Биография. Урок-игра "леонард эйлер и его вычисления" Эйлер и Ломоносов

За время существования Академии наук в России, видимо, одним из самых знаменитых её членов был математик Леонард Эйлер.

Он стал первым, кто в своих работах начал возводить последовательное здание анализа бесконечно малых. Только после его исследований, изложенных в грандиозных томах его трилогии «Введение в анализ», «Дифференциальное исчисление» и «Интегральное исчисление», анализ стал вполне оформившейся наукой - одним из самых глубоких научных достижений человечества.

Леонард Эйлер родился в швейцарском городе Базеле 15 апреля 1707 года. Отец его, Павел Эйлер, был пастором в Рихене (близ Базеля) и имел некоторые познания в математике. Отец предназначал своего сына к духовной карьере, но сам, интересуясь математикой, преподавал её и сыну, надеясь, что она ему впоследствии пригодится в качестве интересного и полезного занятия. По окончании домашнего обучения тринадцатилетний Леонард был отправлен отцом в Базель для слушания философии.

Среди других предметов на этом факультете изучались элементарная математика и астрономия, которые преподавал Иоганн Бернулли. Вскоре Бернулли заметил талантливость юного слушателя и начал заниматься с ним отдельно.

Получив в 1723 году степень магистра, после произнесения речи на латинском языке о философии Декарта и Ньютона, Леонард, по желанию своего отца, приступил к изучению восточных языков и богословия. Но его всё больше влекло к математике. Эйлер стал бывать в доме своего учителя, и между ним и сыновьями Иоганна Бернулли - Николаем и Даниилом - возникла дружба, сыгравшая очень большую роль в жизни Эйлера.

В 1725 году братья Бернулли были приглашены в члены Петербургской академии наук, недавно основанной императрицей Екатериной I. Уезжая, Бернулли обещали Леонарду известить его, если найдётся и для него подходящее занятие в России. На следующий год они сообщили, что для Эйлера есть место, но, однако, в качестве физиолога при медицинском отделении академии. Узнав об этом, Леонард немедленно записался в студенты медицины Базельского университета. Прилежно и успешно изучая науки медицинского факультета, Эйлер находит время и для математических занятий. За это время он написал напечатанную потом, в 1727 году, в Базеле диссертацию о распространении звука и исследование по вопросу о размещении мачт на корабле.

В Петербурге имелись самые благоприятные условия для расцвета гения Эйлера: материальная обеспеченность, возможность заниматься любимым делом, наличие ежегодного журнала для публикации трудов. Здесь же работала самая большая тогда в мире группа специалистов в области математических наук, в которую входили Даниил Бернулли (его брат Николай скончался в 1726 году), разносторонний Х. Гольдбах, с которым Эйлера связывали общие интересы к теории чисел и другим вопросам, автор работ по тригонометрии Ф. Х. Майера, астроном и географ Ж. Н. Делиль, математик и физик Г. В. Крафт и другие. С этого времени Петербургская академия стала одним из главных центров математики в мире.

Открытия Эйлера, которые благодаря его оживлённой переписке нередко становились известными задолго до издания, делают его имя всё более широко известным. Улучшается его положение в Академии наук: в 1727 году он начал работу в звании адъюнкта, то есть младшего по рангу академика, а в 1731 году он стал профессором физики, т. е. действительным членом академии. В 1733 году получил кафедру высшей математики, которую до него занимал Д. Бернулли, возвратившийся в том же году в Базель. Рост авторитета Эйлера нашёл своеобразное отражение в письмах к нему его учителя Иоганна Бернулли. В 1728 году Бернулли обращается к «учёнейшему и даровитейшему юному мужу Леонарду Эйлеру», в 1737 году - к «знаменитейшему и остроумнейшему математику», а в 1745 году - к «несравненному Леонарду Эйлеру - главе математиков».

В 1735 году академии потребовалось выполнить весьма сложную работу по расчёту траектории кометы. По мнению академиков, на это нужно было употребить несколько месяцев труда. Эйлер взялся выполнить это в три дня и исполнил работу, но вследствие этого заболел нервною горячкою с воспалением правого глаза, которого он и лишился. Вскоре после этого, в 1736 году, появились два тома его аналитической механики. Потребность в этой книге была большая; немало было написано статей по разным вопросам механики, но хорошего трактата по механике не имелось.

В 1738 году появились две части введения в арифметику на немецком языке, в 1739 году - новая теория музыки. Затем в 1840 году Эйлер написал сочинение о приливах и отливах морей, увенчанное одной третью премии Французской академии; две других трети были присуждены Даниилу Бернулли и Маклорену за сочинения на ту же тему.

В конце 1740 года власть в России попала в руки регентши Анны Леопольдовны и её окружения. В столице сложилась тревожная обстановка. В это время прусский король Фридрих II задумал возродить основанное ещё Лейбницем Общество наук в Берлине, долгие годы почти бездействовавшее. Через своего посла в Петербурге король пригласил Эйлера в Берлин. Эйлер, считая, что «положение начало представляться довольно неуверенным», приглашение принял.

В Берлине Эйлер поначалу собрал около себя небольшое учёное общество, а затем был приглашён в состав вновь восстановленной Королевской академии наук и назначен деканом математического отделения. В 1743 году он издал пять своих мемуаров, из них четыре по математике. Один из этих трудов замечателен в двух отношениях. В нём указывается на способ интегрирования рациональных дробей путём разложения их на частные дроби и, кроме того, излагается обычный теперь способ интегрирования линейных обыкновенных уравнений высшего порядка с постоянными коэффициентами.

Вообще большинство работ Эйлера посвящено анализу. Эйлер так упростил и дополнил целые большие отделы анализа бесконечно малых, интегрирования функций, теории рядов, дифференциальных уравнений, начатые уже до него, что они приобрели примерно ту форму, которая за ними в большой мере сохраняется и до сих пор. Эйлер, кроме того, начал целую новую главу анализа - вариационное исчисление. Это его начинание вскоре подхватил Лагранж и таким образом сложилась новая наука.

В 1744 году Эйлер напечатал в Берлине три сочинения о движении светил: первое - теория движения планет и комет, заключающая в себе изложение способа определения орбит из нескольких наблюдений; второе и третье - о движении комет.

Семьдесят пять работ Эйлер посвятил геометрии. Часть из них хотя и любопытна, но не очень важна. Некоторые же просто составили эпоху. Во-первых, Эйлера надо считать одним из зачинателей исследований по геометрии в пространстве вообще. Он первый дал связное изложение аналитической геометрии в пространстве (во «Введении в анализ») и, в частности, ввёл так называемые углы Эйлера, позволяющие изучать повороты тела вокруг точки.

