Буферные свойства клетки заключаются в том что.  Образовательный портал

БУФЕРНЫЕ СВОЙСТВА , способность многих веществ ослаблять изменение активной реакции раствора, которое без них произошло бы при прибавлении к раствору кислот или щелочей. Это стабилизирующее влияние на реакцию раствора называется буферным действием.

Буферное действие

Если к десяти кубических см децинормального раствора уксусной кислоты постепенно добавлять раствор едкого натра такой же концентрации, то кислотность раствора, определяемая концентрацией содержащихся в нем свободных водородных ионов, будет уменьшаться. При прибавлении 10 кубических см NaOH процесс связывания кислоты щелочью, процесс нейтрализации, окажется законченным, вся уксусная кислота превратится в соответствующую соль – уксуснокислый натрий, а соединившиеся Н и ОН-ионы дадут молекулы воды. Дальнейшее добавление NaOH даст преобладание свободным гидроксильным ионам – щелочную реакцию. Помещаемая здесь кривая (смотрите рисунок 1, сплошная линия) передает изменения реакции, выраженной через рН (водородный показатель, – смотрите ), наблюдаемые при нейтрализации уксусной кислоты.

Рисунок 1. Изменение реакции (буферные свойства в действии)

Прерывистая линия на том же рисунке изображает соответствующее изменение реакции (рН) при прибавлении NaOH к децинормальной соляной кислоте. Если сравнить обе кривые и посмотреть, сколько потребовалось щелочи для одинакового изменения реакции, напр., для изменения рН от 4 до 5, то результаты окажутся весьма различными: в первом случае – около 5 кубических см NaOH, во втором – едва уловимые следы последнего. Количество щелочи (или соответственно кислоты), которое требуется для определенного изменения реакции, и является мерилом устойчивости реакции раствора, величины его буферного действия. В первом случае оно весьма значительно, во втором – совершенно ничтожно. Если количество грамм-эквивалентов щелочи (или, соответственно, кислоты), прибавленной к литру испытуемого раствора, обозначить знаком ДВ, а вызванное этим изменение реакции через ДрН, то, по Ван-Слайку (Van-Slyke), буферное действие будет равно отношению этих величин: Буферное действие = отношение ДВ к ДрН. Различие в хорде кривых для обоих рассмотренных выше растворов обусловлено свойствами обеих кислот. Соляная кислота принадлежит к сильным кислотам, полностью диссоциированным на свои ионы. Напротив, уксусная кислота сравнительно слабо диссоциирована: только небольшая часть ее молекул (в децинормальном растворе около 1,3%) распадается и дает водородные ионы, определяющие кислую реакцию раствора. Поэтому, уксусная кислота имеет значительно менее кислую реакцию (больший рН), чем соляная в одинаковой молекулярной концентрации. При прибавлении NaOH гидроксильные ионы щелочи связывают водородные ионы. Но в силу общих условий химическом равновесия удаление продуктов диссоциации вызывает распад новых, прежде недиссоциированных молекул, освобождая все новые количества Н-ионов на место связываемых щелочью. Таким образом, уксусная кислота (в отличие от полностью диссоциированной соляной), кроме свободных, активных Н-ионов, обусловливающих активную реакцию раствора, обладает еще в своих недиссоциированных молекулах запасными, резервными водородными ионами, резервной кислотностью, способной быстро пополнять убыль свободных ионов. Эти кислотные резервы (или щелочные, если раствор может освобождать запасные ОН-ионы и связывать прибавляемые кислоты) и обусловливают его буферное действие; оно тем значительнее, чем больше резервных ионов мобилизуется при данном изменении реакции. Самое название (буферное действие) было дано по аналогии с железнодорожными буферами, смягчающими резкость механических толчков. Более правильным было бы сравнение с сосудами различной емкости, в которых прибавление одинакового количества жидкости вызывает различное изменение уровня. Чем значительнее емкость сосуда, тем больше требуется жидкости для определенного повышения уровня; подобным же образом от количества резервных Н – или О Н-ионов («буферной емкости») зависит количество щелочи (или кислоты), необходимое для данного изменения «уровня» реакции.

Буферные растворы

Электролитическая диссоциация слабых кислот и щелочей резко понижается в присутствии солей, имеющих общий с ними ион. Напр., уксусная кислота значительно слабее диссоциирована в присутствии своей натриевой соли (уксуснокислого натрия, дающего, подобно уксусной кислоте, ацетат-ион) и дает значительно меньше водородных ионов, чем в чистом растворе. Концентрация водородных ионов прямо пропорциональна концентрации молекул уксусной кислоты и обратно пропорциональна концентрации ацетат-ионов. Так как нейтральные соли принадлежат к сильным электролитам, почти полностью диссоциированным на свои ионы, можно с достаточным приближением, вместо концентрации ацетат-ионов, взять просто концентрацию соответствующей соли. Концентрация водородных ионов в таком растворе, содержащем слабую кислоту и ее соль, выразится тогда простой формулой (в которой прямоугольные скобки обозначают концентрацию стоящих в них веществ): [Н"]=К [кислота] / [соль] (1).

Подобным же образом в смеси слабой щелочи и ее соли концентрация гидроксильных ионов (по которой точно так же легко вычислить тесно связанную с ней концентрацию Н-ионов и реакцию раствора) определяется аналогичным выражением: [Н"]=К [щелочь] / [соль] (2).

