРБ - это маркер скорости прогрессирования атеросклероза. Определяют для диагностики миокардитов, воспалительных заболеваний клапанов сердца, воспалительные заболевания различных органов.

Диспротеинемия за счет β-глобулиной фракции может возникать при 1). некоторых дислипопротеинемиях; 2). воспалении, т.к. в этой фракции содержатся белки острой фазы; 3). При нарушении свертывающей системы крови.

V . γ-Глобулины

Синтезируются функционально активными В-лимфоцитами (плазмоцитами). У взрослого человека 10 7 клонов В-лимфоцитов которые синтезируют 10 7 видов γ-глобулинов. γ-Глобулины гликопротеины, состоят 2 тяжелых (440 АК) и 2 легких (220 АК) полипептидных цепей различной конфигурации, которые соединяются между собой дисульфидными мостиками. Антитела гетерогенны, отдельные составные части полипептидов кодируются разными генами, с различной способностью к мутированию.

Все γ-глобулины разделены на 5 классов G , A , M , D , E . В каждом классе выделяют несколько подклассов.

Диспротеинемия за счет γ-глобулиной фракции может возникать при 1). Иммунодефицитом состоянии; 3). Инфекционных процессах. 2). Нефротическом синдроме.

Белки острой фазы воспаления

Понятие "белки острой фазы" объединяет до 30 белков плазмы крови, участвующих в реакции воспалительного ответа организма на повреждение. Белки острой фазы синтезируются в печени, их концентрация существенно изменяется и зависит от стадии, течения заболевания и массивности повреждения.

Синтез белков острой фазы воспаления в печени стимулируют: 1). ИЛ-6, 2); ИЛ-1 и сходные с ним по действию (ИЛ-1 а, ИЛ-1Р, факторы некроза опухолей ФНО-ОС и ФНО-Р); 3). Глюкокортикоиды; 4). Факторы роста (инсулин, факторы роста гепатоцитов, фибробластов, тромбоцитов).

Выделяют 5 групп белков острой фазы

1. К «главным» белкам острой фазы у человека относят С-реактивный белок (СРВ) и амилоидный А белок сыворотки крови. Уровень этих белков возрастает при повреждении очень быстро (в первые 6-8 часов) и значительно (в 20-100 раз, в отдельных случаях - в 1000 раз).

2. Белки, концентрация которых при воспалении может увеличиваться в 2-5 раз в течение 24 часов. Это кислый α1-гликопротеид, α1-антитрипсин, фибриноген, гаптоглобин .

3. Белки, концентрация которых при воспалении или не изменяется или повышается незначительно (на 20-60% от исходного). Это церулоплазмин, С3-компонент комплемента .

4. Белки, участвующие в острой фазе воспаления, концентрация которых, как правило, остается в пределах нормы. Это α 1 -макроглобулин, гемопексин, амилоидный Р белок сыворотки крови, иммуноглобулины .

5. Белки, концентрация которых при воспалении может снижаться на 30-60%. Это альбумин, трансферрин, ЛПВП, преальбумин . Уменьшение концентрации отдельных белков в острой фазе воспаления может быть обусловлено снижением синтеза, увеличением потребления, либо изменением их распределения в организме.

Целый ряд белков острой фазы обладает антипротеазной активностью. Это α 1 -антитрипсин, антихимотрипсин, α 2 -макроглобулин. Их важная функция состоит в ингибировании активности эластазоподобных и химотрипсиноподобных протеиназ, поступающих из гранулоцитов в воспалительные экссудаты и вызывающих вторичное повреждение тканей. Снижение уровней ингибиторов протеиназ при септическом шоке или остром панкреатите является плохим прогностическим признаком.

Парапротеинемия – появление в плазме крови нехарактерных белков.

Например, во фракции α-глобулинов может появиться α-фетоглобулин, карциноэмбриональный антиген.

α-Фетоглобулин - один из фетальных антигенов, которые циркулируют в крови примерно у 70% больных с первичной гепатомой. Этот антиген выявляется также у пациентов с раком желудка, предстательной железы и примитивными опухолями яичка. Исследование крови на наличие в ней α-фетопротеина полезно для диагностики гепатом.

Карциноэмбриональный антиген (КЭА) - гликопротеид, опухолевый антиген, характерный в норме для кишечника, печени и поджелудочной железы плода. Антиген появляется при аденокарциномах органов ЖКТ и поджелудочной железы, в саркомах и лимфомах, также обнаруживается при целом ряде неопухолевых состояний: при алкогольном циррозе печени, панкреатите, холецистите, дивертикулите и язвенном колите.

ФЕРМЕНТЫ ПЛАЗМЫ КРОВИ

Ферменты, находящиеся в плазме крови, можно разделить на 3 основные группы:

1. Секреторные . Они синтезируются в печени, эндотелии кишечника, сосудов поступают в кровь, где выполняют свои функции. Например, ферменты свертывающей и противосвертывающей системы крови (тромбин, плазмин), ферменты обмена липопротеинов (ЛХАТ, ЛПЛ).

2. Тканевые . Ферменты клеток органов и тканей. Они попадают в кровь при увеличении проницаемости клеточных стенок или при гибели клеток тканей. В норме их содержание в крови очень низкое. Некоторые тканевые ферменты имеют диагностическое значение, т.к. по ним можно определить пораженный орган или ткань, по этому их еще называют индикаторными . Например, ферменты ЛДГ с 5 изоформами, креатинкиназа с 3 изоформами, АСТ, АЛТ, кислая и щелочная фосфатаза и т.д.

3. Экскреторные . Ферменты, синтезируемые железами ЖКТ (печень, поджелудочная железа, слюнные железы) в просвет ЖК тракта и участвующие в пищеварении. В крови эти ферменты появляются при повреждении соответствующих желез. Например, при панкреатите в крови обнаруживают липазу, амилазу, трипсин, при воспалении слюнных желез – амилазу, при холестазе – щелочную фосфатазу (из печени).


Фракция

Белки

Конц

г/л

Функция

альбумины

Транстиретин

0,25

Альбумин

Поддержание осмотического давления, транспорт жирных кислот, билирубина, жёлчных кислот, стероидных гормонов, лекарств, неорганических ионов, резерв аминокислот

α 1 -глобулины

α 1 -антитрипсин

Ингибитор протеиназ

Кислый α 1 - гликопротеин

Транспорт прогестерона

Протромбин

Фактор II свёртывания крови

Транскортин

0,03

Транспорт кортизола, кортикостерона, прогестерона

Тироксинсвязывающий глобулин

0,02

Транспорт тироксина и трийодтиронина

α 2 -глобулины

Церулоплазмин

0,35

Транспорт ионов меди, оксидоредуктаза

Антитромбин III

Ингибитор плазменных протеаз

Гаптоглобин

Связывание гемоглобина

α 2 -Макроглобулин

Ингибитор плазменных протеиназ, транспорт цинка

Ретинолсвязывающий белок

0,04

Транспорт ретинола

Витамин Д связывающий белок

Транспорт кальциферола

β-глобулины

ЛПНП

Транспорт холестерола

Трансферрин

Транспорт ионов железа

Фибриноген

Фактор I свёртывания крови

Транскобаламин

25*10 -9

Транспорт витамина В 12

Глобулин связывающий белок

20*10 -6

Транспорт тестостерона и эстрадиола

С-реактивный белок

< 0,01

Активация комплемента

γ-глобулины

Поздние антитела

Антитела, защищающие слизистые оболочки

Ранние антитела

0,03

Рецепторы В-лимфоцитов

< 0,01

Белковую фракцию плазмы составляет несколько десятков различных белков. Большая величина молекул дает основание относить их к коллоидам. Присутствие коллоидов в плазме обусловливает ее вязкость.

Белки плазмы различают по строению и функциональным свойствам. Их количественное и качественное определение производят специальными методами электрофореза, основанного на различной подвижности белков в электрическом поле, ультрацентрифугирования, иммуноэлектрофореза, при котором в электрическом поле передвигаются целые комплексы связанных со специфическими антителами молекул. В плазме крови человека содержится примерно 200-300 г белка. Белки плазмы делят на две основные группы: альбумины и глобулины. В глобулиновую фракцию входит фибриноген.

Альбумины. Альбумины составляют около 60% белков плазмы. Их высокая концентрация, большая подвижность при относительно небольших размерах молекулы, определяют онкотическое давление плазмы. Большая общая поверхность мелких молекул альбумина играет существенную роль в транспорте кровью различных веществ, таких как билирубин, соли тяжелых металлов жирные кислоты, фармакологические препараты (сульфаниламиды, антибиотики и др.). Известно, что, например, одна молекула альбумина может одновременно связать 25-50 молекул билирубина.