В работе 1752 года «Доказательство некоторых замечательных свойств, которым подчинены тела, ограниченные плоскими гранями», Эйлер нашёл соотношение между числом вершин, рёбер и граней многогранника: сумма числа вершин и граней равна числу рёбер плюс два. Такое соотношение предполагал ещё Декарт, но Эйлер доказал его в своих мемуарах. Это в некотором смысле первая в истории математики крупная теорема топологии - самой глубокой части геометрии.

Занимаясь вопросами о преломлении лучей света и написав немало мемуаров об этом предмете, Эйлер издал в 1762 году сочинение, в котором предлагается устройство сложных объективов с целью уменьшения хроматической аберрации. Английский художник Долдонд, открывший два различной преломляемости сорта стекла, следуя указаниям Эйлера, построил первые ахроматические объективы.

В 1765 году Эйлер написал сочинение, где решает дифференциальные уравнения вращения твёрдого тела, которые носят название Эйлеровых уравнений вращения твёрдого тела.

Много написал учёный сочинений об изгибе и колебании упругих стержней. Вопросы эти интересны не только в математическом, но и в практическом отношении.

Фридрих Великий давал учёному поручения чисто инженерного характера. Так, в 1749 году он поручил ему осмотреть канал Фуно между Гавелом и Одером и дать рекомендации по исправлению недостатков этого водного пути. Далее ему поручено было исправить водоснабжение в Сан-Суси.

Результатом этого стало более двадцати мемуаров по гидравлике, написанных Эйлером в разное время. Уравнения гидродинамики первого порядка с частными производными от проекций скорости, плотности к давлению называются гидродинамическими уравнениями Эйлера.

Покинув Петербург, Эйлер сохранил самую тесную связь с русской Академией наук, в том числе официальную: он был назначен почётным членом, и ему была определена крупная ежегодная пенсия, а он, со своей стороны, взял на себя обязательства в отношении дальнейшего сотрудничества. Он закупал для нашей академии книги, физические и астрономические приборы, подбирал в других странах сотрудников, сообщая подробнейшие характеристики возможных кандидатов, редактировал математический отдел академических записок, выступал как арбитр в научных спорах между петербургскими учёными, присылал темы для научных конкурсов, а также информацию о новых научных открытиях и т. д. В доме Эйлера в Берлине жили студенты из России: М. Софронов, С. Котельников, С. Румовский, последние позднее стали академиками.

Из Берлина Эйлер, в частности, вёл переписку с Ломоносовым, в творчестве которого он высоко ценил счастливое сочетание теории с экспериментом. В 1747 году он дал блестящий отзыв о присланных ему на заключение статьях Ломоносова по физике и химии, чем немало разочаровал влиятельного академического чиновника Шумахера, крайне враждебно относившегося к Ломоносову.

В переписке Эйлера с его другом академиком Петербургской академии наук Гольдбахом мы находим две знаменитые «задачи Гольдбаха»: доказать, что всякое нечётное натуральное число есть сумма трёх простых чисел, а всякое чётное - двух. Первое из этих утверждений было при помощи весьма замечательного метода доказано уже в наше время (1937) академиком И. М. Виноградовым, а второе не доказано до сих пор.

Эйлера тянуло назад в Россию. В 1766 году он получил через посла в Берлине, князя Долгорукова, приглашение императрицы Екатерины II вернуться в Академию наук на любых условиях. Несмотря на уговоры остаться, он принял приглашение и в июне прибыл в Петербург.

Императрица предоставила Эйлеру средства на покупку дома. Старший из его сыновей Иоганн Альбрехт стал академиком в области физики, Карл занял высокую должность в медицинском ведомстве, Христофора, родившегося в Берлине, Фридрих II долго не отпускал с военной службы, и потребовалось вмешательство Екатерины II, чтобы тот смог приехать к отцу. Христофор был назначен директором Сестрорецкого оружейного завода.

Ещё в 1738 году Эйлер ослеп на один глаз, а в 1771-м после операции почти совсем потерял зрение и мог писать только мелом на чёрной доске, но благодаря ученикам и помощникам. И. А. Эйлеру, А. И. Локселю, В. Л. Крафту, С. К. Котельникову, М. Е. Головину, а главное Н. И. Фуссу, прибывшему из Базеля, продолжал работать не менее интенсивно, чем раньше.

Эйлер, при своих гениальных способностях и замечательной памяти, продолжал работать, диктовать свои новые мемуары. Только с 1769 по 1783 год Эйлер продиктовал около 380 статей и сочинений, а за свою жизнь написал около 900 научных работ.

Работа 1769 года «Об ортогональных траекториях» Эйлера содержит блестящие соображения о получении с помощью функции комплексной переменной из уравнений двух взаимно ортогональных семейств кривых на поверхности (т. е. таких линий, как меридианы и параллели на сфере) бесконечного числа других взаимно ортогональных семейств. Работа эта в истории математики оказалась очень важной.

В следующей работе 1771 года «О телах, поверхность которых может быть развёрнута в плоскость» Эйлер доказывает знаменитую теорему о том, что любая поверхность, которую можно получить лишь изгибая плоскость, но не растягивая её и не сжимая, если она не коническая и не цилиндрическая, представляет собой совокупность касательных к некоторой пространственной кривой.

Столь же замечательны работы Эйлера по картографическим проекциям.

Можно себе представить, каким откровением для математиков той эпохи явились хотя бы работы Эйлера о кривизне поверхностей и о развёртывающихся поверхностях. Работы же, в которых Эйлер исследует отображения поверхности, сохраняющие подобие в малом (конформные отображения), основанные на теории функций комплексного переменного, должны были казаться прямо-таки трансцендентными. А работа о многогранниках начинала совсем новую часть геометрии и по своей принципиальности и глубине стояла в ряду с открытиями Евклида.

Неутомимость и настойчивость в научных исследованиях Эйлера были таковы, что в 1773 году, когда сгорел его дом и погибло почти всё имущество его семейства, он и после этого несчастья продолжал диктовать свои исследования. Вскоре после пожара искусный окулист, барон Вентцель, произвёл операцию снятия катаракты, но Эйлер не выдержал надлежащего времени без чтения и ослеп окончательно.

В том же 1773 году умерла жена Эйлера, с которой он прожил сорок лет. Через три года он вступил в брак с её сестрой, Саломеей Гзелль. Завидное здоровье и счастливый характер помогали Эйлеру «противостоять ударам судьбы, которые выпали на его долю… Всегда ровное настроение, мягкая и естественная бодрость, какая-то добродушная насмешливость, умение наивно и забавно рассказывать делали разговор с ним столь же приятным, сколь и желанным…» Он мог иногда вспылить, но «был не способен долго питать против кого-либо злобу…» - вспоминал Н. И. Фусс.

Эйлера постоянно окружали многочисленные внуки, часто на руках у него сидел ребёнок, а на шее лежала кошка. Он сам занимался с детьми математикой. И всё это не мешало ему работать!