Для более точного расчета необходимо было бы в обеих формулах несколько уменьшить знаменатель, умножив его на степень диссоциации соли (величину меньшую единицы). Такие смеси имеют особенно большие количества резервных, легко мобилизуемых Н- и ОН-ионов и соответственно особенно большое буферное действие. При этом они делают реакцию раствора устойчивой одновременно по отношению и к щелочам и к кислотам. Так, напрример, смесь уксусной кислоты с уксуснокислым натрием (получающаяся при частичной нейтрализации уксусной кислоты едким натром, смотрите рисунок), как мы видели, сравнительно мало изменяет свою реакцию при подщелачивании. Точно так же при прибавлении сильной кислоты, напр., соляной, действие ее ослабляется благодаря тому, что она соединяется с натрием, вытесняя эквивалентное количество слабой уксусной кислоты из ее соли. Растворы подобных смесей слабой кислоты или щелочи с соответствующей солью, так называемые буферные растворы, приобрели особенное значение благодаря той легкости, с которой по приведенным формулам (1) и (2) может быть вычислена их реакция. Постоянная К в этих формулах представляет характерную для каждой кислоты или щелочи константу – т. н. константу диссоциации. Если кислота и ее соль присутствуют в равной (эквивалентной) концентрации, то, очевидно, концентрация водородных ионов делается численно равной константе диссоциации ([Н"]=К). Таким образом, константа диссоциации кислоты (или, соответственно, щелочи) непосредственно указывает среднюю реакцию, в районе которой проявляется буферное действие данной смеси. В этой точке буферное действие более чем особенно велико. В следующей таблице приведен водородный показатель нескольких буферных растворов: смеси уксусной кислоты и уксуснокислого натрия (ацетатная смесь), однометаллического (первичного) и двуметаллического (вторичного) фосфата натрия (NaH 2 PO 4 и Na 2 HPO 4) и аммиака с хлористым аммонием.

Таблица рН буферных смесей.
Уксусная кислота
Молярное соотношение
Уксусно- кисл. Na
32:1 3,2 16:1 3,5 8:1 3,8 4:1 4,1 2:1 4,4 1:1 4,7 1:2 5,0 1:4 5,3 1:8 5,6 1:16 5,9 1:32 6,2 Первичный фосфат
Вторичный фосфат
Хлор. аммоний
Аммиан
1 4 7 0 3 7 3,3 8,0 8,3 8,6 8,9 9,2 9,5 9,8 10,1 10,4 10,7 11,0

Из формул (1) и (2) можно непосредственно вывести одно очень важное свойство буферных растворов: реакция, даваемая буферной смесью, зависит (в первом приближении) исключительно от соотношения и её компонентов, а не от их абсолютной концентрации. Поэтому и в приведенной таблице можно было, не приводя концентрации кислоты (или щелочи) и соли, ограничиться указанием их соотношения. Разбавление буферного раствора не влияет на его реакцию. Конечно, того же нельзя сказать о буферном действии. При данной реакции оно тем значительнее, чем выше концентрация буферов. Рассмотренные свойства буферных растворов определяют их важнейшие практические применения:

  1. Очень многие биохимические и биологические процессы в высокой степени чувствительны даже к незначительным изменениям реакции (смотрите и ). В самом ходе этих процессов часто вырабатываются большие количества кислых или щелочных продуктов, которые могли бы изменить или даже совершенно остановить их дальнейшее течение. Для точного изучения подобных процессов необходимо их проводить в условиях, исключающих возможность сколько-нибудь значительных колебаний реакции. Для этого служат буферные растворы, применяемые здесь как регуляторы реакции. Этот метод был применен Серенсеном (Sorensen, 1909 г.) для изучения влияния активной реакции на деятельность ферментов. В зависимости от количества вырабатываемых кислых или щелочных продуктов, с одной стороны, от желательной степени постоянства реакции – с другой, приходится применять растворы с более или менее значительным буферным действием.
  2. В других случаях величина буферного действия не имеет особенно существенного значения, а применение буферных растворов основано на даваемой ими возможности готовить стойкие растворы любой желательной реакции (смотрите таблицу). При помощи индикаторов – веществ, меняющих свою окраску в зависимости от активной реакции раствора, можно сравнивать исследуемый раствор с серией буферных растворов известной реакции. Устанавливая, в каком из этих растворов данный индикатор принимает такую же окраску, как и в испытуемом, можно определить реакцию последнего. Таким образом, буферы применяются здесь как стандартные растворы, путем сравнения с которыми измеряется реакция. Применение таких стандартных буферных растворов лежит в основе индикаторного, или колориметрического метода измерения реакции. Другие буферные системы. Другие хим. системы также могут оказывать более или менее значительное буферное действие. Оно может зависеть, например, от выпадения в осадок прибавляемой щелочи или кислоты. Так, если к морской воде прибавлять едкий натр, раствор будет подщелачиваться до тех пор, пока его рН не сделается равным, приблизительно 8,6. При этой реакции начнет осаждаться Mg(OH) 2 , образующийся из магниевых солей и прибавляемого NaOH; дальнейшее увеличение щелочности приостановится, пока весь магний не выпадет из раствора. Далее, даже нерастворимые вещества (например, животный уголь) могут захватывать прибавляемые кислоты или щелочи путем адсорпции. Наконец, очень сильным буферное действием отличаются белки и другие амфотерные вещества (смотрите ). Благодаря своей двойственной («амфотерной») природе, они могут связывать как кислоты, так и щелочи. Амфотерный характер клеточных коллоидов имеет большое значение для постоянства внутриклеточной реакции.

Буферы морской воды

Изменения реакции оказывают огромное влияние на жизненные явления; жизнь возможна лишь в определенном, для большинства организмов сравнительно узком, интервале концентраций Н- и ОН-ионов. Поэтому в природе буферы играют большую роль в поддержании необходимого для жизни постоянства реакции. Морская вода, представляющая естественную внешнюю среду большинства водных организмов, обладает весьма значительным буферное действием, которое зависит от содержащейся в ней бикарбонатной смеси – сочетания углекислоты и двууглекислого натрия (бикарбоната натрия). Благодаря наличию этого буфера, сохраняется обычная слабощелочная реакция морской воды и умеряются колебания реакции, которые производят водные организмы, поглощающие при фотосинтезе CO 2 или выделяющие кислые продукты обмена веществ.

Буферные свойства крови

Особенный интерес представляют буферные свойства внутренней среды организма, в частности, крови. Кровь имеет слабощелочную реакцию, отличающуюся большим постоянством. Даже in vitro кровь стойко удерживает свою реакцию и обладает весьма большим буферным действием. К ней приходится прибавлять в несколько десятков раз больше едкого натра, чем к дистиллированной воде, чтобы вызвать одинаковое подщелачивание раствора, и в несколько сот раз больше НС1 для одинакового подкисления. Так же, как и в морской воде, главным буфером кровяной сыворотки является бикарбонатная смесь – сочетание CO 2 и NaHCO 3 . Даваемая ею концентрация Н-ионов приближенно определяется так: [Н"]=К [СO 2 ] / (3), где К равняется, приблизительно, 3 * 10 -7 . В сыворотке содержатся также фосфаты, однако, по сравнению с бикарбонатами, их количество и их роль невелики. В отношении буферного действия бикарбонатный раствор вполне сходен с кровяной сывороткой.