Глобулины. Эту группу белков электрофоретически, по показателям подвижности, разделяют на несколько фракций: α 1 -, α 2 -, β 3 - и γ-глобулины. С помощью иммуноэлектрофореза эти фракции подразделяют на мелкие субфракции более однородных белков. Так, во фракции α 1 -глобулинов имеются белки, простетической группой которых являются углеводы. Эти белки называются гликопротеинами. В составе гликопротеинов циркулирует около 60% всей глюкозы плазмы. Еще одна группа - мукопротеины - содержит мукополисахариды, фракцию аз составляет медьсодержащий белок церулоплазмин, в котором на каждую белковую молекулу приходится восемь атомов меди. Таким образом связывается около 90% всей содержащейся в плазме меди. В плазме имеются еще тироксинсвязывающий и другие белки.

β -глобулины. участвуют в транспорте фосфолипидов, холестерина, стероидных гормонов, металлических катионов. Они удерживают в растворе около 75% всех липидов плазмы. Металлсодержащий белок трансферрин осуществляет перенос железа кровью. Каждая молекула трансферрина несет два атома железа.

γ-глобулины характеризуются самой низкой электрофоретической подвижностью. В эту фракцию белков входят различные антитела, защищающие организм от вторжения вирусов и бактерий. Количество этой фракции возрастает при иммунизации животных. К γ-глобулинам относятся также агглютинины крови.

Фибриноген занимает промежуточное положение между фракциями β- и γ-глобулинов. Этот белок образуется в клетках печени и ретикулоэндотелиальной системы; обладает свойством становиться нерастворимым в определенных условиях (под воздействием тромбина), принимать при этом волокнистую структуру, переходя в фибрин. Содержание фибриногена в плазме крови составляет всего 0,3%, но именно его переходом в фибрин обусловливается свертывание крови и превращение ее в течение нескольких минут в плотный сгусток. Сыворотка крови по своему составу отличается от плазмы только отсутствием фибриногена.

Альбумины и фибриноген образуются в печени, глобулины в печени красном костном мозгу, селезенке, лимфатических узлах. При нормальном питании в организме человека за 1 сут вырабатывается около 17 г альбумина и

5 г глобулина. Период полураспада альбумина составляет 10-15 сут глобулина - 5 сут.

Белки плазмы вместе с электролитами являются ее функциональными элементами. С их помощью в значительной степени осуществляется транспорт веществ из крови к тканям. К числу транспортируемых компонентов относятся питательные вещества, витамины, микроэлементы, гормоны, ферменты а также конечные продукты обмена веществ.

Из питательных веществ самую большую часть составляют липиды. Их концентрация колеблется в широком диапазоне, но максимальное содержание отмечается после приема жирной пищи. На относительно постоянном уровне удерживаются переносимая плазмой глюкоза (44,4-66,6 ммоль/л) и аминокислотные остатки (4 мг%). Витамины могут переноситься либо в связанному белками, либо в свободном виде. Их уровень в плазме также подвержен колебаниям и зависит не только от их содержания в продуктах питания и синтеза кишечной флорой, но и от наличия особого фактора, облегчающего их всасывание в кишке.

Микроэлементы циркулируют в плазме в виде металлсодержащих белков (Со и др.) или белковых комплексов (Fe). Из конечных продуктов обмена наибольшей концентрации, особенно при тяжелой мышечной работе и недостатке кислорода, достигает молочная кислота. Не использованные организмом и подлежащие удалению конечные продукты обмена веществ (мочевина, мочевая кислота, билирубин, аммиак) доставляются плазмой к почкам, где и удаляются с мочой.

Белки плазмы в силу способности связывать большое число циркулирующих в плазме низкомолекулярных соединений участвуют, кроме того, в поддержании постоянства осмотического давления. Им принадлежит ведущая роль в таких процессах, как образование тканевой жидкости, лимфы, мочи, всасывание воды.

Определение содержания общего белка плазмы (сыворотки) крови -- элемент комплекса диагностических мероприятий уже на начальном этапе оказания медицинской помощи.

Большинство белков плазмы крови синтезировано в гепатоцитах. Катаболизм многих белков плазмы крови происходит в эндотелиальных клетках капилляров и системе функциональных фагоцитов -- моноцитов и макрофагов -- после поглощения белков путем пиноцитоза. Белки с небольшой молекулярной массой проходят через фильтрационный барьер почечных телец в первичную мочу, из которой их реабсорбируют эпителиальные клетки проксимальных канальцев и катаболизируют до аминокислот.

Содержание белков во внутрисосудистом пространстве в каждый момент времени -- результат постоянного равновесия, имеющегося между синтезом и секрецией белков в кровь, поглощением их клетками, процессами катаболизма и экскрецией низкомолекулярных белков с мочой. Кроме того, постоянный обмен белками происходит между внутрисосудистым и внесосудистым пулом внеклеточной жидкости. Поддержание постоянства внутрисосудистого объема крови осуществляет коллоидно¬осмотическая система. Постоянство онкотической составляющей осмотического давления в крови обеспечивает альбумин.

Функции белков плазмы крови

1. Белки обусловливают возникновение онкотического давления (см. ниже), величина которого важна для регулирования водного обмена между кровью и тканями. 2. Белки, обладая буферными свойствами, поддерживают кислотно-щелочное равновесие крови. 3. Белки обеспечивают плазме крови определенную вязкость, имеющую значение в поддержании уровня артериального давления. 4. Белки плазмы способствуют стабилизации крови, создавая условия, препятствующие оседанию эритроцитов. 5. Белки плазмы играют важную роль в свертывании крови. 6. Белки плазмы крови являются важными факторами иммунитета, т. е. невосприимчивости к заразным заболеваниям.

Группы белков плазмы крови

Плазма крови содержит смесь белков, различных как по происхождению, так и по их функции. Для многих белков их функции еще не установлены. В сыворотке крови идентифицировано несколько десятков индивидуальных белков, имеющих диагностическое значение. В патологических ситуациях изменяется главным образом не общее содержание белка, а значительно увеличиваются или уменьшаются отдельные его составляющие с появлением в ряде случаев белков, не содержащихся в нормальных условиях.

Компоненты системы свертывания крови и множество пептидных гормонов в функциональном отношении охарактеризованы достаточно хорошо. Только несколько из циркулирующих в крови ферментов имеет здесь реальную физиологическую функцию, большинство же из них попадает в кровоток в результате разрушения клеток. Все белки системы комплемента функционально значимы, как и большая группа белков острой фазы, содержание которых в ходе воспалительного процесса возрастает на 2 порядка.

Основные фракции белков:

Альбумин-белки с молекулярной массой около 70000 Да. Благодаря гидрофильности и высокому содержанию в плазме играют важную роль в поддержании коллоидно-осмотического (онкотического) давления крови и регуляции обмена жидкостей между кровью и тканями. Выполняют транспортную функцию: осуществляют перенос свободных жирных кислот, желчных пигментов, стероидных гормонов, ионов Са2+, многих лекарств. Альбумины также служат богатым и быстро реализуемым резервом аминокислот.

б1-Глобулины:

Кислый б1-гликопротеин (орозомукоид) - содержит до 40% углеводов, изоэлектрическая точка его находится в кислой среде (2,7). Функция этого белка до конца не установлена; известно, что на ранних стадиях воспалительного процесса орозомукоид способствует образованию коллагеновых волокон в очаге воспаления (Я.Мусил, 1985).

б1-Антитрипсин - ингибитор ряда протеаз (трипсина, химотрипсина, калликреина, плазмина). Врождённое снижение содержания б1-антитрипсина в крови может быть фактором предрасположенности к бронхо-лёгочным заболеваниям, так как эластические волокна лёгочной ткани особенно чувствительны к действию протеолитических ферментов.

Ретинолсвязывающий белок осуществляет транспорт жирорастворимого витамина А.

Тироксинсвязывающий белок - связывает и транспортирует иодсодержащие гормоны щитовидной железы.

Транскортин - связывает и транспортирует глюкокортикоидные го рмоны (кортизол, кортикостерон).

б2-Глобулины:

Гаптоглобины (25% б2-глобулинов) - образуют стабильный комплекс с гемоглобином, появляющимся в плазме в результате внутрисосудистого гемолиза эритроцитов. Комплексы гаптоглобин-гемоглобин поглощаются клетками РЭС, где гем и белковые цепи подвергаются распаду, а железо повторно используется для синтеза гемоглобина. Тем самым предотвращается потеря железа организмом и повреждение почек гемоглобином.