18 сентября 1783 года Эйлер скончался от апоплексического удара в присутствии своих помощников профессоров Крафта и Лекселя. Он был похоронен на Смоленском лютеранском кладбище. Академия заказала известному скульптору Ж. Д. Рашетту, хорошо знавшему Эйлера, мраморный бюст покойного, а княгиня Дашкова подарила мраморный пьедестал.

До конца XVIII века конференц-секретарём академии оставался И. А. Эйлер, которого сменил Н. И. Фусс, женившийся на дочери последнего, а в 1826 году - сын Фусса Павел Николаевич, так что организационной стороной жизни академии около ста лет ведали потомки Леонарда Эйлера. Эйлеровские традиции оказали сильное влияние и на учеников Чебышёва: А. М. Ляпунова, А. Н. Коркина, Е. И. Золотарёва, А. А. Маркова и других, определив основные черты петербургской математической школы.

Нет учёного, имя которого упоминалось бы в учебной математической литературе столь же часто, как имя Эйлера. Даже в средней школе логарифмы и тригонометрию изучают до сих пор в значительной степени «по Эйлеру».

Эйлер нашёл доказательства всех теорем Ферма, показал неверность одной из них, а знаменитую Великую теорему Ферма доказал для «трёх» и «четырёх». Он также доказал, что всякое простое число вида 4n+1 всегда разлагается на сумму квадратов других двух чисел.

Эйлер начал последовательно строить элементарную теорию чисел. Начав с теории степенных вычетов, он затем занялся квадратичными вычетами. Это так называемый квадратичный закон взаимности. Эйлер также много лет занимался решением неопределённых уравнений второй степени с двумя неизвестными.

Во всех этих трёх фундаментальных вопросах, которые больше двух столетий после Эйлера и составляли основной объём элементарной теории чисел, учёный ушёл очень далеко, однако во всех трёх его постигла неудача. Полное доказательство получили Гаусс и Лагранж.

Эйлеру принадлежит инициатива создания и второй части теории чисел - аналитической теории чисел, в которой глубочайшие тайны целых чисел, например, распределение простых чисел в ряду всех натуральных чисел, получаются из рассмотрения свойств некоторых аналитических функций.

Созданная Эйлером аналитическая теория чисел продолжает развиваться и в наши дни.

Эйлер родился 15 апреля 1707 г. в г. Базель, в Швейцарии. Его отец, Пауль Эйлер, был пастором Реформатской церкви. Отец его матери, Маргарита Брукер, также был пастором. У Леонарда было две младшие сестры – Анна Мария и Мария Магдалена. Вскоре после рождения сына, семья переезжает в городок Риен. Отец мальчика был другом Иоганна Бернулли – известного европейского математика, оказавшего большое влияние на Леонарда. В тринадцать лет Эйлер-младший поступает в Базельский университет, и в 1723 г. получает степень магистра философии. В своей диссертации Эйлер сравнивает философии Ньютона и Декарта. Иоганн Бернулли, дававший мальчику по субботам частные уроки, быстро распознаёт выдающиеся способности мальчика к математике и убеждает его оставить раннюю теологию и сосредоточиться на математике.

В 1727 г. Эйлер принимает участие в конкурсе, организованном Парижской академии наук, на лучшую технику установки корабельных мачт. Леонард занимает второе место, в то время как первое достаётся Пьеру Бугеру, который впоследствии станет известен как «отец кораблестроения». Эйлер каждый год принимает участие в этом конкурсе, получив за свою жизнь двенадцать этих престижных наград.

Санкт-Петербург

17 мая 1727 г. Эйлер поступает на службу в медицинское отделение Императорской российской академии наук в Санкт-Петербурге, но почти сразу же переходит на математический факультет. Однако из-за волнений в России, 19 июня 1741 г. Эйлер переводится в Берлинскую академию. Там учёный прослужит около 25 лет, написав за это время более 380 научных статей. В 1755 г. его избирают иностранным членом Шведской королевской академии наук.

В начале 1760-х г.г. Эйлеру поступает предложение обучать наукам принцессу Анхальт-Дессау, которой учёный напишет более 200 писем, вошедших в ставший крайне популярным сборник «Письма Эйлера на разные предметы натуральной философии, адресованные немецкой принцессе». Книга не только наглядно демонстрирует способности учёного рассуждать на всевозможные темы в области математики и физики, но также является выражением его личных и религиозных взглядов. Интересно то, что эта книга известна лучше, чем все его математические труды. Она издавалась как в Европе, так и в Соединённых штатах Америки. Причиной такой популярности этих писем стала удивительная способность Эйлера в доступной форме доносить научные сведения до простого обывателя.

Уникальность этого труда состояла ещё и в том, что в 1735 г. учёный почти полностью ослеп на правый глаз, а в 1766 г. левый его глаз был поражён катарактой. Но, даже несмотря на это, он продолжает свои работы и в 1755 г. пишет в среднем по одной математической статье в неделю.

В 1766 г. Эйлер принимает предложение вернуться в Петербургскую академию, и остаток своей жизни проведёт в России. Однако его второй приезд в эту страну оказывается для него не столь удачным: в 1771 г. пожар уничтожает его дом, а, вслед за этим, в 1773 г. он теряет свою жену Катарину.

Личная жизнь

7 января 1734 г. Эйлер женится на Катарине Гзель. В 1773 г., после 40 лет семейной жизни, Катарина умирает. Спустя три года, Эйлер женится на её сводной сестре, Саломе Абигейл Гзель, с которой и проведёт остаток жизни.

Смерть и наследие

18 сентября 1783 г., после семейного обеда, у Эйлера случается кровоизлияние в мозг, после чего, спустя несколько часов, он умирает. Похоронили учёного на Смоленском лютеранском кладбище на Васильевском острове, рядом с его первой женой Катариной. В 1837 г. Российская академия наук поставила на могиле Леонарда Эйлера бюст на пьедестале, выполненном в форме ректорского кресла, рядом с могильным камнем. В 1956 г., к 250-летию со дня рождения учёного, памятник и останки были перенесены на кладбище XVIII века при монастыре Александра Невского.

В память о его огромном вкладе в науку, портрет Эйлера появился на швейцарских 10-франковых банкнотах шестой серии, а также на ряде российских, швейцарских и немецких марок. В его честь назван астероид «2002 Эйлер». 24 мая лютеранская церковь чтит его память по календарю святых, поскольку Эйлер был убеждённым приверженцем христианства и горячо верил в библейские заповеди.

Система математических обозначений

Среди всех разнообразных работ Эйлера самой заметной является представление теории функций. Он первым ввёл обозначение f(x) – функции “f” по аргументу “x”. Эйлер также определил математические обозначения для тригонометрических функций в том виде, в каком мы знаем их сейчас, ввёл литеру “e” для основания натурального логарифма (известную как «число Эйлера»), греческую букву “Σ” для итоговой суммы и букву “i” для определения мнимой единицы.