Так, например, обе жидкости растворяют одинаковое количество CO 2 , пропорциональное ее парциальному давлению в окружающем воздухе. При изменении этого давления, как показывает формула (3), во столько же раз изменяется в них концентрация водородных ионов. Цельная кровь со своими форменными элементами обнаруживает при тех же условиях заметно большее постоянство реакции. Это добавочное, по сравнению с сывороткой, Буферное действие зависит от амфотерных белковых веществ крови, в частности – от находящегося в эритроцитах НЬ. Последний представляет очень слабую кислоту, настолько слабую, что его кислый характер не может проявиться при избытке CO 2 . Но, когда давление последней понижено, например, в артериальной крови, оксигемоглобин, как кислота, разлагает некоторое количество бикарбоната, вытесняя из него CO 2 . В результате уменьшается знаменатель в формуле (3) и отчасти компенсируется влияние пониженного содержания CO 2 .

Таким образом, НЬ оказывает существенное влияние на кривую связывания углекислоты, а тем самым и на реакцию крови. В частности, он умеряет различия, связанные с различным давлением CO 2 в артериальной и в венозной крови. Во всяком случае, в конечном итоге реакция крови вполне определяется соотношением углекислоты и бикарбоната, т. е. отношением свободной (растворенной) CO 2 и CO 2 химически связанной. Первая легко выделяется из крови, вторая может быть вытеснена путем разложения бикарбонатов кислотами. Обе эти величины – количество свободной и связанной CO 2 – совместно характеризуют буферные свойства и реакцию крови. Их измерение получило в последнее время большое распространение и значение.

В отношении своей реакции кровь обладает теми же свойствами, что и другие буферные растворы. Мы видели, что реакция буферной смеси определяется соотношением кислоты и ее соли, а не их абсолютной концентрацией. Соответственно этому и реакция крови остается практически неизменной даже при многократном разбавлении ее изотоническим раствором NaCl (или любым другим безбуферным раствором). Этим свойством крови нередко пользуются при измерении ее реакции, применяя с этой целью небольшое количество крови, разбавленной раствором NaCl. Оно же делает безвредным внутривенное вливание различных так наз. «физиологических растворов», нередко имеющих ненормальную реакцию, которая оказалась бы гибельной для организма, если бы уже небольшая примесь крови не приближала ее к физиологической норме. При прибавлении к крови in vitro щелочи эта последняя нейтрализуется углекислотой; напротив, всякая кислота реагирует с бикарбонатом и, образуя нейтральную соль, заменяется эквивалентным количеством вытесненной ею из бикарбоната CO 2 . Этим объясняется замечательный факт, не раз уже обращавший на себя внимание исследователей: путем введения в кровь (in vivo) различных кислот – от наиболее слабых до самых сильных – оказывается совершенно невозможным добиться различного (соответственно силе применяемой кислоты) изменения реакции крови.

Пока в крови остается некоторое количество бикарбонатного буфера, изменения реакции оказываются во всех случаях одинаково ничтожными. Затем, одновременно с резким нарушением реакции, наступает смерть. Эти грубые экспериментальные воздействия дают наглядное представление о том, что происходит в организме в естественных условиях. Огромное большинство продуктов обмена веществ имеет кислый характер (фосфорная, угольная, молочная, масляная и другие кислоты). От этих непрерывно поступающих из тканей кислот и должны буферы крови предохранить ее нормальную реакцию. Последняя является слабощелочной, то есть характеризуется небольшим избытком активных гидроксил-ионов. Водородный показатель (рН) крови равняется, в среднем, 7,4, концентрация Н-ионов – 0,44 * 10 -7 , концентрация ОН-ионов – около 7 * 10 -7 (при 37°). По сравнению с этой незначительной концентрацией свободных ОН-ионов количество резервных ионов, которое может быть освобождено для связывания прибавляемых кислот, весьма велико (около 2 * 10 -2). Их количество, однако, далеко не отличается таким постоянством, как активная реакция крови, и может подвергаться сильным изменениям, особенно в патологических условиях.

Щелочные растворы представляют лишь первый барьер против вводимых извне или вырабатываемых в организме кислых продуктов. Производимое последними нарушение реакции во много раз ослабляется буферами крови, но не может быть ими совершенно устранено: связывание части молекул бикарбоната и освобождение CO 2 смещает первоначальное соотношение этой основной буферные смеси. Более тонкая регуляция реакции совершается легкими. Всякое увеличение концентрации водородных ионов служит возбудителем дыхательного центра и немедленно усиливает вентиляцию легких (смотрите ). Благодаря высокой чувствительности дыхательного центра к Н-ионам, аппарат легочной регуляции работает необычайно точно: удаляя из крови, в зависимости от существующей в ней активной реакции, большие или меньшие количества CO 2 , он автоматически восстанавливает нормальное соотношение между нею и бикарбонатом.

Буферы крови защищают организм от резких колебаний реакции, которые были бы для него гибельны; дыхательный аппарат обеспечивает постоянное соотношение компонентов буферной смеси (даже при резких изменениях их абсолютной концентрации) и тем самым – точное постоянство активной реакции. Особенно значительное патологическое накопление нелетучих кислот и соответствующее уменьшение резервной щелочности наблюдаются при . Однако, и оно обычно не ведет к изменению активной реакции крови: путем усиленной вентиляции легких достигается уменьшение содержания CO 2 , компенсирующее в большинстве случаев понижение концентрации бикарбоната («компенсированный ацидоз»). Противоположное явление представляет компенсированный алкалоз, при котором увеличение щелочных резервов компенсируется пропорциональным повышением давления CO 2 . Изменения содержания СО 2 в альвеолярном воздухе легких может служить в обоих случаях прямым показателем изменений концентрации бикарбонатов в крови. Общее количество буферов в крови в первом случае уменьшается, во втором увеличивается, но активная реакция остается практически постоянной.


