Что такое основные оксиды в химии. Основные оксиды: что это такое, с чем они реагируют

Оксиды - это сложные неорганические соединения, состоящие из двух элементов, один из которых кислород (в степени окисления -2).

Например, Na 2 O, B 2 O 3 , Cl 2 O 7 относятся к оксидам. Все перечисленные вещества содержат кислород и еще один элемент. Вещества Na 2 O 2 , H 2 SO 4 , HCl не относятся к оксидам: в первом степень окисления кислорода равна -1, в составе второго не два, а три элемента, а третье вообще не содержит кислорода.

Если вы не понимаете смысл термина "степень окисления", ничего страшного. Во-первых, можно обратиться к соответствующей статье на этом сайте. Во-вторых, даже без понимания этого термина можно продолжать чтение. Временно можете забыть про упоминание о степени окисления.

Получены оксиды практически всех известных на сегодняшний день элементов, кроме некоторых благородных газов и "экзотических" трансурановых элементов. Более того, многие элементы образуют несколько оксидов (для азота, например, их известно шесть).

Номенклатура оксидов

Мы должны научиться называть оксиды. Это очень просто.

Пример 1 . Назовите следующие соединения: Li 2 O, Al 2 O 3 , N 2 O 5 , N 2 O 3 .

Li 2 O - оксид лития,
Al 2 O 3 - оксид алюминия,
N 2 O 5 - оксид азота (V),
N 2 O 3 - оксид азота (III).

Обратите внимание на важный момент: если валентность элемента постоянна, мы НЕ упоминаем ее в названии оксида. Если валентность меняется, следует обязательно указать ее в скобках! Литий и алюминий имеют постоянную валентность, у азота валентность переменная; именно по этой причине названия окислов азота дополнены римскими цифрами, символизирующими валентность.

Задание 1 . Назовите оксиды: Na 2 O, P 2 O 3 , BaO, V 2 O 5 , Fe 2 O 3 , GeO 2 , Rb 2 O. Не забывайте, что существуют элементы как с постоянной, так и с переменной валентностью.

Еще один важный момент: вещество F 2 O правильнее называть не "оксид фтора", а "фторид кислорода"!

Физические свойства оксидов

Физические свойства весьма разнообразны. Обусловлено это, в частности, тем, что в оксидах могут проявляться разные типы химической связи. Температуры плавления и кипения варьируются в широких пределах. При нормальных условиях оксиды могут находиться в твердом состоянии (CaO, Fe 2 O 3 , SiO 2 , B 2 O 3), жидком состоянии (N 2 O 3 , H 2 O), в виде газов (N 2 O, SO 2 , NO, CO).

Разнообразна окраска: MgO и Na 2 O белого цвета, CuO - черного, N 2 O 3 - синего, CrO 3 - красного и т. д.

Расплавы оксидов с ионным типом связи хорошо проводят электрический ток, ковалентные оксиды, как правило, имеют низкую электропроводность.

Классификация оксидов

Все существующие в природе оксиды можно разделить на 4 класса: основные, кислотные, амфотерные и несолеобразующие. Иногда первые три класса объединяют в группу солеобразующих оксидов, но для нас это сейчас несущественно. Химические свойства оксидов из разных классов отличаются весьма сильно, поэтому вопрос классификации очень важен для дальнейшего изучения этой темы!

Начнем с несолеобразующих оксидов . Их нужно запомнить: NO, SiO, CO, N 2 O. Просто выучите эти четыре формулы!

Для дальнейшего продвижения мы должны вспомнить, что в природе существуют два типа простых веществ - металлы и неметаллы (иногда выделяют еще группу полуметаллов или металлоидов). Если вы четко понимаете, какие элементы относятся к металлам, продолжайте читать эту статью. Если есть малейшие сомнения, обратитесь к материалу "Металлы и неметаллы" на этом сайте.

Итак, сообщаю вам, что все амфотерные оксиды являются оксидами металлов, но не все оксиды металлов относятся к амфотерным. Я перечислю наиболее важные из них: BeO, ZnO, Al 2 O 3 , Cr 2 O 3 , SnO. Список не является полным, но перечисленные формулы следует обязательно запомнить! В большинстве амфотерных оксидов металл проявляет степень окисления +2 или +3 (но есть исключения).

В следующей части статьи мы продолжим говорить о классификации; обсудим кислотные и основные оксиды.

Оксиды - это вещества, в которых молекулы состоят из атома кислорода со степенью окисления - 2 и атомов какого-либо второго элемента.