Анализ

Эйлер утвердил применение показательной функции и логарифмов в аналитических доказательствах. Он открыл способ разложения различных логарифмических функций в степенной ряд, а также успешно доказал применение логарифмов к отрицательным и комплексным числам. Таким образом, Эйлер значительно расширил математическое применение логарифмов.

Этот великий математик также подробно объяснил теорию высших трансцендентных функций и представил новаторский подход к решению квадратных уравнений. Он открыл технику расчёта интегралов с применением сложных пределов. Разработал он и формулу вариационного исчисления, получившую название «уравнение Эйлера-Лагранжа».

Теория чисел

Эйлер доказал малую теорему Ферма, тождества Ньютона, теорему Ферма о суммах двух квадратов, а также значительно продвинул доказательство теоремы Лагранжа о сумме четырёх квадратов. Он внёс ценные дополнения в теорию совершенных чисел, над которой с увлечением трудился не один математик.

Физика и астрономия

Заметный вклад внёс Эйлер в решение уравнения пучка Эйлера-Бернулли, ставшего одним из основных уравнений, применяемых в инженерном деле. Свои аналитические методы учёный применял не только в классической механике, но и в решении небесных задач. За свои достижения в области астрономии Эйлер получил многочисленные награды Парижской академии. Основываясь на знании истинной природы комет и рассчитав параллакс Солнца, учёный чётко вычислил орбиты комет и других небесных тел. С помощью этих расчётов были составлены точные таблицы небесных координат.

Оценка по биографии

Новая функция! Средняя оценка, которую получила эта биография. Показать оценку

Обучение в гимназии в те времена было непродолжительным. Осенью 1720 тринадцатилетний Эйлер поступил в Базельский университет, через три года окончил низший – философский факультет и записался, по желанию отца, на теологический факультет. Летом 1724 на годичном университетском акте он прочел по-латыни речь о сравнении картезианской и ньютонианской философии. Проявив интерес к математике, он привлек к себе внимание Иоганна Бернулли. Профессор стал лично руководить самостоятельными занятиями юноши и вскоре публично признал, что от проницательности и остроты ума юного Эйлера он ожидает самых больших успехов.

Еще в 1725 Леонард Эйлер выразил желание сопровождать сыновей своего учителя в Россию, куда они были приглашены в открывавшуюся тогда – по воле Петра Великого – Петербургскую Академию наук. На следующий год получил приглашение и сам. Покинул Базель весной 1727 и после семинедельного путешествия прибыл в Петербург. Здесь он был зачислен сначала адъюнктом по кафедре высшей математики, в 1731 стал академиком (профессором), получив кафедру теоретической и экспериментальной физики, а затем (1733) кафедру высшей математики.

Сразу же по приезде в Петербург он полностью погрузился в научную работу и тогда же поразил всех плодотворностью своей деятельности. Многочисленные его статьи в академических ежегодниках, первоначально посвященные преимущественно задачам механики, скоро принесли ему всемирную известность, а позже способствовали и славе петербургских академических изданий в Западной Европе. Непрерывный поток сочинений Эйлера печатался с тех пор в трудах Академии в течение целого века.

Наряду с теоретическими исследованиями, Эйлер уделял много времени и практической деятельности, исполняя многочисленные поручения Академии наук. Так, он обследовал разнообразные приборы и механизмы, участвовал в обсуждении способов подъема большого колокола в Московском кремле и т.п. Одновременно он читал лекции в академической гимназии, работал в астрономической обсерватории, сотрудничал в издании Санкт-Петербургских ведомостей, вел большую редакционную работу в академических изданиях и пр. В 1735 Эйлер принял участие в работе Географического департамента Академии, внеся большой вклад в развитие картографии России. Неутомимая работоспособность Эйлера не была прервана даже полной потерей правого глаза, постигшей его в результате болезни в 1738.

Осенью 1740 внутренняя обстановка в России осложнилась. Это побудило Эйлера принять приглашение прусского короля, и летом 1741 он переехал в Берлин, где вскоре возглавил математический класс в реорганизованной Берлинской Академии наук и словесности. Годы, проведенные Эйлером в Берлине, были наиболее плодотворными в его научной деятельности. На этот период падает и его участие в ряде острых философско-научных дискуссий, в том числе о принципе наименьшего действия. Переезд в Берлин не прервал, однако, тесных связей Эйлера с Петербургской Академией наук. Он по-прежнему регулярно посылал в Россию свои сочинения, участвовал во всякого рода экспертизах, обучал посланных к нему из России учеников, подбирал ученых на замещение вакантных должностей в Академии и выполнял много других поручений.

Религиозность и характер Эйлера не соответствовали окружению «вольнодумного» Фридриха Великого. Это привело к постепенному осложнению отношений между Эйлером и королем, который при этом отлично понимал, что Эйлер является гордостью Королевской Академии. В последние годы своей берлинской жизни Эйлер исполнял фактически обязанности президента Академии, но должности этой так и не получил. В итоге летом 1766, несмотря на сопротивление короля, Эйлер принял приглашение Екатерины Великой и вернулся в Петербург, где оставался затем до конца своей жизни.

В том же 1766 Эйлер почти полностью потерял зрение и на левый глаз. Однако это не помешало продолжению его деятельности. С помощью нескольких учеников, писавших под его диктовку и оформлявших его труды, полуслепой Эйлер подготовил в последние годы своей жизни еще несколько сотен научных работ.

В начале сентября 1783 Эйлер почувствовал легкое недомогание. 18 сентября он еще занимался математическими исследованиями, но неожиданно потерял сознание и, по меткому выражению панегириста, «прекратил вычислять и жить».

Лучшие дня

Похоронен на Смоленском лютеранском кладбище в Петербурге, откуда его прах перенесен осенью 1956 в некрополь Александро-Невской лавры.

Научное наследие Леонарда Эйлера колоссально. Ему принадлежат классические результаты в математическом анализе. Он продвинул его обоснование, существенно развил интегральное исчисление, методы интегрирования обыкновенных дифференциальных уравнений и уравнений в частных производных. Эйлеру принадлежит знаменитый шеститомный курс математического анализа, включающий Введение в анализ бесконечно малых, Дифференциальное исчисление и Интегральное исчисление (1748–1770). На этой «аналитической трилогии» учились многие поколения математиков всего мира.

Эйлер получил основные уравнения вариационного исчисления и определил пути дальнейшего его развития, подведя главные итоги своих исследований в этой области в монографии Метод нахождения кривых линий, обладающих свойствами максимума или минимума (1744). Значительны заслуги Эйлера в развитии теории функций, дифференциальной геометрии, вычислительной математики, теории чисел. Двухтомный курс Эйлера Полное руководство по алгебре (1770) выдержал около 30 изданий на шести европейских языках.