  • ЧЛЕНОВРЕДИТЕЛЬСТВО, умышленное самоповреждение, имеющее целью вызвать потерю или ослабление функции какого-либо органа...
  • Подробное решение Раздел стр. 14 по биологии для учащихся 9 класса, авторов С.Г. Мамонтов, В.Б. Захаров, И.Б. Агафонова, Н.И. Сонин 2016

    2. Неорганические вещества, водящие в состав клетки

    Вопрос 1. Какие химические элементы составляют большую часть массы клетки?

    Около 98 % массы клетки образуют четыре элемента: водород, кислород, углерод и азот. Это главные компоненты всех органических соединений. Вместе с серой и фосфором, являющимися необходимыми компонентами молекул биологических полимеров (от греч. полис – много, мерос – часть) – белков и нуклеиновых кислот, их часто называют биоэлементами.

    Вопрос 2. Что такое микроэлементы? Приведите примеры и охарактеризуйте их биологическое значение.

    Все остальные элементы (цинк, медь, йод, фтор, кобальт, марганец, молибден, бор и др.) содержатся в клетке в очень малых количествах. Общий их вклад в её массу – всего 0,02 %. Поэтому их называют микроэлементами. Однако и они имеют жизненно важное значение. Микроэлементы входят в состав ферментов, витаминов и гормонов – веществ, обладающих большой биологической активностью. Так, йод входит в состав гормона щитовидной железы – тироксина; цинк – в состав гормона поджелудочной железы – инсулина; кобальт – необходимый компонент витамина В12.

    Микроэлементы нужны в биотических дозах и их недостаток или избыток в поступлении в организм сказываются на изменении обменных процессов и др. Минеральные вещества играют огромную физиологическую роль в организме человека и животных, входят в состав всех клеток и соков, обусловливают структуру клеток и тканей; в организме они необходимы для обеспечения всех жизненных процессов дыхания, роста, обмена веществ, образования крови, кровообращении, деятельности центральной нервной системы и оказывают влияние на коллоиды тканей и ферментативные процессы. Они входят в состав или активируют до трехсот ферментов.

    Марганец (Мn). Марганец содержится во всех органах и тканях человека. Особенно много его в коре мозга, сосудистых системах. Марганец участвует в белковом и фосфорном обмене, в половой функции и в функции опорно-двигательного аппарата, участвует в окислительно-восстановительных процессах, при его участии происходят многие ферментативные процессы, а также процессы синтеза витаминов группы В и гормонов. Дефицит марганца сказывается на работе центральной нервной системы и стабилизации мембран нервных клеток, на развитии скелета, на кроветворении и реакциях иммунитета, на тканевом дыхании. Печень - депо марганца, меди, железа, но с возрастом содержание их в печени снижается, но потребность их в организме остается, возникают злокачественные заболевания, сердечно-сосудистые и др. Содержание марганца в пищевом рационе 4...36 мг. Суточная потребность 2-10 мг. Содержится в рябине обыкновенной, шиповнике коричневом, яблоне домашней, абрикосе, винограде винном, женьшене, клубнике, инжире, облепихе, а также хлебопродуктах, овощах, печени, почках.

    Бром (Вr). Наибольшее содержание брома отмечают в мозговом веществе, почках, щитовидной железе, ткани головного мозга, гипофизе, крови, спинномозговой жидкости. Соли брома участвуют в регуляции деятельности нерв ной системы, активируют половую функцию, увеличивая объем эякулята и количество сперматозоидов в нем. Бром при чрезмерном накоплении угнетает функцию щитовидной железы, препятствуя поступлению в нее йода, вызывает кожное заболевание бромодерму и угнетение центральной нервной системы. Бром входит в состав желудочного сока, влияя (наряду с хлором) на его кислотность. Рекомендуемая суточная потребность брома взрослым человеком составляет около 0,5-2,0 мг. Содержание брома в суточном пищевом рационе 0,4-1,1 мг. Основным источником брома в питании человека являются хлеб и хлебопродукты, молоко и молочные продукты, бобовые - чечевица, фасоль, горох.

    Медь (Си). Медь влияет на рост и развитие живого организма, участвует в деятельности ферментов и витаминов. Главной биологической функцией ее является участие в тканевом дыхании и кроветворении. Медь и цинк усиливают действие друг друга. Дефицит меди вызывает нарушение образования гемоглобина, развивается анемия, нарушается психическое развитие. Возникает потребность в меди при всяком воспалительном процессе, эпилепсии, анемии, лейкозе, циррозе печени, инфекционных заболеваниях. Нельзя кислые пищевые продукты или напитки держать в медной или латунной посуде. Избыток меди оказывает на организм токсическое действие, могут возникнуть рвота, тошнота, понос. Содержание меди в суточном пищевом рационе 2-10 мг и накапливается преимущественно в печени, костях. Во всех витаминах с микроэлементами медь содержится в пределах нормы, в растительных - айва (1,5 мг %). рябина, яблоня домашняя, абрикос обыкновенный, инжир, крыжовник, ананас - 8,3 мг % на 1 кг, хурма до 0,33 мг %.

    Никель (Ni). Никель обнаружен в поджелудочной железе, гипофизе. Наибольшее содержание обнаруживается в волосах, коже и органах эктодермального происхождения. Подобно кобальту никель благотворно влияет на процессы кроветворения, активирует ряд ферментов. При избыточном поступлении никеля в организм в течение длительного времени отмечаются дистрофические изменения в паренхиматозных органах, нарушения со стороны сердечнососудистой системы, нервной и пищеварительной систем, изменения в кроветворении, углеводном и азотистом обмене, нарушении функции щитовидной железы и репродуктивной функции. Много никеля в растительных продуктах, морской рыбе и продуктах моря, печени.