Оксиды образуются прямым путем при взаимодействии кислорода с другим веществом или косвенным путем - при разложении оснований, солей, кислот. Такой тип соединений очень распространен в природе, и может существовать в виде газа, жидкости или В земной коре также находятся оксиды. Так, песок, ржавчина, и даже привычная вода - это все

Бывают как солеобразующие, так и несолеобразующие оксиды. Солеобразующие в результате химической реакции дают соли. К ним относятся оксиды неметаллов и металлов, которые в реакции с водой образуют кислоту, а в реакции с основанием - соли, нормальные и кислые. К солеобразующим относится, например,

Соответственно, из несолеобразующих получить соль невозможно. В качестве примера можно привести оксид диазота и

Солеобразующие оксиды делятся, в свою очередь, на основные, кислотные и амфотерные. Поговорим подробней об основных.

Итак, основные оксиды - это оксиды некоторых металлов, соответствующие которым гидроксиды относятся к классу оснований. То есть при взаимодействии с кислотой такие вещества образуют воду и соль. Например, это К2О, СаО, MgO и пр. В обычных условиях основные оксиды представляют собой твердые кристаллические образования. Степень оксиления металлов в таких соединениях, как правило, не превышает +2 или редко +3.

Химические свойства основных оксидов

1. Реакция с кислотой

Именно в реакции с кислотой оксид проявляет свои основные свойства, поэтому подобным экспериментом можно доказать тип того или иного оксида. Если образовались соль и вода - значит, это основной оксид. Кислотные оксиды в подобном взаимодействии образуют кислоту. А амфотерные могут проявлять либо кислотные, либо основные свойства - это зависит от условий. Таковы основные отличия несолеобразующих оксидов между собой.

2. Реакция с водой

Во взаимодействие с водой вступают те оксиды, которые образованы металлами из электротехнического ряда напряжения, стоящими перед магнием. При реакции с водой они образуют растворимые основания. Это группа оксидов щелочноземельных и (оксид бария, оксид лития и пр.). Кислотные оксиды в воде образуют кислоту, а амфотерные на воду не реагируют.

3. Реакция с амфотерными и кислотными оксидами

Противоположные по своему химическому вступают в реакцию между собой, образуя при этом соли. Так, например, основные оксиды могут вступать во взаимодействие с кислотными, но не реагируют на других представителей своей группы. Наиболее активными являются оксиды щелочных металлов, щелочноземельных и магния. Даже в обычных условиях они сплавляются с твердыми амфотерными оксидами, с твердыми и газообразными кислотными. При реакции с кислотными оксидами они образуют соответствующие соли.

Но основные оксиды других металлов менее активны и практически не вступают в реакцию с оксидами газообразными (кислотными). Они только могут вступить в реакцию присоединения при сплавлении с твердыми кислотными оксидами.

4. Окислительно-восстановительные свойства

Оксиды активных щелочных металлов не проявляют выраженных восстановительных или окислительных свойств. И, напротив, оксиды не настолько активных металлов могут восстанавливаться углем, водородом, аммиаком или угарным газом.

Получение основных оксидов

1. Разложение гидроксидов: при нагревании нерастворимые основания разлагаются на воду и основной оксид.

2. Окисление металлов: щелочной металл при горении в кислороде образует пероксид, который потом при восстановлении образует основной оксид.

Свойства оксидов

Оксиды - это сложные химические вещества, представляющие собой химические соединения простых элементов с кислородом. Они бывают солеобразующими и не образующие соли . При этом солеобразующие бывают 3-х типов: основными (от слова "основание"), кислотными и амфотерными .
Примером окислов, не образующих соли, могут быть: NO (окись азота) - представляет собой бесцветный газ, без запаха. Он образуется во время грозы в атмосфере. CO (окись углерода) - газ без запаха, образуется при сгорании угля. Его обычно называют угарным газом. Существуют и другие окислы, не образующие соли. Теперь разберём подробнее каждый вид солеобразующих окислов.

Основные оксиды

Основные оксиды - это сложные химические вещества, относящиеся к окислам, которые образуют соли при химической реакции с кислотами или кислотными оксидами и не реагируют с основаниями или основными оксидами. Например, к основным относятся следующие:
K 2 O (окись калия), CaO (окись кальция), FeO (окись железа 2-валентного).

Рассмотрим химические свойства оксидов на примерах

1. Взаимодействие с водой:
- взаимодействие с водой с образованием основания (или щёлочи)

CaO+H 2 O→ Ca(OH) 2 (известная реакция гашения извести, при этом выделяется большое количества тепла!)

2. Взаимодействие с кислотами:
- взаимодействие с кислотой с образованием соли и воды (раствор соли в воде)

CaO+H 2 SO 4 → CaSO 4 + H 2 O (Кристаллы этого вещества CaSO 4 известны всем под названием "гипс").

3. Взаимодействие с кислотными оксидами: образование соли

CaO+CO 2 → CaCO 3 (Это вещество известно всем - обычный мел!)