Фундаментальные результаты принадлежат Леонарду Эйлеру в рациональной механике. Он впервые дал последовательно аналитическое изложение механики материальной точки, рассмотрев в своей двухтомной Механике (1736) движение свободной и несвободной точки в пустоте и в сопротивляющейся среде. Позже Эйлер заложил основы кинематики и динамики твердого тела, получив соответствующие общие уравнения. Итоги этих исследований Эйлера собраны в его Теории движения твердых тел (1765). Совокупность уравнений динамики, представляющих законы количества движения и момента количества движения, крупнейший историк механики Клиффорд Трусделл предложил называть «Эйлеровыми законами механики».

В 1752 была опубликована статья Эйлера Открытие нового принципа механики, в которой он сформулировал в общем виде ньютоновы уравнения движения в неподвижной системе координат, открыв путь для изучения механики сплошных сред. На этой основе он дал вывод классических уравнений гидродинамики идеальной жидкости, найдя и ряд их первых интегралов. Значительны также его работы по акустике. При этом ему принадлежит введение как «эйлеровых» (связанных с системой отсчета наблюдателя), так и «лагранжевых» (в сопутствующей движущемуся объекту системе отсчета) координат.

Замечательны многочисленные работы Эйлера по небесной механике, среди которых наиболее известна его Новая теория движения Луны (1772), существенно продвинувшая важнейший для мореходства того времени раздел небесной механики.

Наряду с общетеоретическими исследованиями, Эйлеру принадлежит ряд важных работ по прикладным наукам. Среди них первое место занимает теория корабля. Вопросы плавучести, остойчивости корабля и других его мореходных качеств были разработаны Эйлером в его двухтомной Корабельной науке (1749), а некоторые вопросы строительной механики корабля – в последующих работах. Более доступное изложение теории корабля он дал в Полной теории строения и вождения кораблей (1773), которая использовалась в качестве практического руководства не только в России.

Значительный успех имели комментарии Эйлера к Новым началам артиллерии Б.Робинса (1745), содержавшие, наряду с другими его сочинениями, важные элементы внешней баллистики, а также разъяснение гидродинамического «парадокса Даламбера». Эйлер заложил теорию гидравлических турбин, толчком для развития которой явилось изобретение реактивного «сегнерова колеса». Ему принадлежит и создание теории устойчивости стержней при продольном нагружении, приобретшей особую важность спустя столетие.

Много работ Эйлера посвящено различным вопросам физики, главным образом геометрической оптике. Особого упоминания заслуживают изданные Эйлером три тома Писем к немецкой принцессе о разных предметах физики и философии (1768–1772), выдержавшие впоследствии около 40 изданий на девяти европейских языках. Эти «Письма» были своего рода учебным руководством по основам науки того времени, хотя собственно философская сторона их и не соответствовала духу эпохи Просвещения.

Современная пятитомная Математическая энциклопедия указывает двадцать математических объектов (уравнений, формул, методов), которые носят сейчас имя Эйлера. Его имя носит и ряд фундаментальных уравнений гидродинамики и механики твердого тела.

Наряду с многочисленными собственно научными результатами, Эйлеру принадлежит историческая заслуга создания современного научного языка. Он является единственным автором середины XVIII в., труды которого читаются даже сегодня без всякого труда.

Петербургский архив Российской Академии наук хранит, кроме того, тысячи страниц неопубликованных исследований Эйлера, преимущественно в области механики, большое число его технических экспертиз, математические «записные книжки» и колоссальную научную корреспонденцию.

Его научный авторитет при жизни был безграничен. Он состоял почетным членом всех крупнейших академий и ученых обществ мира. Влияние его трудов было весьма значительным и в XIX в. В 1849 Карл Гаусс писал, что «изучение всех работ Эйлера останется навсегда лучшей, ничем не заменимой, школой в различных областях математики».

Общий объем сочинений Эйлера громаден. Свыше 800 его опубликованных научных работ составляют около 30 000 печатных страниц и складываются в основном из следующего: 600 статей в изданиях Петербургской Академии наук, 130 статей, опубликованных в Берлине, 30 статей в разных журналах Европы, 15 мемуаров, удостоенных премий и поощрений Парижской Академии наук, и 40 книг отдельных сочинений. Все это составит 72 тома близкого к завершению Полного собрания трудов (Opera omnia) Эйлера, издаваемого в Швейцарии с 1911. Все работы печатаются здесь на том языке, на котором они были первоначально опубликованы (т.е. на латинском и французском языках, которые были в середине XVIII в. основными рабочими языками, соответственно, Петербургской и Берлинской академий). К этому добавится еще 10 томов его Научной переписки, к изданию которой приступили в 1975.

Надо отметить особое значение Эйлера для Петербургской Академии наук, с которой он был тесно связан на протяжении свыше полувека. «Вместе с Петром I и Ломоносовым, – писал академик С.И.Вавилов, – Эйлер стал добрым гением нашей Академии, определившим ее славу, ее крепость, ее продуктивность». Можно добавить еще, что дела Петербургской академии велись в течение почти целого века под руководством потомков и учеников Эйлера: непременными секретарями Академии с 1769 до 1855 были последовательно его сын, зять сына и правнук.

Он вырастил трех сыновей. Старший из них был петербургским академиком по кафедре физики, второй – придворным врачом, а младший – артиллерист дослужился до чина генерал-лейтенанта. Почти все потомки Эйлера приняли в XIX в. российское подданство. Среди них были высшие офицеры российской армии и флота, а также государственные деятели и ученые. Лишь в смутное время начала XX в. многие из них вынуждены были эмигрировать. Сегодня прямые потомки Эйлера, носящие его фамилию, все еще живут в России и Швейцарии.

(Следует заметить, что фамилия Эйлера в подлинном произношении звучит как «Ойлер».)

Издания: Сборник статей и материалов. М. – Л.: Изд-во АН СССР, 1935; Сборник статей. М.: Изд-во АН СССР, 1958.

Великий математик
jonny_doll 28.09.2010 10:52:50

Мне "посчастливилось" однажды в жизни встретиться с потомками этого по истине великого математика. Они живут в Москве и до сих пор носят эту фамилию. К моему большому сожалению оказались просто напросто ворами.

Вступление

Эйлер принадлежит к числу гениев, чьё творчество стало достоянием всего человечества. До сих пор школьники всех стран изучают тригонометрию и логарифмы в том виде, какой придал им Эйлер. Студенты проходят высшую математику по руководствам, первыми образцами которых явились классические монографии Эйлера. <Рисунок 1 >.
Наш сегодняшний урок посвящен этому великому человеку. Сначала я хочу предоставить слово Н. П. Долбилину, доценту физико-математических наук, ведущему научному сотруднику Математического института РАН (показывается фрагмент выступления Н. П. Долбилина на VI Московском педагогическом марафоне учебных предметов время 1.15 – 2.40).