    Кобальт (Со). В организме человека кобальт выполняет разнообразные функции, в частности оказывает влияние на обмен веществ и рост организма, и принимает непосредственное участие в процессах кроветворения; он способствует синтезу мышечных белков, улучшает ассимиляцию азота, активизирует ряд ферментов, участвующих в обмене веществ; является незаменимым структурным компонентом витаминов группы В, способствует усвоению кальция и фосфора, понижает возбудимость и тонус симпатической нервной системы. Содержание в суточном пищевом рационе 0,01-0,1 мг. Потребность 40-70 мкг. Кобальт содержится в плодах яблони домашней, абрикоса, винограда винного, клубнике, орехе грецком, молоке, хлебопродуктах, овощах, говяжьей печени, бобовых.

    Цинк (Zn). Цинк участвует в деятельности более 20 ферментов, является структурным компонентом гормона поджелудочной железы, влияет на развитие, рост, половое развитие мальчиков, центральную нервную систему. Недостаток цинка ведет к инфантильности у мальчиков и к заболеваниям центральной нервной системы. Считается, что цинк канцерогенный, поэтому его влияние на организм зависит от дозы. Содержание в суточном пищевом рационе 6-30 мг. Суточная доза цинка 5-20 мг. Содержится в субпродуктах, в мясных продуктах, не шлифованном рисе, грибах, устрицах, других морских продуктах, дрожжах, яйцах, горчице, в семенах подсолнуха, хлебопродуктах, мясе, овощах, а также содержится в большинстве лекарственных растений, в плодах яблони домашней.

    Молибден (Мо). Молибден входит в состав ферментов, оказывает влияние на вес и рост, препятствует кариесу зубов, задерживает фтор. При недостатке молибдена происходит замедление роста. Содержание в суточном пищевом рационе 0,1-0,6 мг. Суточная доза молибдена - 0,1-0,5 мг Молибден присутствует в рябине черноплодной, яблоне домашней, бобовых, печени, почках, хлебопродуктах.

    Селен (Se). Селен принимает участие в обмене серосодержащих аминокислот и предохраняет витамин Е от преждевременного разрушения, защищает клетки от свободных радикалов, но большие дозы селена могут быть опасными и принимать пищевые добавки с селеном нужно только по рекомендации врача. Суточная доза селена 55 мкг. Основной причиной дефицита селена является его недостаточное поступление с пищей, особенно с хлебом и хлебобулочными и мучными изделиями.

    Хром (Сr). В последние годы доказана роль хрома в углеводном и жировом обмене. Оказалось, что нормальный углеводный обмен невозможен без органического хрома, содержащегося в натуральных углеводных продуктах. Хром участвует в образовании инсулина, регулирует сахар в крови и жировой обмен, снижает уровень холестерина в крови, защищает сосуды сердца от склеротизирования, препятствует развитию сердечно-сосудистых заболеваний. Недостаток хрома в организме может привести к ожирению, задержке жидкости в тканях и повышению артериального давления. Половина населения земли испытывает дефицит хрома из-за рафинирован ной пищи. Ежедневная суточная норма хрома 125 мкг. В ежедневном рационе питания должны быть сведены к минимуму рафинированные, очищенные продукты - белая мука и изделия из нее, белый сахар, соль, каши быстрого приготовления, разнообразные хлопья зерновых. Необходимо включить в питание натуральные нерафинированные продукты, содержащие хром: хлеб из цельного зерна, каши из натурального зерна (гречки ядрицы, неочищенного риса, овса, пшена), субпродукты (печень, почки и сердце животных и птиц) рыбу и морепродукты. Хром содержат желтки куриных яиц, мед, орехи, грибы, коричневый сахар. Из круп больше всего хрома содержит перловка, затем гречка, из овощей много хрома в свекле, редисе, из фруктов - в персиках. Хороший источник хрома и других микроэлементов - пивные дрожжи, пиво, сухое красное вино. Соединения хрома обладают высокой степенью летучести, происходит значительная потеря хрома при варке продуктов.

    Йод (J). Йод принимает участие в образовании гормона щитовидной железы - тироксина. При недостаточном поступлении йода развивается заболевание щитовидной железы (зоб эндемический). При недостатке йода в пищевых продуктах, главным образом в воде, применяют йодированную соль и лекарственные препараты йода. Избыток поступления йода в организм приводит к развитию гипотиреоза. Содержание в суточном пищевом рационе 0,04-0,2 мг. Суточная потребность в йоде 50-200 мкг. Йод находится в рябине черноплодной, до 40 мг %, груше обыкновенной до 40 мг %, фейхоа 2-10 мг % на 1 кг, молоке, овощах, мясе, яйцах, морской рыбе.

    Литий (Li). Литий обнаружен в крови человека. Соли лития с остатками органических кислот применяются для лечения подагры. В основе подагры лежит нарушение пуринового обмена с недостаточным выделением мочекислых солей, вызывающее повышенное содержание мочевой кислоты в крови и отложение её солей в суставах и тканях организма. Развитию подагры способствует избыточное питание продуктами, богатыми пуриновыми основаниями (мясо, рыба и пр.), злоупотребление алкоголем, сидячий образ жизни. Карбонат лития применяется в гомеопатии при расстройствах окислительных процессов в организме с явлениями мочекислого диатеза и подагры.

    Кремний (Si). Кремний находится в плазме крови, как и железо, он нужен для образования эритроцитов. Соединения кремния необходимы для нормального развития и функционирования соединительной и эпителиальной тканей. Он способствует биосинтезу коллагенов и образованию костной ткани (после перелома количество кремния в костной мозоли увеличивается почти в 50 раз). Полагают, что присутствие кремния в стенках сосудов препятствует проникновению в плазму крови липидов и их отложению в сосудистой стенке, что соединения кремния необходимы для нормального протекания процессов липидного обмена. Суточная потребность в диоксиде кремния составляет 20-30 мг. Кремний обнаружен в коже, волосах, щитовидной железе, гипофизе, надпочечниках, легких, меньше всего в мышцах и крови. Источником его является вода и растительные пищевые продукты. Наибольшее количество кремния содержится в корневых овощах, фруктах: абрикосах, бананах, вишнях, клубнике, землянике, овсе, огурцах, пророщенных зернах злаков, в цельном зерне пшеницы, просе, питьевой воде. Недостаток кремния приводит к ослаблению кожи и волос. Пыль кремнийсодержащих неорганических соединений может вызвать развитие заболевания легких - силикоз. Повышенное поступление кремния в организм может вызвать нарушение фосфорно-кальциевого обмена, образование мочевых камней.