Церулоплазмин - белок, содержащий ионы меди (одна молекула церулоплазмина содержит 6-8 ионов Cu2+), которые придают ему голубую окраску. Является транспортной формой ионов меди в организме. Обладает оксидазной активностью: окисляет Fe2+ в Fe3+, что обеспечивает связывание железа трансферрином. Способен окислять ароматическиеамины, участвует в обмене адреналина, норадреналина, серотонина.

в-Глобулины:

Трансферрин - главный белок в-глобулиновой фракции, участвует в связывании и транспорте трёхвалентного железа в различные ткани, особенно в кроветворные. Трансферрин регулирует содержание Fe3+ в крови, предотвращает избыточное накопление и потерю с мочой.

Гемопексин - связывает гем и предотвращает его потерю почками. Комплекс гем-гемопексин улавливается из крови печенью.

С-реактивный белок (С-РБ) - белок, способный преципитировать (в присутствии Са2+) С-полисахарид клеточной стенки пневмококка. Биологическая роль его определяется способностью активировать фагоцитоз и ингибировать процесс агрегации тромбоцитов. У здоровых людей концентрация С-РБ в плазме ничтожно мала и стандартными методами не определяется. При остром воспалительном процессе она увеличивается более чем в 20 раз, в этом случае С-РБ обнаруживается в крови. Исследование С-РБ имеет преимущество перед другими маркерами воспалительного процесса: определением СОЭ и подсчётом числа лейкоцитов. Данный показатель более чувствителен, его увеличение происходит раньше и после выздоровления быстрее возвращается к норме.

г-Глобулины:

Иммуноглобулины (IgA, IgG, IgM, IgD, IgE) представляют собой антитела, вырабатываемые организмом в ответ на введение чужеродных веществ с антигенной активностью. Подробнее об этих белках см. 1.2.5.

Иммуноглобулины (антитела) - группа белков, вырабатываемых в ответ на попадание в организм чужеродных структур (антигенов). Они синтезируются в лимфоузлах и селезёнке лимфоцитами В. Выделяют 5 классов иммуноглобулинов - IgA, IgG, IgM, IgD, IgE.

Рисунок 3 Схема строения иммуноглобулинов (серым цветом показана вариабельная область, не закрашена - константная область)

Молекулы иммуноглобулинов имеют единый план строения. Структурную единицу иммуноглобулина (мономер) образуют четыре полипептидные цепи, соединённые между собой дисульфидными связями: две тяжёлые (цепи Н) и две лёгкие (цепи L) (см. рисунок 3). IgG, IgD и IgЕ по своей структуре, как правило, являются мономерами, молекулы IgM построены из пяти мономеров, IgA состоят из двух и более структурных единиц, или являются мономерами.

Белковые цепи, входящие в состав иммуноглобулинов, можно условно разделить на специфические домены, или области, имеющие определённые структурные и функциональные особенности.

N-концевые участки как L-, так и Н-цепей называются вариабельной областью (V), так как их структура характеризуется существенными различиями у разных классов антител. Внутри вариабельного домена имеются 3 гипервариабельных участка, отличающихся наибольшим разнообразием аминокислотной последовательности. Именно вариабельная область антител ответственна за связывание антигенов по принципу комплементарности; первичная структура белковых цепей в этой области определяет специфичность антител.

С-концевые домены Н- и L-цепей обладают относительно постоянной первичной структурой в пределах каждого класса антител и называются константной областью (С). Константная область определяет свойства различных классов иммуноглобулинов, их распределение в организме, может принимать участие в запуске механизмов, вызывающих уничтожение антигенов.

Интерфероны - семейство белков, синтезируемых клетками организма в ответ на вирусную инфекцию и обладающих противовирусным эффектом. Различают несколько типов интерферонов, обладающих специфическим спектром действия: лейкоцитарный (б-интерферон), фибробластный (в-интерферон) и& иммунный (г-интерферон). Интерфероны синтезируются и секретируются одними клетками и проявляют свой эффект, воздействуя на другие клетки, в этом отношении они подобны гормонам. Механизм действия интерферонов показан на рисунке 4.

Рисунок 4

Связываясь с клеточными рецепторами, интерфероны индуцируют синтез двух ферментов -- 2",5"-олигоаденилатсинтетазы и протеинкиназы, вероятно, за счет инициации транскрипции соответствующих генов. Оба образующихся фермента проявляют свою активность в присутствии двухцепочечных РНК, а именно такие РНК являются продуктами репликации многих вирусов или содержатся в их вирионах. Первый фермент синтезирует 2",5"-олигоаденилаты (из АТФ), которые активируют клеточную рибонуклеазу I; второй фермент фосфорилирует фактор инициации трансляции IF2. Конечным результатом этих процессов является ингибирование биосинтеза белка и размножения вируса в инфицированной клетке (Ю.А.Овчинников, 1987).

Липопротеины - сложные соединения, осуществляющие транспорт липидов в крови. В состав их входят: гидрофобное ядро, содержащее триацилглицеролы и эфиры холестерола, иамфифильная оболочка, образованная фосфолипидами, свободным холестеролом и белками-апопротеинами (рисунок 2). В плазме крови человека содержатся следующие фракции липопротеинов:

Рисунок 2 Схема строения липопротеина плазмы крови

Липопротеины высокой плотности или б-липопротеины , так как при электрофорезе на бумаге они движутся вместе с б-глобулинами. Содержат много белков и фосфолипидов, транспортируют холестерол из периферических тканей в печень.

Липопротеины низкой плотности или в-липопротеины , так как при электрофорезе на бумаге они движутся вместе с в-глобулинами. Богаты холестеролом; транспортируют его из печени в периферические ткани.

Липопротеины очень низкой плотности или пре-в-липопротеины (на электрофореграмме расположены между б- и в-глобулинами). Служат транспортной формой эндогенных триацилглицеролов, являются предшественниками липопротеинов низкой плотности.

Хиломикроны - электрофоретически неподвижны; в крови, взятой натощак, отсутствуют. Являются транспортной формой экзогенных (пищевых) триацилглицеролов.

Фибриноген (фактор I) - растворимый гликопротеин плазмы с молекулярной массой около 340 000. Он синтезируется в печени. Молекула фибриногена состоит из шести полипептидных цепей: две А б-цепи, две В в-цепи, и две г-цепи (см. рисунок 9). Концы полипептидных цепей фибриногена несут отрицательный заряд. Это обусловлено присутствием большого количества остатков глутамата и аспартата в N-концевых областях цепей Аa и Вb. Кроме того, В-области цепей Вb содержат остатки редкой аминокислоты тирозин-О-сульфата, также заряженные отрицательно:

Это способствует растворимости белка в воде и препятствует агрегации его молекул.

Рисунок 9 Схема строения фибриногена; стрелками показаны связи, гидролизуемые тромбином. Р.Марри и соавт., 1993)

Превращение фибриногена в фибрин катализирует тромбин (фактор IIa). Тромбин гидролизует четыре пептидные связи в фибриногене: две связи в цепях А б и две связи в цепях В в. От молекулы фибриногена отщепляются фибринопептиды А и В и образуется фибрин-мономер (его состав б2 в2 г2). Мономеры фибрина нерастворимы в воде и легко ассоциируют друг с другом, образуя фибриновый сгусток.

Стабилизация фибринового сгустка происходит под действием фермента трансглутаминазы (фактор XIIIa). Этот фактор также активируется тромбином. Трансглутаминаза образует поперечные сшивки между мономерами фибрина при помощи ковалентных изопептидных связей.


Трансферрины -- белки плазмы крови, которые осуществляют транспорт ионов железа. Трансферрины представляют собой гликозилированые белки, которые прочно, но обратимо связывают ионы железа. С трансферринами связано около 0,1 % всех ионов железа в организме (что составляет порядка 4 мг), однако ионы железа, связанные с трансферринами, представляют огромное значение для метаболизма. Трансферрины имеют молекулярную массу около 80 кДа и имеют два места связывания Fe 3+ . Сродство трансферрина очень высокое (10 23 M ?1 при pH 7,4), но оно прогрессивно снижается с понижением pH ниже нейтральной точки. Когда трансферрин не связан с железом, он представляет собой апопротеин .

У людей трансферрин представляет собой полипептидную цепочку, состоящую из 679 аминокислот. Это комплекс, состоящий из альфа-спиралей и бета-слоёв, которые формируют 2 домена (первый расположен на N-конце, а второй на C-конце). N- и C- концевые последовательности представлены шарообразными долями, между которыми находится участок связывания железа. Аминокислоты, которые связывает ионы железа с трансферрином, идентичны для обоих долей: 2 тирозина, 1гистидин, 1 аспарагиновая кислота. Чтобы связать ион железа, требуется анион, предпочтительно карбонат-ион (CO 3 2?). У трансферрина также есть трансферриновый рецептор: это дисульфидно-связанный гомодимер. У людей каждый мономер состоит из 760 аминокислот. Каждый мономер состоит из 3 доменов: апикальный домен, спиральный домен, протеазный домен.