Имя Эйлера мы вспоминаем при изучении логарифмов на первом курсе. Именно в честь великого Леонарда Эйлера по первой букве его фамилии и названо число е. Именно он ввёл обозначение е для основания натуральных логарифмов. <Рисунок 2 >. Леонард Эйлер внёс много нового в разделы математики изучающие тригонометрию, логарифмы, многогранники, комплексные числа, графы. Он ввёл много обозначений, которыми мы пользуемся в настоящее время: 1734 – обозначение функции f(x) , 1736 – обозначение основания натурального логарифма е и отношение длины окружности к диаметру круга , 1748 – обозначение тригонометрических функций sinx и cosx , 1753 – обозначение тригонометрической функции tgx , 1755 – знак суммы , 1777 – обозначение мнимой единицы i. <Рисунок 3 >.

Формула Эйлера

Имя Эйлера носит формула, связывающая число вершин (В), рёбер (Р) и граней (Г) выпуклого многогранника: В – Р + Г = ?. <Рисунок 4 >.

Задание 1

Сейчас перед вами появятся изображения многогранников: треугольной призмы, параллелепипеда, треугольной пирамиды, усечённой пятиугольной пирамиды, правильный октаэдр, правильный додекаэдр. Ваша задача – посчитать число вершин, рёбер и граней у этих многогранников и вычислить для каждого из них В – Р + Г = ?. За каждый правильный ответ команда получает по 1 баллу. На выполнение этой задачи 10 минут.
На экране появляются изображения многогранников, а затем после того, как команды передадут свои решения жюри ответы: <Рисунок 5 >, <Рисунок 6 >, <Рисунок 7 >.
Эту закономерность Леонард Эйлер обнаружил в 1752 году, а позднее доказал её.

Детство Эйлера. Базельский период его жизни.

Леонард Эйлер родился 4 апреля 1707 года в семье небогатого протестанского священника Пауля Эйлера и Маргариты Брукер в швейцарском городе Базеле на живописном берегу Рейна. В то время Базель являлся центром образования и культуры европейского масштаба. <Рисунок 8 >.
Леонарду было около года, когда семья переехала в местечко Рихен, недалеко от Базеля, куда отец Леонардо был переведён пастором.
Первоначальное образование Леонард получил от отца. Пастор готовил своего сына для духовной карьеры, но учил его так же и математике, в качестве развлечения и развития логического мышления. После домашнего обучения Леонард был отправлен в базельскую латинскую гимназию.
В 1720 году 13-летний Леонард Эйлер стал студентом факультета искусств Базельского университета. Став студентом, он легко усваивал учебные предметы, отдавая предпочтение математике. В эти годы он подружился с семьей Бернулли. Профессор И. Бернулли заметил в молодом человеке талант и стал индивидуально заниматься с Леонардом.
В 1724 году 17-летний Леонард Эйлер произнёс по-латыни великолепную речь о сравнении философских воззрений Декарта и Ньютона и был удостоен степени магистра (что теперь соответствует степени доктора философии). В последующие два года юный Эйлер написал несколько научных работ, получивших положительные отзывы. В 1725 году он выиграл конкурс Парижской Академии наук за решение проблемы выбора наилучшего места на корабле для установки мачты, интересно, что к этому времени он ни разу не видел, ни моря, ни морских судов.

Многочлен Эйлера

Многочлен Эйлера – это многочлен х 2 – х + 41. Леонард Эйлер вычислил его значение при х от 1 до 40 и заметил закономерность.

Задание 2

Вам необходимо вычислить значение этого многочлена при х от 1 до 20. За каждый правильный ответ команда получает 1 балл. Если вы сумеете отгадать закономерность, то получите ещё 10 баллов. <Рисунок 9 >. На выполнение этой задачи 10 минут.

Математиков всегда интересовали простые числа. Ещё Евклид утверждал, что в натуральном ряду простых чисел бесконечно много. В 1750 году Леонард Эйлер нашёл простое число 2 31 – 1. В результате вычислений значений этого многочлена при х от 1 до 40 получаются только простые числа. <Рисунок 10 >

Первый Петербургский период жизни

В 1726 году императрица Екатерина I приглашает по рекомендации братьев Бернулли молодого Леонарда Эйлера в Российскую Академию наук. По приезду в Российскую столицу Эйлер вошёл в группу математиков и физиков, занимающуюся вопросами прикладной математики. Перед учёными была так же поставлена задача создания руководств для первоначального обучения наукам.

В один из последних дней 1733 года 26-летний Леонард Эйлер женился на Екатерине Гзель. Свадьба, Новый год – два праздника сразу! Вся академия сердечно поздравляла молодожёнов. Оказывается, великий математик может не только вычислять и анализировать, он не чужд и мирской жизни. У них было 13 детей, но только пять пережили детский возраст.

Эйлер отличался феноменальной работоспособностью. Он просто не мог не заниматься математикой или её приложениями. В 1735 году Академия получила задание выполнить срочное и очень громоздкое астрономическое вычисление по расчёту траектории кометы. Группа академиков просила на эту работу три месяца, а Эйлер взялся выполнить работу за три дня – и справился самостоятельно. Однако перенапряжение не прошло бесследно: он заболел и потерял зрение на правый глаз. Учёный отнёсся с несчастью с величайшим спокойствием: «Теперь я меньше буду отвлекаться от занятий математикой», – философски заметил он. <Рисунок 11 >.

В 1736 году Эйлер ввёл в употребление хорошо известное нам обозначение . Он вычислил с точностью до 153 десятичных знаков. Впервые это обозначение встретилось у английского математика Джонсона в 1706 году.

Рассказывают, что однажды Леонард Эйлер во время бессонницы вычислил шестую степень первых 100 чисел, а результаты повторил через много дней. В другой раз Эйлер, испытывая полученный им ряд, вычислил в течение часа первые 20 знаков числа .

Круги Эйлера

В одной из работ Эйлера говорится о кругах, которые «очень подходят для того, чтобы облегчить наши размышления». Эти круги обычно называют «кругами Эйлера». Давайте вместе решим следующую задачу.

Задача: В классе учатся 40 человек. Из них по русскому языку имеют «тройки» 19 человек, по математике – 17 человек и по физике – 22 человека. Только по одному предмету имеют «тройки»: по русскому языку – 4 человека, по математике – 4 человека и по физике – 11 человек. Семь человек имеют «тройки» и по математике и по физике, из них пятеро имеют тройки и по русскому языку. Сколько человек учатся без «троек». Сколько человек имеют «тройки» по двум из трёх предметов. Рассмотрим решение с помощью следующего слайда <Рисунок 12 >.

Задание 3

Пересчитайте математиков. В классе 35 учеников. Из них 20 занимаются в математическом кружке, 11 – в биологическом, 10 ребят не посещают эти кружки. Сколько биологов увлекаются математикой? На выполнение этой задачи 5 минут. Максимальная оценка – 5 баллов.

На экране появляется условие задачи, а затем рассматривается её решение <Рисунок 13 >.