    Сера (S). В организме человека сера участвует в образовании кератина белка, находящегося в суставах, волосах и ногтях. Сера входит в состав почти всех белков и ферментов в организме, участвует в окислительно-восстановительных реакциях и других метаболических процессах, способствует секреции желчи в печени. Много серы содержится в волосах. Атомы серы входит в состав тиамина и биотина-витаминов группы В, а также в состав жизненно важных аминокислот - цистеина и метионина. Дефицит серы в организме человека встречается очень редко - при недостаточном употреблении продуктов, содержащих белок. Физиологическая потребность в сере не установлена.

    Фториды (F-). Содержание в пищевом рационе 0,4-0,8 мг. Суточная потребность фторидов 2-3 мг. Преимущественно накапливается в костях и зубах. Фториды применяются от кариеса зубов, стимулируют кроветворение и иммунитет, участвуют в развитии скелета. Избыток фторидов дает крапчатость зубной эмали, вызывает заболевание флюороз, подавляет защитные силы организма. В организм фтор поступает с пищевыми продуктами, из которых наиболее богаты им овощи и молоко. В составе пищи человек получает около 0,8 мг фтора, остальное его количество должно поступать с питьевой водой.

    Серебро (Аg). Серебро - микроэлемент, являющийся необходимой составной частью тканей любого живого организма. В суточном рационе человека должно содержаться в среднем около 80 мкг серебра. Исследования показали, что даже длительное употребление человеком питьевой воды, содержащей 50 мкг на литр серебра, не вызывает нарушений функции органов пищеварения и каких- либо патологических сдвигов в состоянии организма в целом. Такое явление, как дефицит серебра в организме, нигде не описано. Бактерицидные свойства серебра общеизвестны. В официальной медицине широко применяются препараты коллоидного серебра и нитрат серебра. В организме человека серебро обнаружено в мозге, железах внутренней секреции, печени, почках и костях скелета. В гомеопатии серебро применяется как в элементарном виде серебро металлическое, так и в виде нитрата серебра. Препараты серебра в гомеопатии обычно назначают при упорных и длительных заболеваниях, сильно истощающих нервную систему. Однако физиологическая роль серебра в организме человека и животных изучена недостаточно.

    Вопрос 3. Каковы особенности пространственной организации молекулы воды, обусловливающие её биологическое значение?

    Функции воды во многом определяются её химическими и физическими свойствами. Эти свойства связаны главным образом с малыми размерами молекул воды и их полярностью, а также способностью соединяться друг с другом водородными связями.

    Одна часть молекулы воды несёт небольшой положительный заряд, а другая – отрицательный. Такую молекулу называют диполем. Положительно заряженные части одной молекулы воды притягивают к себе отрицательно заряженные части других молекул, молекулы воды как будто склеиваются. Эти взаимодействия, более слабые, чем ионные связи, называют водородными связями. Вода – превосходный растворитель для полярных веществ, участвующих в обменных процессах.

    Вопрос 4. Какие минеральные соли входят в состав живых организмов?

    Большая часть неорганических веществ клетки находится в виде солей – либо в состоянии ионов, либо в виде твёрдой нерастворимой соли. Среди первых большое значение имеют катионы К+, Na+, Ca2+, которые обеспечивают такое важнейшее свойство живых организмов, как раздражимость.

    Концентрация катионов и анионов в клетке и в окружающей её среде резко различна. Внутри клетки превалируют ионы К+ и крупные органические ионы, в околоклеточных жидкостях всегда больше ионов Na+ и Cl-. Вследствие этого образуется разность зарядов внешней и внутренней поверхностей мембраны клетки, между ними возникает разность потенциалов, обуславливающая такие важные процессы как передача возбуждения по нерву или мышце.

    Соединения азота, фосфора, кальция и другие неорганические вещества служат источником строительного материала для синтеза органических молекул (аминокислот, белков, нуклеиновых кислот и др.) и входят в состав ряда опорных структур клетки и организма.

    Некоторые неорганические ионы (например, ионы кальция и магния) являются активаторами и компонентами многих ферментов, гормонов и витаминов. При недостатке этих ионов нарушаются жизненно важные процессы в клетке.

    Вопрос 5. Какие вещества обусловливают буферные свойства клетки? От концентрации солей внутри клетки зависят буферные свойства клетки.

    Буферностью называют способность клетки поддерживать слабощелочную реакцию своего содержимого на постоянном уровне. Внутри клетки буферность обеспечивается главным образом анионами H2PO4− и НРО42−. Во внеклеточной жидкости и в крови роль буфера играют Н2СО3 и HCO3−. Анионы слабых кислот и слабые щёлочи связывают ионы водорода и гидроксил-ионы (ОН−), благодаря чему реакция внутри клетки, т. е. величина рН, практически не меняется.

    Вопрос 6. Согласны ли вы с утверждением, что вода - колыбель всего живого? Объясните, почему жизнь зародилась именно в водной среде.

    Все экологические ниши, пригодные для жизни, заняты биосферой. Возникла биосфера одновременно с возникновением жизни на Земле, первоначально (около 4 млрд. лет тому назад) в виде примитивных биоценозов (протобиоценозов) в первичном Мировом океане.

    Только благодаря очень медленному процессу эволюции отдельные виды, получившие название амфибий, смогли покинуть водную среду и частично приспособиться к жизни на суше. Дальнейшие адаптационные процессы позволили некоторым из этих земноводных навсегда покинуть водное пространство и сделать сушу постоянной средой своего обитания. Прямое доказательство того, что вода - первоначальная среда обитания живых организмов, было получено при изучении состава плазмы крови (ее жидкого компонента) и внеклеточной жидкости различных животных. Данные жидкости по своему составу близки к морской воде.

    Вопрос 7. Предложите свою классификацию химических элементов, входящих в состав живых организмов.

    Можно предложить следующую классификацию химических элементов, входящий в состав клетки:

    1. Элементы 1 порядка (водород, кислород, углерод и азот)

    2. Элементы 2 порядка (цинк, бор, медь, йод, железо, марганец)

    Вопрос 8. Составьте и заполните таблицу «Химические элементы и их значение в живой природе».