Когда трансферрин связан с ионами железа, трансферриновый рецептор на поверхности клетки (например, предшественников эритроцитов в красном костном мозге) присоединяется к нему и, как следствие, проникает в клетку в пузырьке. Затем pH внутри пузырька понижается из-за работы протонных ионных насосов, заставляя этим трансферрин высвободить ионы железа. Рецептор перемещается обратно на поверхность клетки, снова готовый связывать трансферрин. Каждая молекула трансферрина может переносить сразу 2 иона железа Fe 3+ .

Ген, кодирующий трансферрин, у людей находится в участке третьей хромосомы 3q21. Исследования, проведённые на королевских змеях в 1981 году, показали, что наследование трансферрина происходит по кодоминантному механизму.

Общий белок

Плазму крови, экссудаты и транссудаты можно использовать в качестве биологического материала. Все они дают сравнимые результаты, хотя из-за присутствия фибриногена уровень общего белка в плазме крови на 2-4 г/л выше, чем в сыворотке. Белок стабилен в сыворотке и плазме крови в течение недели при комнатной температуре, по крайней мере до 2 мес при --20 °С. Гемолиз дает ложноположительное увеличение общего белка на 3% на каждый 1 г свободного гемоглобина в 1 л сыворотки крови.

Физиологические колебания содержания общего белка в сыворотке крови зависят в большинстве случаев от изменения объема жидкой части крови и в меньшей степени связаны с синтезом или потерей белка. В норме содержание белка в сыворотке крови одинаково как у вегетарианцев, так и у людей с обычным характером питания, хотя нагрузка белком может увеличить в крови содержание общего белка. Высокая физическая актив-ность способствует только незначительному повышению в крови содержания общего белка.

Белков человеческий организм вырабатывает очень много, они разнообразны по составу и выполняемой работе, однако белок плазмы крови играет важнейшую роль во множестве процессов, без которых жизнь человека станет невозможной.

Белки плазмы крови очень разнообразны. У человека насчитывается около ста типов белков. При ОАК (общий анализ крови) количество белка плазмы крови сигнализирует о том, как осуществляется в организме синтез аминокислот.

Обменные процессы, проходящие с помощью белков, указывают на то, насколько хорошо организм способен справиться с различными недугами: от проникновения инфекции до разрыва капилляров стенок сосудов.

В основном белки плазмы крови производятся в печени, но некоторые синтезируются в тканях костного мозга и лимфатических узлах.

Функции белков плазмы крови огромны и зависят от спецификации того или иного вида белка. В основном их функции заключаются в поддержании нужного коллоидно-осмотического давления крови в сосудах, однако у белков есть и множество других задач.

Вот некоторые из них:

  • количество белков прямо пропорционально способности крови к сворачиванию;
  • белки обеспечивают кислотно-щелочное равновесие внутренней среды организма, являясь буферной кровяной системой;
  • плазменный белок альбумин и некоторые другие белки осуществляют транспорт к внутренним органам холестерина, билирубина и медикаментозных средств;
  • система комплемента и глобулины обеспечивают баланс гуморального иммунитета организма;
  • защищают от повреждения клетки крови и стенки сосудов;
  • деятельность белков по созданию нужного запаса аминокислот в русле крови обеспечивает организму нормальное функционирование в период недостатка питательных веществ;
  • отдельные виды белков способны расширять сосуды, снижая при этом артериальное давление, другие – наоборот, сужают сосуды в случае необходимости, и таким образом АД увеличивается.

Чтобы определить количество белков кровяной плазмы, делают биохимический анализ образца крови.

Отклонение от нормы количества белков того или иного вида, нарушения в их строении являются признаками различных недугов.

Однако ориентироваться при постановке диагноза только на белковый состав крови было бы неверно – ведь при всем своем многообразии белки кровяной плазмы составляют всего лишь около 7-8 % от числа всех белковых клеток организма.

Поэтому врачи оперируют совокупностью всех данных анализов и обследований пациента при диагностике и определении терапевтического курса лечения.

В зависимости от такого качества белковых молекул, как водо- растворимость или нерастворимость, белки могут называться простыми или сложными.

К простым белковым молекулам относится такой тип растворимого белка плазмы крови, как альбумин. Грубо говоря, все остальные белки относятся к сложным белковым структурам.

Как называется тот или иной нерастворимый белок плазмы крови, можно узнать, разделяя белки на фракции.

Это делается разными методами, но наиболее распространенным способом разделения по фракциям белков плазмы крови считается электрофорез.

Электрофорезный метод распределения белковых молекул по фракциям заключается в том, что разные белки под действием тока по-разному движутся на носителе.

В качестве последнего берут ацетатцеллюлозную пленку, на которую наносят сыворотку крови.

Пленку помещают на специальную рамку таким образом, чтобы ее края находились в емкостях с электролитом.

После пропускания электрического тока белки малого размера, обладающие наибольшим зарядом (альбумины), перемещаются быстрее остальных.

Глобулины, как наиболее крупные и электронейтральные молекулы, практически не двигаются по пленке.

Белковые фракции

Существуют способы, используя которые, можно выделить более 20 фракций белков, однако в обычных лабораторных условиях чаще всего используют электрофорезный метод фракционирования.

При помощи электрофореза выделяют пять белковых фракций:

  • альбумины;
  • α 1 — глобулины;
  • α 2 -глобулины;
  • β-глобулины;
  • γ-глобулины.

Альбуминов в плазме крови больше всего. Они производятся печенью в большом количестве.

Срок жизни альбуминов очень мал – за сутки этих белковых молекул синтезируется и распадается порядка 11 — 15 г.

Именно их функцией является поддержка нужного давления в осмосе крови, поскольку альбумины – это растворимые белки, обладают наименьшей массой среди всех остальных белковых молекул.

Альбумины влияют на степень свертываемости крови, кислотно-щелочной баланс, осуществляют доставку длинноцепочечных кислот, билирубина, гормонов, лекарств к внутренним органам.

Альбумин нейтрализует ионы Ca₂+ и Mg₂+. Кроме всего этого, альбумины создают в плазме крови резервные запасы нужных аминокислот.

Глобулины фракции α 1 производятся тканями костного мозга. Это нерастворимые белковые структуры с небольшой массой.

Тем не менее, α 1 — глобулины гидрофильны, что позволяет им осуществлять транспортировку жиров.

Такие α 1 — глобулины, как протромбин, участвуют в процессе свертываемости крови, оказывают угнетающее действие на некоторые ферменты.

В большинстве своем α 2 -глобулины синтезирует печень, однако примерно 25 % их производят ткани костного мозга.

Это биполимерные структуры, основной функцией которых является регуляторная деятельность.

Макроглобулин отвечает за острую фазу воспалительных явлений в организме, гаптоглобин в комплексе с гемоглобином предотвращает анемии, а при помощи церулоплазмина в тканях поддерживается баланс меди.

β-глобулины наполовину производятся в печени, наполовину – в костном мозге.

К ним относятся:

  • фибриноген, участвующий в образовании фибриновых нитей на месте порыва сосуда или капилляра;
  • липопротеиновые белковые структуры низкой плотности;
  • транскобаламин, ответственный за синтез витамина B₁₂;
  • трансферин, осуществляющий доставку железа к тканям;
  • белковые структуры, составляющие систему комплемента;
  • β-липопротеиды, переносящие фосфолипиды и холестерин.

Производство γ— глобулинов в основном происходит при помощи В-лимфоцитов, но 1/10 часть их синтезируется куперовскими парными клетками.

В эту фракцию плазменных белков входят иммуноглобулины, которые защищают организм от проникновения чужеродных клеток путем выработки антител к ним.

Что такое диспротеинемия?

Нормальные концентрации белковых фракций в плазме крови у здорового человека представлены в таблице ниже.

Биохимические исследования белковых фракций при помощи электрофореза позволяют определить отклонения концентраций белковых структур от нормального состояния.

Такого рода патология называется диспротеинемией, которая бывает двух видов:

  • гиперпротеинемия;
  • гипопротеинемия.

Гиперпротеинемия, или увеличение количества белков в плазме крови, может иметь относительный или абсолютный характер.

Относительная гиперпротеинемия считается состоянием организма, которое при должной терапии причин патологии само придет в норму.