Мосты в Кенигсберге

Вот перевод латинского текста, который взят из письма Эйлера к итальянскому математику и инженеру Маринони, отправленного из Петербурга 13 марта 1736 года: "Некогда мне была предложена задача об острове, расположенном в городе Кенигсберге и окруженном рекой, через которую перекинуто семь мостов. Спрашивается, может ли кто-нибудь непрерывно обойти их, проходя только однажды через каждый мост. И тут же мне было сообщено, что никто еще до сих пор не мог это проделать, но никто и не доказал, что это невозможно. Вопрос этот, хотя и банальный, показался мне, однако, достойным внимания тем, что для его решения недостаточны ни геометрия, ни алгебра, ни комбинаторное искусство... После долгих размышлений я нашел легкое правило, основанное на вполне убедительном доказательстве, с помощью которого можно во всех задачах такого рода тотчас же определить, может ли быть совершен такой обход через какое угодно число и как угодно расположенных мостов или не может".

Если число островов, соединённых мостами больше двух, то для решения задачи необходимо посчитать, сколько мостов ведут на каждый остров. Если на каждый остров ведёт чётное число мостов, то обход возможен и начать его можно с любого острова. Если на два острова ведёт нечётное число мостов, то обход возможен и его следует начать с любого острова на который ведёт нечётное число мостов. Если имеется более двух областей, в которое ведёт нечётное число мостов, то указанный переход не возможен.
В нашей задаче всего островов 4: A, B, C, D. Число мостов, ведущих к этим участкам соответственно: 5, 3, 3, 3, значит обход невозможен. <Рисунок 14 >.

Задание 4

Выясните, можно ли обойти все мосты, побывав на каждом из них только по одному разу в следующих случаях. <Рисунок 15 >, <Рисунок 16 >. На выполнение каждой задачи 1 минута. За каждую задачу – 2 балла.

Теория графов

Теория графов – наука сравнительно молодая. Первая работа по теории графов принадлежит Леонарду Эйлеру. Она появилась в 1736 году в публикациях Петербургской Академии Наук и начиналась с рассмотрения задачи о кенигсбергских мостах. Графы придали условиям наглядность, упростили решение и выявили сходство задач. Сейчас почти в любой отрасли науки и техники встречаешься с графами: в электротехнике при построении электрических схем, в химии – при изучении молекул и их цепочек, в экономике – при решении задач выбора оптимального пути для потоков грузового транспорта. Граф – это фигура, состоящая из точек и линий.

Решим следующую задачу:

В школьном драматическом кружке решили ставить гоголевского «Ревизора». И тут разгорелся жаркий спор. Всё началось с Ляпкина-Тяпкина.

– Ляпкиным-Тяпкиным буду я! Решительно заявил Дима. С раннего детства я мечтал воплотить этот образ на сцене.
– Ну хорошо, согласен уступить эту роль, если мне дадут сыграть Хлестакова, проявил великодушие Гена.
– … А мне – Осипа, – не уступил ему в великодушии Дима.
– Хочу быть Земляникой или Городничим, – сказал Вова.
– Нет, Городничим буду я, – хором закричали Алик и Боря. – или Хлестаковым, добавили они одновременно.

Удастся ли распределить роли так. Чтобы исполнители были довольны? <Рисунок 17 >.

Изобразим каждого участника драматического кружка точкой, а все их пожелания будем изображать линиями. Видно, что Осипа будет играть Дима, Вова – Землянику, Гена – Ляпкина – Тяпкина, Алик и Боря – Хлестакова и Городничего.

Задание 5

Решите с помощью графов следующую задачу: В первенстве класса по настольному теннису 6 участников: Андрей, Борис, Виктор, Галина, Дмитрий и Елена. Первенство проводят по круговой системе – каждый из участников играет с каждым из остальных один раз. На выполнение этой задачи 5 минут. Максимальная оценка – 5 баллов.

Решение задачи выводится на экран <Рисунок 18 >.

В 1736 году Эйлер выпустил два тома аналитической механики. В этой работе он применил методы математического анализа к решению проблем движения в пустоте и сопротивляющейся среде. Эта работа стала первой, где дифференциальное и интегральное исчисления применялись для описания физических явлений. <Рисунок 19 >.

В 1738 году появились два тома «Руководства к арифметике» на немецком языке, которое было переведено на русский язык и вышло в 1740 году в качестве учебника для гимназистов.

В 1739 году Эйлер выпускает книгу о теории музыки, в которой он рассматривает музыку как часть математики.

В 1740 году Эйлер издал книгу о приливах и отливах морей, за которую получил премию Парижской Академии наук.

Всего за 14лет первого петербургского периода жизни Эйлер подготовил к печати около 80 трудов и опубликовал свыше 50. Эйлер участвовал во многих направлениях деятельности Петербургской АН. Он читал лекции студентам, участвовал в различных технических экспертизах, работал над составлением карт России.

В 1741 году Эйлер принял предложение прусского короля Фридриха II переехать в Берлин.

Берлинский период

Живя в Берлине, Эйлер не переставал интенсивно работать для Петербургской АН, сохраняя звание её почётного члена. Он вёл обширную научную переписку, в частности переписывался яс Ломоносовым, которого высоко ценил. На получаемые из России деньги Эйлер закупал для Академии книги, приборы, подбирал кандидатов на академические должности, писал отзывы на научные работы.

Эйлер ввёл близкую к привычной нам символику, полностью разъяснил вопрос о знаках тригонометрических функций любого аргумента. Предшественники Эйлера, понимали тригонометрические функции как образы линий в круге некоторого радиуса, называя его «полным синусом». Теперь же тригонометрические функции составили просто некоторый класс аналитических функций, как действительного так и комплексного аргумента. В 1748 году, благодаря Эйлеру, вошло в употребление привычное нам обозначение синуса и косинуса, а в 1753 году котангенса.

Задание 6

Построить в одной системе координат графики данных функций <Рисунок 20 >. На выполнение этой задачи 10 минут. Максимальная оценка – 10 баллов.

Из рисунка видно, что при значениях х близких к единице графики этих функций почти совпадают <Рисунок 21 >. Эйлер получил представление тригонометрических функций синус и косинус в виде суммы функций, в виде многочлена. <Рисунок 22 >, <Рисунок 23 >.

В Берлинской АН Леонард Эйлер руководил обсерваторией и ботаническим садом, занимался изданием разнообразных географических и календарей. В этот период Эйлер опубликовал 380 научных работ, написал книги по математическому анализу, по кораблестроению и навигации, о движении Луны. <Рисунок 24 >.

Результаты, полученные Эйлером, используются в космических исследованиях. В частности, для управления летательными аппаратами необходимо отыскать наилучшее (оптимальное) управление. Л. Эйлер разработал в 1726–1744 гг. общий метод решения экстремальных задач.

Например, двигаясь по циклоиде, под действием силы тяжести тело опустится из одной точки в другую в кратчайшее время.