    Буферы представляют собой химические вещества, такие как фосфор, калий, магний, селен, цинк которые помогают жидкости сопротивляться изменению ее кислотных свойств при добавлении других химических веществ, которые обычно вызывают изменение этих свойств. Буферы необходимы для живых клеток. Это связано с тем, что буферы поддерживают правильный рН жидкости.

    Что такое рН

    Это показатель того, насколько кислая жидкость. Например, лимонный сок имеет низкий рН от 2 до 3 и очень кислый - так же, как сок в вашем желудке, который переваривает пищу. Поскольку кислотные жидкости могут разрушать белки, а клетки заполнены белками, клеткам необходимо иметь буферы внутри и снаружи, чтобы защитить свои белковые свойства.

    • Противоположностью химического вещества, которое является кислотой, является химическое вещество, которое является основанием, и оба могут существовать в жидкости. Кислота высвобождает ион водорода в жидкость, а основание выталкивает из него ион водорода. Чем больше свободно плавающих ионов водорода присутствует в жидкости, тем более кислой становится жидкость.
    • Буферы представляют собой химические вещества, которые могут легко выделять или поглощать ионы водорода в жидкости, то есть они способны противостоять изменению рН, контролируя количество свободных ионов водорода. Шкала рН находится в диапазоне от 0 до 14. Значение pH от 0 до 7 считается кислотным, а рН от 7 до 14 считается основным. PH 7, посередине, нейтрален и представляет собой чистую воду.
    • Опасность изменения рН внутри клетки заключается в том, что рН резко влияет на структуру белков.

    Клетка состоит из различных типов белков, и каждый белок работает только тогда, когда у него есть правильная трехмерная форма. Форма белка удерживается на месте силами притяжения внутри белка, как и многие мини-магниты здесь и там, которые соединяются, чтобы удерживать весь протеин на месте. Поэтому, если внутри клетки становится слишком кислым или слишком основным, тогда белки начинают терять форму и больше не работают. Клетка становится как фабрика без рабочих и без ремонтников. Поэтому буферы внутри ячейки предотвращают это.

    Буферность и осмос.
    Соли в живых организмах находятся в растворенном состоянии в виде ионов – положительно заряженных катионов и отрицательно заряженных анионов.

    Концентрация катионов и анионов в клетке и в окружающей ее среде неодинакова. В клетке содержится довольно много калия и очень мало натрия. Во внеклеточной среде, например в плазме крови, в морской воде, наоборот, много натрия и мало калия. Раздражительность клетки зависит от соотношения концентраций ионов Na+, K+, Ca 2+, Mg 2+. Разность концентраций ионов по разные стороны мембраны обеспечивает активный перенос веществ через мембрану.

    В тканях многоклеточных животных Са 2+ входит в состав межклеточного вещества, обеспечивающего сцепленность клеток и упорядоченное их расположение. От концентрации солей зависят осмотическое давление в клетке и ее буферные свойства.

    Буферностью называется способность клетки поддерживать слабощелочную реакцию ее содержимого на постоянном уровне.

    Существует две буферные системы:

    1)фосфатная буферная система – анионы фосфорной кислоты поддерживают рН внутриклеточной среды на уровне 6,9

    2)бикарбонатная буферная система – анионы угольной кислоты поддерживают рН внеклеточной среды на уровне 7,4.

    Рассмотрим уравнения реакций, протекающих в буферных растворах.

    Если в клетке увеличивается концентрация Н + , то происходит присоединение катиона водорода к карбонат-аниону:

    При увеличении концентрации гидроксид-анионов происходит их связывание:

    Н + ОН – + Н 2 О.

    Так карбонат-анион может поддерживать постоянную среду.

    Осмотическими называют явления, происходящие в системе, состоящей из двух растворов, разделенных полупроницаемой мембраной. В растительной клетке роль полупроницаемых пленок выполняют пограничные слои цитоплазмы: плазмалемма и тонопласт.

    Плазмалемма - наружная мембрана цитоплазмы, прилегающая к клеточной оболочке. Тонопласт - внутренняя мембрана цитоплазмы, окружающая вакуоль. Вакуоли представляют собой полости в цитоплазме, заполненные клеточным соком - водным раствором углеводов, органических кислот, солей, белков с низким молекулярным весом, пигментов.

    Концентрация веществ в клеточном соке и во внешней среде (в почве, водоемах) обычно не одинаковы. Если внутриклеточная концентрация веществ выше, чем во внешней среде, вода из среды будет поступать в клетку, точнее в вакуоль, с большей скоростью, чем в обратном направлении. При увеличении объема клеточного сока, вследствие поступления в клетку воды, увеличивается его давление на цитоплазму, плотно прилегающую к оболочке. При полном насыщении клетки водой она имеет максимальный объем. Состояние внутреннего напряжения клетки, обусловленное высоким содержанием воды и развивающимся давлением содержимого клетки на ее оболочку носит название тургора Тургор обеспечивает сохранение органами формы (например, листьями, неодревесневшими стеблями) и положения в пространстве, а также сопротивление их действию механических факторов. С потерей воды связано уменьшение тургора и увядание.

    Если клетка находится в гипертоническом растворе, концентрация которого больше концентрации клеточного сока, то скорость диффузии воды из клеточного сока будет превышать скорость диффузии воды в клетку из окружающего раствора. Вследствие выхода воды из клетки объем клеточного сока сокращается, тургор уменьшается. Уменьшение объема клеточной вакуоли сопровождается отделением цитоплазмы от оболочки - происходит плазмолиз .