Бывает при травмах, порезах, ожогах, обезвоживании от рвоты. Абсолютная гиперпротеинемия возникает при увеличении в крови концентрации γ-глобулинов.

Ее часто называют γ— глобулинемией. Причиной такого состояния чаще всего бывают воспалительные процессы в хронической или острой фазе.

Однако и значительная концентрация α 1 — глобулина тоже может иметь причины инфекционных поражений организма, полостных операций, травм, болезней печени.

Гипопротеинемия чаще всего возникает в случае недостатка в плазме крови альбуминов.

Такое состояние возникает при следующих патологиях:

  • из-за недостатка производства альбуминов печенью вследствие снижения функциональных способностей этого органа;
  • при значительной утилизации белков при обширных ожогах;
  • при злокачественных опухолях;
  • в результате тяжелого септического состояния;
  • при нефротическом синдроме;
  • вследствие длительного голодания;
  • при обильной кровопотере.

Однако чаще всего диспротеинемия сопровождается уменьшением количества белков одной фракции и увеличением другой.

Электрофорез позволяет отличить острую стадию воспалительных процессов от хронической.

При острой стадии концентрация альбуминов в плазме крови низкая, зато увеличивается число глобулинов α 1 — и α 2 — фракций.

При хронической стадии воспалительного процесса в плазме крови возрастает концентрация -глобулинов.

Заболевания печени характеризуются снижением альбуминов и увеличением количества β-глобулинов.

Тем не менее, существуют состояния организма человека, при которых диспротеинемия считается физиологическим явлением.

К примеру, у новорожденных детей количество белков всех фракций снижено, и только к двум-трем годам жизни постепенно показатели протеинограммы у них приходят в норму.

У беременных женщин при гестозе концентрация белков в плазме крови тоже может быть понижена.

Несмотря на то что биохимический анализ крови с определением концентраций белков по фракциям может предоставлять врачам много нужной и полезной информации, ориентироваться только на протеинограмму при постановке диагноза никто не будет, потому что некоторые болезни могут давать одни и те же варианты изменения концентрации белков в плазме крови.

К примеру, при нефротическом синдроме происходит уменьшение концентрации альбуминов, α 1 — и γ-глобулинов и увеличивается число α 2 — и β-глобулинов.

Диспротеинемия такого же рода может отмечаться и при других недугах, сопровождающихся изменением количества белков разных фракций.

В плазме крови человека содержится примерно 200-300 г белка. Белки плазмы делятся на две основные группы: альбумины и глобулины . В глобулиновую фракцию входит фибриноген.

Альбумины составляют 60% белков плазмы, обладают высокой концентрацией (около 80%), большой подвижностью при относительно небольших размерах молекулы; участвуют в транспорте питательных веществ (аминокислоты), а также ряда других веществ (билирубин, соли тяжелых металлов, жирные кислоты, лекарственные препараты).

Глобулины . К ним относятся группы крупномолекулярных белков, обладающие более низкой подвижностью, чем альбумины. Среди глобулинов можно выделить бета-глобулины , участвующие в транспорте стероидных гормонов, холестерина. Они удерживают в растворе около 75% всех жиров и липидов плазмы.

Другая группа этих белков - гамма-глобулины , включающие различные антитела, защищающие организм от вторжения вирусов и бактерий. К ним относятся также агглютинины плазмы крови. Фибриноген занимает промежуточное положение между вышеперечисленными белками. Он обладает свойством переходить в нерастворимую волокнистую форму - фибрин - под влиянием фермента тромбина. В плазме крови фибриногена содержится всего 0,3%, но именно его участием обусловливается свертывание крови и превращение ее в течение нескольких минут в плотный сгусток. Сыворотка крови по своему составу отличается от плазмы отсутствием фибриногена.

Альбумин и фибриноген образуются в печени, глобулины - в печени, костном мозгу, селезенке, лимфатических узлах. В организме человека за сутки вырабатывается 17 г альбумина и 5 г глобулина. Период полураспада альбумина составляет 10-15 дней, глобулина - 5 дней.

Белки плазмы вместе с электролитами (Са 2+ , К + , Nа + и др.) являются ее функциональными элементами. Они участвуют в транспорте веществ из крови к тканям; транспортируют питательные вещества, витамины, микроэлементы, гормоны, ферменты, а также конечные продукты обмена веществ. Белки плазмы участвуют также в поддержании постоянного осмотического давления, так как они способны связывать большое количество циркулирующих в крови низкомолекулярных соединений. Создаваемое белками онкотическое давление играет важную роль в регулировании распределения воды между плазмой и межклеточной жидкостью. Оно составляет 25-30 мм рт. ст. Таким образом, значение белков очень большое и заключается в следующем:

Белки являются буферными веществами, сохраняя постоянство реакции крови;



Белки обусловливают вязкость крови, что имеет большое значение для поддержания постоянства кровяного давления;

Белки играют важную роль в водном обмене. от их концентрации в значительной степени зависит обмен воды между кровью и тканями, интенсивность образования мочи. белки являются факторами образования иммунитета;

Фибриноген является основным фактором свертывания крови.

С возрастом содержание белков в плазме увеличивается. К 3-4 годам содержание белка практически достигает уровня взрослых (6,83%). У детей в раннем возрасте отмечаются более широкие границы колебаний содержания белка (от 4,3 до 8,3%) по сравнению со взрослыми, у которых пределы колебаний от 7 до 8%. Наименьшее количество белка отмечается до 3 лет, затем количество белка нарастает от 3 до 8 лет. В последующие периоды оно увеличивается незначительно. В препубертатном и пубертатном возрасте содержание белка больше, чем в детском и среднем возрастах.

У новорожденных снижено содержание альбуминов (56,8%) при относительно высоком содержании гамма-глобулинов. Содержание альбуминов постепенно повышается: к 6 месяцам оно составляет в среднем 59,25%, а к 3 годам - 58,97%, что близко к норме взрослого.

Уровень гамма-глобулинов высок в момент рождения и в ранние сроки постнатальной жизни за счет получения их от матери через плацентарный барьер. В течение первых 3 месяцев происходит их разрушение и падение уровня в крови. Затем содержание гамма-глобулинов несколько увеличивается, достигая к 3 годам нормы взрослого (17,39%).

Клетки крови, их характеристика, функции. Возрастные особенности. Клетки крови (или форменные элементы) подразделяются на красные кровяные тельца - эритроциты, белые кровяные тельца - лейкоциты и кровяные пластинки - тромбоциты (Атл., рис. 2, с. 143). Суммарный объем их у человека составляет около 44% общего объема крови.

Классификацию форменных элементов крови можно представить следующим образом (рис. 16).



эритроциты
клетки крови Ý лейкоциты Ý зернистые лейкоциты Ý эозинофилы
Ý базофилы
Ý нейтрофилы
незернистые лейкоциты Ý моноциты
Ý лимфоциты Ý B-лимфоциты
Ý плазмоциты
Ý Т-лимфоциты
Ý кровяные пластинки (тромбоциты)

Рис. 16.Классификация форменных элементов крови

Эритроциты человека представляют собой круглые двояко-вогнутые безъядерные клетки. Они составляют основную массу крови и определяют ее красный цвет. Диаметр эритроцитов равен 7,2-7,5 мкм, а толщина 2-2,5 мкм. Они обладают большой пластичностью и легко проходят по капиллярам. По мере старения эритроцитов их пластичность уменьшается. Образуются эритроциты в красном костном мозге, где и созревают. В процессе созревания они теряют ядро и только после этого поступают в кровь. Они циркулируют в крови в течение 130 дней, а затем разрушаются преимущественно в печени и селезенке.

В 1 мкл крови у мужчин содержится в среднем 4,5-5 млн эритроцитов, а у женщин -3,9-4,7 млн. Количество эритроцитов не постоянно и может меняться при некоторых физиологических состояниях (мышечной работе, при пребывании на больших высотах и т. д.).

Общая поверхность всех эритроцитов взрослого человека составляет примерно 3 800 м 2 , то есть в 1500 раз превышает поверхность тела.

Эритроциты содержат дыхательный пигмент гемоглобин . В одном эритроците находится около 400 млн молекул гемоглобина. Он состоит из двух частей: белковой - глобина и железосодержащей - гема. Гемоглобин образует непрочное соединение с кислородом - оксигемоглобин (НвО 2). При этом соединении валентность железа не меняется. 1 г гемоглобина может свзать 1,34 мл О 2 . Оксигемоглобин имеет ярко-алый цвет, что и определяет цвет артериальной крови. В капиллярах тканей оксигемоглобин легко распадается на гемоглобин и кислород, который поглощается клетками. Гемоглобин, отдавший кислород, называют восстановленным гемоглобином (Hb), именно он определяет вишневый цвет венозной крови. В капиллярах тканей гемоглобин соединяется с углекислым газом, образуя карбоксигемоглобин . Это соединение распадается в капиллярах легких, углекислый газ диффундирует в воздух альвеол, оттуда частично выделяется в атмосферный воздух.