Эйлер открыл формулу по которой можно вычислить силу, называемую критической, под действием которой колонна начинает сгибаться и её ось принимает форму синусоиды.
Рост авторитета Эйлера нашёл своеобразное отражение в письмах к нему его учителя И. Бернулли. В 1728 году Бернулли обращается к «учёнийшему и даровитейшему юному мужу Леонарду Эйлеру», в 1737 – к «знаменитейшему и остроумнейшему математику», а в 1745 – к «несравненному Леонарду Эйлеру – главе математиков».

Задание 7

Выясните, выполнив необходимые построения на какой линии в произвольном треугольнике лежат следующие три точки: точка пересечения высот, точка пересечения медиан, центр описанной окружности. На выполнение этой задачи 5 минут. Максимальная оценка – 5 баллов.
В произвольном треугольнике точка пересечения высот, точка пересечения медиан и центр описанной окружности лежат на одной прямой. Эта прямая называется прямой Эйлера. <Рисунок 25 >.

Второй Петербургский период жизни

Эйлер вернулся в Россию в 1766 году. В Петербург он привёз много рукописей, которые не успел опубликовать в Берлине. Несмотря на преклонный возраст и постигшую его почти полную слепоту, он до конца своей жизни продуктивно работал.

В 1767 Эйлер написал учебник алгебры – «Универсальная арифметика». Эта книга Эйлера, вышла на русском языке в 1768 г, на немецком в 1770 г. Переведена на французский, английский, испанский. Переиздавалась 30 раз на 6 европейских языках. <Рисунок 26 >.

В 1776 Леонард Эйлер был одним из экспертов проекта одноарочного моста через Неву, предложенного И.Кулибиным, и из всей комиссии один оказал широкую поддержку проекту.

В 1777г. Эйлер ввел в употребление обозначение мнимой единицы i и записал свою знаменитую формулу, которую Лагранж назвал одним из самых прекрасных изобретений 18 века. Академик Крылов считает, что эта удивительная формула объединяет арифметику (–1), геометрию (П), алгебру (квадратный корень из минус единицы равен мнимой единице), анализ (е). <Рисунок 27 >.

Круг занятий Эйлера, охватывавших все отделы современной ему математики и механики,
теорию упругости, математическую физику, оптику, теорию музыки, теорию машин, баллистику, морскую науку, страховое дело и т.д.

Задание 8

Требуется выбрать 5 гирь так, чтобы с их помощью можно было взвесить любой груз до 30кг, при условии, что гири ставятся только на одну чашу весов. Эйлер предложил взять такие гири: 1 кг, 2 кг, 4 кг, 8 кг, 16 кг. Попробуйте «взвесить» этими гирями грузы от 1 до 30 килограмм. За каждый правильный ответ 1 балл. На выполнение этой задачи 5 минут.

За 1777 г. Эйлер, будучи слепым, подготовил около 100 статей, т.е. почти по 2 статьи в неделю! За 17 лет вторичного пребывания в Петербурге Леонардом Эйлером было подготовлено около 400 работ. <Рисунок 28 >.

Заслуги Эйлера как крупнейшего учёного и организатора научных исследований получили высокую оценку ещё при его жизни. Помимо Петербургской и Берлинской академий, он состоял членом крупнейших научных учреждений: Парижской АН, Лондонского королевского общества и других. <Рисунок 29 >. 3/5 работ Эйлера относится к математике, остальные 2/5 к её приложениям.

Доминик Араго сказал: «Эйлер вычислял без всякого видимого усилия, как человек дышит или как орёл парит над землёй».

Задание 9

Выяснить на какой линии в произвольном треугольнике лежат: основания высот, основания медиан, середины отрезков, соединяющих точку пересечения высот треугольника с его вершинами. На выполнение этой задачи 10 минут. Максимальная оценка – 10 баллов.

В произвольном треугольнике основания медиан, основания высот, а также середины отрезков, соединяющих точку пересечения высот треугольника с его вершинами, лежат на одной окружности. Её называют окружностью Эйлера. <Рисунок 30 >.

Умер Леонард Эйлер 18 сентября 1783 года. Французский математик Кондорсе сказал: «Эйлер перестал вычислять и жить». Его похоронили на Смоленском кладбище в Петербурге. Надпись на памятнике гласила: «Леонарду Эйлеру – Петербургская академия». Академик Вавилов скажет позже: «Вместе с Петром I и Ломоносовым Эйлер стал добрым гением нашей академии, определившим её славу, её крепость, её продуктивность». <Рисунок 31 >. Через 50 лет обнаружилось, что могила утеряна, и лишь случайно её удалось найти. Позднее останки Эйлера были перенесены в некрополь Александро-Невской лавры, где сегодня можно увидеть его могилу.

18 столетие с полным правом может быть названо веком Эйлера. Он оказал большое и плодотворное влияние на развитие математического просвещения в России. Именем Эйлера назван кратер на обратной стороне Луны. М. В. Остроградский писал, что «Эйлер создал современный анализ и сделал из него самый могущественный аппарат ума человеческого. Он один охватил анализ во всём его объёме и указал на многочисленные и разнообразные его применения».

В 1909 г. Швейцарское естественнонаучное общество приступило к изданию полного собрания сочинений Эйлера, которое завершено в 1975 г.Оно состоит из 72 томов. Знаменитый французский учёный П. Лаплас говорил: «Читайте, читайте Эйлера, он наш общий учитель». По книгам Эйлера училось несколько поколений, а главное содержание этих книг вошло в современные учебники.

В сентябре 1983 года во всём мире отмечалось 200-летие со дня смерти великого петербургского математика Леонардо Эйлера. Специально созданный Эйлеровский комитет при Академии наук ГДР провёл научную конференцию с участием зарубежных математиков. К открытию конференции была выпущена памятная медаль из мейсенского фарфора. <Рисунок 32 >. Вышла в свет марка с портретом Эйлера и одной из наиболее знаменитых его формул, а также конверты с факсимиле его подписи и тиснёным портретом. <Рисунок 33 >.

В 2007 году широко отмечалось 300-летие великого математика Леонарда Эйлера.

Подведение итогов игры

Жюри подсчитывает баллы и подводит итоги

Литература:

«Математика». Учебно-методическая газета. Специальный выпуск к 300-летию Леонарда Эйлера. №6, 2007.
Альхова З.Н., Макеева А.В. Внеклассная работа по математике. – Саратов, ОАО Лицей, 2002.
Баврин И.И., Фрибус Е.А. Старинные математические задачи. – М.: Просвещение, 1994.
Баврин И.И., Фрибус Е.А. Занимательные задачи по математике. – М.: Владос, 2003.
Никифоровский В А. В мире уравнений. – М. : Наука, 1987.
Смышляев В.К. О математике и математиках. – Йошкар-Ола, марийское книжное издательство, 1977.