    В ходе плазмолиза форма плазмолизированного протопласта меняется. Вначале протопласт отстает от клеточной стенки лишь в отдельных местах, чаще всего в уголках. Плазмолиз такой формы называют уголковым

    Затем протопласт продолжает отставать от клеточных стенок, сохраняя связь с ними в отдельных местах, поверхность протопласта между этими точками имеет вогнутую форму. На этом этапе плазмолиз называют вогнутым Постепенно протопласт отрывается от клеточных стенок по всей поверхности и принимает округлую форму. Такой плазмолиз носит название выпуклого

    Если плазмолизированную клетку поместить в гипотонический раствор, концентрация которого меньше концентрации клеточного сока, вода из окружающего раствора будет поступать внутрь вакуоли. В результате увеличения объема вакуоли повысится давление клеточного сока на цитоплазму, которая начинает приближаться к стенкам клетки, пока не примет первоначальное положение - произойдет деплазмолиз

    Задание №3
    Прочитав предложенный текст, ответьте на следующие вопросы.
    1)определение буферности

    2)от концентрации каких анионов зависят буферные свойства клетки

    3)роль буферности в клетке

    4)уравнение реакций, протекающих в бикарбонатной буферной системе (на магнитной доске)

    5)определение осмоса (привести примеры)

    6)определение плазмолиза и деплазмолиза слайды

    Молекулярный уровень организации живого

    Это самый низкий уровень организации живого, представленный отдельными молекулами органических и неорганических веществ, входящих в состав клеток организма. Жизнь можно представить как организационную иерархию вещества. В живых существах элементы образуют очень сложные органические молекулы, из которых в свою очередь состоят клетки, а из тех - целый организм. Жизнедеятельность всех живых систем проявляется во взаимодействии молекул различных химических веществ.

    Химическая организация клетки. Элементный состав клеток. Неорганические вещества: вода и минеральные соли

    Основные вопросы теории

    Элементный состав клетки

    В составе живой природы обнаружено более 80 химических элементов, 27 из них выполняют определенные функции.

    макроэлементы

    микроэлементы

    ультрамикроэлементы

    99 %

    10 -3 %

    10 -6 %

    98% - биогенные: О, С, Н, N

    K, Na, Ca, Mg, Fe, Cl, S, P

    B, Mn, Zn, Cu, Co, F, I, Br, Mo

    U, Au, Be, Hg, Se, Ra, Cs

    Некоторые организмы - интенсивные накопители определенных элементов: бактерии способны накапливать марганец, морские водоросли - йод, ряска - радий, моллюски и ракообразные - медь, позвоночные - железо.

    Каждый из химических элементов выполняет важную функцию в клетке.

    Элемент

    Биологическая роль

    О, Н

    входят в состав воды.

    С, О, Н, N

    входят в состав белков, липидов, нуклеиновых кислот, полисахаридов.

    K, Na, Cl

    обеспечивают проведение нервного импульса.

    Ca

    компонент костей, зубов, необходим для мышечного сокращения, компонент свертывания крови, посредник в механизме действия гормонов.

    Mg

    структурный компонент хлорофилла, поддерживает работу рибосом и митохондрий.

    Fe

    структурный компонент гемоглобина, миоглобина.

    S

    входит в состав серосодержащих аминокислот, белков.

    P

    входит в состав нуклеиновых кислот, костной ткани.

    B

    необходим некоторым растениям.

    Mn, Zn, Cu

    активаторы ферментов, влияют на процессы тканевого дыхания.

    Zn

    входит в состав инсулина.

    Cu

    входит в состав окислительных ферментов, переносит кислород в тканях моллюсков.

    Co

    входит в состав витамина В 12 .

    F

    входит в состав эмали зубов.

    I

    входит в состав тироксина.

    Химические вещества клетки

    Уникальное строение воды, её свойства и роль в живой природе

    Строение и свойства воды

    Биологические функции воды

    1. Малые размеры молекул воды, молекула воды нелинейна.

    1. Вода - среда для протекания биохимических реакций в клетках.

    2. Вода - донор электронов, источник ионов водорода и свободного кислорода при фотосинтезе.

    3. Вода необходима для гидролиза макромолекул до мономеров, например, в пищеварении.

    4. Вода обусловливает рН среды, что определяется концентрацией Н + и ОН - .

    2. Полярность, молекула воды - диполь.

    5. Вода - универсальный растворитель для полярных веществ. По растворимости в воде все вещества подразделяют на гидрофильные (водорастворимые) и гидрофобные (нерастворимые).

    6. Вода - среда для транспорта веществ.

    3. Способность образовывать водородные связи, подвижность молекул воды.

    - водородная связь.

    7. Вода обладает высокой теплопроводностью и большой теплоемкостью, выполняет функцию терморегуляции в живых организмах (т.к. для разрыва водородных связей нужно много Е).

    8. При замерзании вода расширяется (т.к. образуется много водородных связей), лед легче воды, плавает на её поверхности, самая «тяжелая вода» при t +4 0 , что спасает жизнь водным обитателям зимой.

    4. Силы межмолекулярного сцепления не позволяют воде сжиматься.

    9. Вода служит для поддержания формы организмов (гидростатический скелет, тургорное давление).

    10. Вода - смазывающее вещество в биологических системах (синовиальная жидкость, плевральная жидкость, слизь).

    Минеральные соли, их значение

    Минеральные соли находятся в клетке либо в диссоциированном на ионы, либо в твердом состоянии.

    Молекулы солей в водном растворе распадаются на катионы и анионы. Их значение:

    1. Разность между количеством катионов и анионов на поверхности и внутри клетки обеспечивает возникновение потенциала действия, что лежит в основе возникновения нервного и мышечного возбуждения.

    2. Разностью концентрации ионов по разные стороны мембраны обусловлен активный перенос веществ через мембрану.

    3. От концентрации солей внутри клетки зависят буферные свойства клетки.

    Буферные свойства клетки

    фосфатная буферная система

    бикарбонатная буферная система

    анионы фосфорной кислоты (Н 2 РО 4 , НРО 4 2-)

    анионы угольной кислоты (НСО 3 -)

    рН внутриклеточной среды на уровне 6,9

    рН внеклеточной среды на уровне 7,4

    4. Участвуют в активации ферментов, создании осмотического давления в клетке, в процессах мышечного сокращения, свертывании крови и др.

    Таким образом, функция минеральных солей в клетке состоит в поддержании постоянства внутренней среды и в обеспечении процессов жизнедеятельности.

    В твердом состоянии минеральные соли Са 3 (РО 4) 2 (фосфат кальция) входят в состав межклеточного вещества костной ткани, в раковины моллюсков, обеспечивая прочность этих образований.