Гемоглобин особенно легко соединяется с угарным газом СО, образовавшееся соединение препятствует переносу гемоглобином кислорода, и в результате в организме возникают тяжелые последствия кислородного голодания (рвота, головная боль, потеря сознания). Слабые отравления угарным газом являются процессом обратимым: СО постепенно отделяется и выводится при дыхании свежим воздухом.

Количество гемоглобина в крови имеет индивидуальные колебания и половые различия: у мужчин он составляет 135-140 г/л, у женщин - 125-130 г/л (табл. 11).

О наличии анемического состояния свидетельствует снижение числа эритроцитов (ниже 3 млн) и количество гемоглобина меньше 60%. При анемии может быть уменьшено либо число эритроцитов, либо содержание в них гемоглобина, либо и то и другое. Чаще всего встречается железодефицитная анемия. Она может быть следствием недостатка железа в пище (особенно у детей), нарушения всасывания железа в пищеварительном тракте или хронической кровопотере (например, при язвенной болезни, опухолях, полипах, глистной инвазии). Среди других причин - белковое голодание, гиповитаминоз аскорбиновой кислоты (витамин С), фолиевой кислоты, витаминов В 6 , В 12 , экология.

Неблагоприятные условия жизни детей и подростков могут привести к возникновению малокровия. Оно сопровождается головными болями, головокружением, обмороками, отрицательно сказывается на работоспособности учащихся, снижается сопротивляемость организма, и дети часто болеют.

Профилактические мероприятия:

Рациональное питание с достаточным количеством микроэлементов (Cu, Zn, Co, Mn, Mg и др.) и витаминов (E, B 2 , B 6 , B 9 , В 12 и фолиевой кислоты);

Пребывание на свежем воздухе;

Нормирование учебной, трудовой, двигательной активности и творческой деятельности.

Для новорожденных детей характерно повышенное содержание гемоглобина и большое количество эритроцитов. Процентное содержание гемоглобина в крови детей периода новорожденности колеблется в пределах от 100 до 140%, а количество эритроцитов может превышать 7 млн в мм 3 , что связывают с недостаточным снабжением кислородом плода в последние дни эмбрионального периода и во время родов. После рождения условия газообмена улучшаются, часть эритроцитов распадается, а содержащийся внутри их гемоглобин превращается в пигмент билирубин . Образование больших количеств билирубина может послужить причиной так называемой желтухи новорожденных, когда кожа и слизистые оболочки окрашиваются в желтый цвет.

К 5-6 дню эти показатели снижаются, что связано с кроветворной функцией мозга.

Кровь новорожденных содержит значительное количество незрелых форм эритроцитов, имеются эритроциты, содержащие ядро (до 600 в 1мм 3 крови). Наличие незрелых форм эритроцитов указывает на интенсивно протекающие процессы кроветворения после рождения. Эритроциты новорожденных неодинакового размера, их диаметр колеблется от 3,25 до 10,25 мкм. После месяца жизни в крови ребенка встречаются лишь единичные ядерные эритроциты.

К 3-4 годам количество гемоглобина и эритроцитов несколько увеличивается, в 6-7 лет отмечается замедление в нарастании числа эритроцитов и содержании гемоглобина, с 8-летнего возраста вновь нарастает число эритроцитов и количество гемоглобина. В 12-14 лет может наблюдаться повышение количества эритроцитов, обычно до верхних границ нормы, что объясняется повышенной активностью органов кроветворения под влиянием половых гормонов в период полового созревания. Половые различия в содержании гемоглобина в крови проявляются в том, что у мальчиков процентное содержание гемоглобина выше, чем у девочек.

Скорость оседания эритроцитов (СОЭ). При стоянии крови в стеклянном капилляре, не свертывающейся вследствие добавления противосвертывающих веществ, наблюдается постепенное оседание эритроцитов. Это происходит потому, что удельная плотность эритроцитов выше, чем плазмы (1,096 и 1,027). Скорость оседания эритроцитов зависит от соотношения альбуминов и глобулинов в плазме крови. Кроме того, СОЭ находится в линейной зависимости от количества эритроцитов. Чем больше эритроцитов, тем медленнее они оседают. СОЭ выражается в миллиметрах высоты столба плазмы над слоем осевших эритроцитов за единицу времени (обычно за 1 час).

У здоровых женщин скорость оседания эритроцитов колеблется в пределах 2-15 мм/ч, а у мужчин 1-10 мм/ч. Обычно скорость оседания эритроцитов у женщин несколько больше, чем у мужчин. Высокая СОЭ наблюдается у беременных женщин (до 45 мм/ч), при наличии воспалительных процессов и при некоторых других изменениях в организме. Поэтому СОЭ широко используется как важный диагностический показатель.

У новорожденных скорость оседания эритроцитов низкая (от 1 до
2 мм/ч). У детей до трех лет величина СОЭ колеблется в пределах от 2 до 17 мм/ч. В возрасте от 7 до 12 лет величина СОЭ не превышает 12 мм/ч.

Лейкоциты относятся к белым (бесцветным) кровяным клеткам. У них имеется ядро и цитоплазма. Общее количество лейкоцитов меньше, чем эритроцитов. У взрослого человека до приема пищи в 1 мм 3 содержится 4000-9000 лейкоцитов. Их численность непостоянна, и она меняется даже в течение дня. Увеличение количества лейкоцитов называется лейкоцитозом , уменьшение - лейкопенией .

Различают физиологический и реактивный лейкоцитоз .

Первый наблюдают после приема пищи, во время беременности, при мышечной работе, сильных эмоциях, болевых ощущениях.

Второй вид характерен для воспалительных процессов и инфекционных заболеваний. Реактивный лейкоцитоз обусловлен повышением выброса клеток из органов кроветворения с преобладанием молодых форм клеток.

Лейкопения характеризует течение некоторых инфекционных заболеваний (брюшной тиф, грипп, полиомиелит, эпидемический гепатит, малярия). Она наблюдается при поражении красного костного мозга в результате облучения.

Существует три типа лейкоцитов: гранулоциты , лимфоциты и моноциты . В зависимости от того, содержит ли цитоплазма зернистость или она однородна, лейкоциты делятся на две группы: гранулоциты и агранулоциты.

Гранулоциты . Название этих клеток связано с наличием в их цитоплазме гранул, выявляемых обычными методами фиксации и окрашивания. В зависимости от свойств гранул гранулоциты подразделяются на нейтрофильные (воспринимают как кислые, так и основные красители), эозинофильные (окрашиваются кислыми красками) и, наконец, базофильные (их клетки способны воспринимать основные краски). Гранулоциты составляют 72% всех лейкоцитов крови (Атл., рис. 3, с. 144), время их жизни равно примерно 2 суток.

Подавляющее большинство гранулоцитов приходится на долю нейтрофилов . Их называют также полиморфно-ядерными, так как они имеют ядро различной формы. У юных нейтрофилов ядро округлое, у молодых - в виде подковы или палочки (палочкоядерные). С возрастом клеток ядро перешнуровывается и разделяется на несколько сегментов, образуя сегментоядерные нейтрофилы.

Время нахождения нейтрофилов в кровеносном русле очень мало (в среднем 6-8 ч), так как эти клетки быстро мигрируют в слизистые оболочки. При острых инфекционных заболеваниях число нейтрофилов быстро увеличивается. Они способны получать энергию путем анаэробного гликолиза и поэтому могут существовать даже в бедных кислородом тканях: воспаленных, отечных или плохо кровоснабжаемых. Нейтрофилы скапливаются в местах повреждения тканей или проникновения микробов, захватывают и переваривают их. Помимо того, нейтрофилы выделяют или адсорбируют на своей мембране антитела против микробов и чужеродных белков.

Нейтрофилы являются наиболее важными функциональными элементами неспецифической защиты системы крови, способными обезвреживать даже такие инородные тела, с которыми организм ранее не встречался.

Эозинофилы обладают способностью к фагоцитозу. Они содержат крупные овальные ацидофильные гранулы, состоящие из аминокислот, белков и липидов. Увеличение числа эозинофилов называют эозинофилией . Особенно часто это состояние наблюдается при аллергических реакциях, глистных инвазиях и так называемых аутоиммунных заболеваниях, при которых в организме вырабатываются антитела против собственных клеток.

Базофилы . 0,5-1% всех лейкоцитов крови (около 35 клеток на 1 мм 3 приходится на долю базофилов. Время присутствия этих клеток в кровеносном русле составляет в среднем 12 ч. Крупные гранулы в цитоплазме продуцируют гепарин, препятствующий свертыванию крови. Кроме того, на мембране базофилов находятся специфические рецепторы, к которым присоединяются определенные глобулины крови. В результате образования такого иммунного комплекса из гранул высвобождается гистамин , который вызывает расширение сосудов, зудящую сыпь и в некоторых случаях спазм бронхов.

Агранулоциты (незернистые лейкоциты). Эти клетки делят на лимфоциты и моноциты (Атл., рис. 2,3, с. 143-144). На их долю приходится 28% всех лейкоцитов крови, у детей -50%. Местом образования лимфоцитов являются многие органы: лимфатические узлы, миндалины, пейровы бляшки, аппендикс, селезенка, вилочковая железа, костный мозг; местом образования моноцитов - костный мозг. Состояние, при котором число лимфоцитов превышает обычный уровень их содержания, называется лимфоцитозом , падение ниже нормальной величины - лимфопенией .

Все лимфоциты происходят из стволовых лимфоидных клеток костного мозга, затем они переносятся к тканям, где проходят дальнейшую дифференциацию. При этом одни лимфоциты развиваются и зреют в тимусе, превращаясь в Т-лимфоциты , которые в дальнейшем вновь возвращаются в кровеносное русло. Другие клетки попадают в фабрициеву сумку (бурсу) у птиц или выполняющую ее функцию лимфоидную ткань миндалин, аппендикса, пейеровых бляшек кишки у млекопитающих. Здесь они превращаются в зрелые В-лимфоциты . После созревания В-лимфоциты вновь выходят в кровоток и с ним разносятся к лимфатическим узлам, селезенке и другим лимфоидным образованиям.

Лимфоциты на наружной поверхности мембраны имеют специфические рецепторы, которые способны возбуждаться при встрече с чужеродными белками. При этом Т-лимфоциты посредством ферментов самостоятельно разрушают эти белковые тела: микробы, вирусы, клетки трансплантируемой ткани. Из-за этого качества они получили название киллеров - клеток-убийц.

В-лимфоциты несколько иначе реагируют при встрече с инородными телами: они вырабатывают специфические антитела, которые нейтрализуют и связывают эти вещества, подготавливая тем самым процесс их последующего фагоцитоза. Обычно в кровеносном русле находится только часть лимфоцитов, постоянно переходящая в лимфу и возвращающаяся обратно (рециркуляция). Другие лимфоциты постоянно локализуются в лимфоидной ткани. Во время стрессовых состояний лимфоциты интенсивно разрушаются под влиянием гормонов гипофиза и кортикостероидов.

Лимфоциты являются центральным звеном иммунной системы, а также участвуют в процессах клеточного роста, дифференцировки, регенерации тканей; переносят макромолекулы информационного белка, необходимого для управления генетическим аппаратом других клеток.

Моноциты - самые крупные клетки крови; они имеют округлую форму с хорошо выраженной цитоплазмой. На долю моноцитов приходится 4% всех лейкоцитов крови. Моноциты образуются в костном мозге, лимфатических узлах, соединительной ткани. Эти клетки обладают амебовидным движением, характеризуются самой высокой фагоцитарной активностью. Из крови моноциты выходят в окружающие ткани; здесь они растут и, достигнув зрелости, превращаются в неподвижные клетки - гистоциты , или тканевые макрофаги . Вблизи воспалительного очага эти клетки могут размножаться делением.

Между отдельными видами лейкоцитов существует определенное процентное отношение, называемое лейкоцитарной формулой (табл. 13)

Табл. 13. Лейкоцитарная формула (в %)

При инфекционных заболеваниях наблюдаются характерные изменения соотношения отдельных форм лейкоцитов. Острые бактериальные инфекции сопровождаются нейтрофильным лейкоцитозом и снижением числа лимфоцитов и эозинофилов. В дальнейшем борьба с инфекцией вступает в стадию моноцитоза; это является признаком победы организма над патогенными бактериями. Наконец, последняя стадия борьбы с патогенным агентом - это стадия очищения, в которой участвуют лимфоциты и эозинофилы. Хронические инфекционные заболевания сопровождаются лимфоцитозом. При туберкулезе часто отмечают увеличение количества лимфоцитов.

В острый период инфекционного заболевания, при тяжелом течении болезни эозинофилы могут не обнаружиться в крови, а с началом выздоровления, еще до видимых признаков улучшения состояния больного, они отчетливо видны под микроскопом.

Важнейшей функцией лейкоцитов является защита организма от проникающих в кровь и ткани микроорганизмов. Все виды лейкоцитов способны к амебовидному движению, благодаря чему они могут выходить (мигрировать) через стенку кровеносных сосудов. Скорость их движения может доходить до 40 мкм/мин. Лейкоциты способны окружать инородные тела и захватывать их в цитоплазму. Поглощенный микроорганизм разрушается и переваривается, лейкоциты погибают, в результате чего образуется гной. Это поглощение лейкоцитами попавших в организм микробов называется фагоцитозом (Атл., рис. 5, с. 145). Оно было открыто русским ученым И. И. Мечниковым в 1882 году. Один лейкоцит может захватывать до 15-20 бактерий. Помимо того, лейкоциты выделяют ряд веществ, важных для защиты организма. К ним относятся антитела, которые обладают антибактериальными и антитоксическими свойствами, способствуя заживлению ран. В лейкоцитах каждого типа содержатся определенные ферменты, в том числе протеазы, пептидазы, липазы и др. Большая часть (более 50%) лейкоцитов находится за пределами сосудистого русла, в межклеточном пространстве, остальные (более 30%) - в костном мозге.

Количество лейкоцитов и их соотношение меняется с возрастом. У новорожденных в первые 2 дня их больше, чем у взрослых, и в среднем колеблется в пределах 10 000-20 000. Затем число их начинает падать. Иногда отмечается второй небольшой подъем между 2-м и 9-м днем жизни. К 7-12-му дню число лейкоцитов снижается и достигает 10-12 тысяч. Такое количество лейкоцитов сохраняется у детей первого года жизни, после чего оно снижается и к 13-15 годам достигает величины взрослого человека. Чем меньше возраст ребенка, тем его кровь содержит больше незрелых форм лейкоцитов. Лейкоцитарная формула крови ребенка в период новорожденности характеризуется:

Последовательным снижением числа лимфоцитов от момента рождения к концу периода новорожденности (10 дней);

Значительным процентом палочкоядерных форм и нейтрофилов;

Структурной незрелостью и хрупкостью лейкоцитов, поэтому отсутствуют сегментированные и палочкоядерные формы, ядра рыхлые и окрашиваются светлее, плазма лимфоцитов часто не окрашивается.

К 5-6 годам количество этих форменных элементов выравнивается, после этого процент нейтрофилов неуклонно растет, а процент лимфоцитов понижается (табл. 14).

У детей в возрасте от 3 до 7 лет содержание нейтрофилов относительно низкое, и поэтому фагоцитарная функция крови невелика. Этим можно объяснить подверженность детей дошкольного возраста инфекционным заболеваниям. Начиная с 8-9 лет фагоцитарная функция крови усиливается, что в значительной мере повышает сопротивляемость организма школьников.

Табл. 14. Возрастная характеристика лейкоцитарной формулы (в %)

Возраст (в годах) Нейтрофилы Моноциты Лимфоциты
1-2 34,5 11,5
4-5 45,5 9,0 44,5
6-7 46,5 9,5 42,0
7-8 44,5 9,0 45,0
8-9 49,5 8,5 39,5
9-10 51,5 8,0 38,5
10-11 50,0 9,5 36,0
11-12 52,5 9,0 36,0
12-13 53,5 8,5 35,0
13-14 56,5 8,5 32,0
14-15 60,5 9,0 28,0

Возрастные колебания числа лимфоцитов можно объяснить функциональными особенностями органов кроветворения: лимфатических узлов, селезенки, костного мозга и т. д. К 13-15 годам компоненты лейкоцитарной формулы достигают величин взрослого человека.

Тромбоциты и свертывание крови. Тромбоциты, или кровяные пластинки, представляют собой самостоятельные клеточные элементы крови неправильной округлой формы, окруженные мембраной и обычно лишенные ядра, диаметром 1-4 мкм, толщиной 0,5-0,75 мкм. Кровяные пластинки образуются в костном мозге (Атл., рис. 4, с. 144). Период созревания тромбоцитов составляет 8 дней. Они циркулируют в крови в течение 5-11 дней и затем разрушаются в печени, легких, селезенке. Количество тромбоцитов у человека 200-400 × 10 9 / л (200 000-400 000 в 1 мкл). Число тромбоцитов увеличивается при пищеварении, тяжелой мышечной работе (миогенный тромбоцитоз), беременности. Имеют место суточные колебания: днем тромбоцитов больше, чем ночью.

Функции тромбоцитов многообразны:

1) продуцируют и выделяют ферменты, участвующие в свертывании крови;

2) обладают способностью фагоцитировать небиологические инородные тела, вирусы и иммунные комплексы, участвующие в неспецифической защитной системе организма;

Свертывание крови. Свертывание крови имеет большое биологическое значение, так как предохраняет организм от значительной потери крови.

В свертывании крови принимают участие все клетки крови (особенно тромбоциты ), белки плазмы (так называемые факторы свертывания крови), ионы Са +2 , сосудистая стенка и окружающая сосудистая ткань. В норме факторы свертывания крови находятся в неактивном состоянии. Свертывание крови - многоступенчатый процесс ферментативных цепных реакций, действующий по принципу обратной связи.

Процесс свертывания крови включает в себя три фазы.

Рис. 17. Схема процесса свертывания крови (по: Андреева , 1998)

В первой фазе под влиянием внешних факторов происходит формирование фермента активной протромбиназы, во второй - образование фермента тромбина, в третьей - образование фибрина из фибриногена. Для образования протромбина в печени необходим витамин К, и поэтому недостаток этого витамина (например, при нарушении всасывания жиров в кишечнике) приводит к расстройствам свертывания крови. Период полувыведения протромбина из плазмы крови равен 1,5-3 дням. Тромбин вызывает переход растворенного в плазме фибриногена в фибрин, нити которого образуют основу тромба. Такой сгусток крови плотно закупоривает отверстие в сосуде и препятствует дальнейшему кровотечению. Кровь человека, извлеченная из сосудистого русла, свертывается за 3-8 мин. При некоторых заболеваниях это время может увеличиться или уменьшиться.

Свертыванию крови препятствует гепарин - вещество, которое вырабатывается специальными клетками - гепариноцитами . Большое скопление их наблюдается в легких и печени. Они находятся также в стенке кровеносных сосудов и ряде других тканей. Свертыванию препятствуют и некоторые вещества, образующиеся в организме, так называемые противосвертывающие факторы .

При нормальных условиях кровь в кровеносных сосудах не свертывается, но при повреждении внутренней оболочки сосуда и при некоторых заболеваниях сердечно-сосудистой системы происходит ее свертывание, при этом в кровеносном сосуде образуется сгусток - тромб .

Количество тромбоцитов у новорожденных колеблется в довольно широких пределах - от 150 до 350 тыс. в 1 мм 3 . У грудных детей число кровяных пластинок колеблется в среднем от 230 до 250 тыс. в 1 мм 3 . С возрастом содержание тромбоцитов мало меняется. Так, у детей от 1 года до 16 лет число тромбоцитов колеблется в среднем в пределах от 200 до 300 тыс. в 1 мм 3 .

Свертывание крови у детей в первые дни после рождения замедляется, особенно на 2-й день жизни ребенка. С 3-го по 7-й день жизни свертывание крови ускоряется и приближается к норме взрослых. У детей дошкольного и школьного возраста время (или скорость) свертывания крови имеет широкие индивидуальные колебания. В среднем начало свертывания в капле крови наступает через 1-2 мин, конец свертывания - через 3-4 мин.

При ряде заболеваний (например, при гемофилии ) отмечается удлинение времени свертывания крови, оно может достигать 30 мин, иногда нескольких часов. Замедление свертываемости крови зависит от недостатка в плазме крови антигемофильного глобулина , участвующего в образовании тромбопластина. Заболевание проявляется в детском возрасте исключительно у мужчин; гемофилия передается по наследству от практически здоровой женщины из семьи, один из членов которой страдал гемофилией. Заболевание характеризуется длительными кровотечениями в связи с травмой или оперативным вмешательством. Кровоизлияния могут быть в кожу, мышцы, суставы; могут быть кровотечения из носа. Такие дети должны избегать травм и находиться на диспансерном учете.

В крови поддерживается относительно постоянное соотношение форменных элементов.

В табл. 15 представлена гемограмма здоровых детей от 1 года до 15 лет.

Табл. 15. Гемограмма здоровых детей от 1 года до 15 лет
(Тур , Шабалов , 1970)

Возраст Эритроциты 1: 10 6 в 1 мкл Гемоглобин, г/л Тромбоциты 1: 10 4 в 1 мкл Лейкоциты 1: 10 3 в 1 мкл СОЭ, мм/ч
М ± 0 М ± 0 М ± 0 М ± 0 М ± 0
4,2 0,20 7,2 8,9 2,3
4,2 0,22 7,1 8,5 2,2
4,2 0,20 7,4 7,9 1,9
4,2 0,21 6,2 7,9 1,9
4,3 0,22 7,0 7,5 1,7
4,2 0,18 7,5 7,6 1,7
4,4 0,18 8,5 7,3 1,6
4,3 0,20 8,3 7,2 1,5
4,4 0,19 6,9 7,3 1,5
4,4 0,19 7,2 7,1 1,7
4,4 0,21 6,8 7,1 1,5
4,4 0,22 6,8 6,7 1,3
4,4 0,20 7,2 6,8 1,4
4,6 0,21 8,0 7,0 1,5

Иммунитет. Виды иммунитета. Защита организма от чужеродных веществ осуществляется посредством выработки антител различной специфичности, которые могут распознавать всевозможные виды чужеродных веществ.

Чужеродное вещество, вызывающее образование антител, называют антигеном . По своей природе антиген является высокомолекулярным полимером естественного происхождения или синтезированным искусственным путем. Антиген состоит из крупной белковой, полисахаридной или липидной молекулы, находящейся на поверхности микроорганизма или в свободном виде.

В процессе эволюции у человека сформировалось два механизма иммунитета - неспецифический и специфический . Среди того и другого выделяют гуморальный и клеточный . Такое разделение функций иммунной системы связано с существованием двух типов лимфоцитов: Т-клеток и В-клеток.

Неспецифический гуморальный иммунитет . Главная роль в этом виде иммунитета принадлежит защитным веществам плазмы крови, таким как лизоцим, интерферон. Они обеспечивают врожденную невосприимчивость организма к инфекциям.

Лизоцим представляет собой белок, обладающий ферментативной активностью. Он активно подавляет рост и развитие возбудителей болезней, разрушает некоторые бактерии. Лизоцим содержится в кишечной и носовой слизи, слюне, слезной жидкости.

Интерферон - глобулин плазмы крови. Он быстро синтезируется и высвобождается. Обладает широким спектром действия и обеспечивает противовирусную защиту еще до повышения числа специфических антител.

Неспецифический клеточный иммунитет . Этот вид иммунитета определяется фагоцитарной активностью гранулоцитов, моноцитов, тромбоцитов. Гранулоциты и моноциты содержат большое число лизосомных ферментов, и наиболее выражена их фагоцитарная активность. В этой реакции выделяют несколько стадий: присоединение фагоцита к микробу, поглощение микроба, его ферментативное переваривание и удаление материала, оставшегося не разрушенным.

Специфический клеточный иммунитет . Здесь основную роль играют Т-лимфоциты, которые созревают в вилочковой железе и поступают в кровоток. Т-клетки постоянно выходят из тимуса и поступают в лимфатические узлы и селезенку, где в случае встречи со специфическим антигеном узнают его и начинают делиться. Одна часть образовавшихся дочерних
Т-лимфоцитов связывается с антигеном и разрушает его. Т-лимфоциты могут атаковать чужеродные клетки благодаря специфическому рецептору для антигена, встроенному в плазматическую мембрану. Эта реакция происходит при участии особых клеток Т-хелперов (помощников). Другая часть дочерних лимфоцитов - так называемые Т-клетки, обладающие иммунологической памятью. Они «запоминают» антиген с первой встречи с ним и «узнают» при повторном контакте. Это опознание сопровождается интенсивным делением, образуя большое число эффекторных Т-лимфо­цитов - клеток-киллеров.

Специфический гуморальный иммунитет . Этот вид иммунитета создается В-лимфоцитами лимфатических узлов, липидами и другими лимфатическими органами. При первой встрече с антигеном В-лимфоциты начинают делиться и дифференцироваться, образуя плазматические клетки и клетки «памяти». Плазматические клетки вырабатывают и выделяют в плазму крови гуморальные антитела. И здесь в выработке антител участвуют Т-хелперы. Повторная