Кислотные оксиды

Кислотные оксиды - это сложные химические вещества, относящиеся к окислам, которые образуют соли при химическом взаимодействии с основаниями или основными оксидами и не взаимодействуют с кислотными оксидами.

Примерами кислотных окислов могут быть:

CO 2 (всем известный углекислый газ), P 2 O 5 - оксид фосфора (образуется при сгорании на воздухе белого фосфора), SO 3 - триокись серы - это вещество используют для получения серной кислоты .

Химическая реакция с водой

CO 2 +H 2 O→ H 2 CO 3 - это вещество - угольная кислота - одна из слабых кислот, её добавляют в газированную воду для "пузырьков" газа. С повышением температуры растворимость газа в воде уменьшается, а его излишек выходит в виде пузырьков.

Реакция с щелочами (основаниями):

CO 2 +2NaOH→ Na 2 CO 3 +H 2 O- образовавшееся вещество (соль) широко используется в хозяйстве. Её название - кальцинированная сода или стиральная сода, - отличное моющее средство для подгоревших кастрюль, жира, пригара. Голыми руками работать не рекомендую!

Реакция с основными оксидами:

CO 2 +MgO→ MgCO 3 - получившая соль - карбонат магния - ещё называется "горькая соль".

Амфотерные оксиды

Амфотерные оксиды - это сложные химические вещества, также относящиеся к окислам, которые образуют соли при химическом взаимодействии и с кислотами (или кислотными оксидами ) и основаниями (или основными оксидами ). Наиболее частое применение слово "амфотерный" в нашем случае относится к оксидам металлов .

Примером амфотерных оксидов могут быть:

ZnO - окись цинка (белый порошок, часто применяемый в медицине для изготовления масок и кремов), Al 2 O 3 - окись алюминия (называют еще "глинозёмом").

Химические свойства амфотерных оксидов уникальны тем, что они могут вступать в химические реакции, соответствующие как основаниями так и с кислотами. Например:

Реакция с кислотным оксидом:

ZnO+H 2 CO 3 → ZnCO 3 + H 2 O - Образовавшееся вещество - раствор соли "карбоната цинка" в воде.

Реакция с основаниями:

ZnO+2NaOH→ Na 2 ZnO 2 +H 2 O - полученное вещество - двойная соль натрия и цинка.

Получение оксидов

Получение оксидов производят различными способами. Это может происходить физическим и химическим способами. Самым простым способом является химическое взаимодействие простых элементов с кислородом. Например, результатом процесса горения или одним из продуктов этой химической реакции являются оксиды . Например, если раскалённое железный прутик, да и не только железный (можно взять цинк Zn, олово Sn, свинец Pb, медь Cu, - вообщем то, что имеется под рукой) поместить в колбу с кислородом, то произойдёт химическая реакция окисления железа, которая сопровождается яркой вспышкой и искрами. Продуктом реакции будет чёрный порошок оксида железа FeO:

2Fe+O 2 → 2FeO

Полностью аналогичны химические реакции с другими металлами и неметаллами. Цинк сгорает в кислороде с образованием окисла цинка

2Zn+O 2 → 2ZnO

Горение угля сопровождается образованием сразу двух окислов: угарного газа и углекислого газа

2C+O 2 → 2CO - образование угарного газа.

C+O 2 → CO 2 - образование углекислого газа. Этот газ образуется если кислорода имеется в более, чем достаточном количестве, то есть в любом случае сначала протекает реакция с образованием угарного газа, а потом угарный газ окисляется, превращаясь в углекислый газ.

Получение оксидов можно осуществить другим способом - путём химической реакции разложения . Например, для получения окисла железа или окисла алюминия необходимо прокалить на огне соответствующие основания этих металлов :

Fe(OH) 2 → FeO+H 2 O

Твёрдый оксид алюминия - минерал корунд Оксид железа (III). Поверхность планеты Марс имеет красновато-оранжевый цвет из-за наличия в грунте оксида железа (III). Твёрдый оксид алюминия - корунд

2Al(OH) 3 → Al 2 O 3 +3H 2 O,
а также при разложении отдельных кислот:

H 2 CO 3 → H 2 O+CO 2 - разложение угольной кислоты

H 2 SO 3 → H 2 O+SO 2 - разложение сернистой кислоты

Получение оксидов можно осуществить из солей металлов при сильном нагревании:

CaCO 3 → CaO+CO 2 - прокаливанием мела получают окись кальция (или негашенную известь) и углекислый газ.

2Cu(NO 3) 2 → 2CuO + 4NO 2 + O 2 - в этой реакции разложения получается сразу два окисла: меди CuO (чёрного цвета) и азота NO 2 (его ещё называют бурым газом из-за его действительно бурого цвета).

Ещё одним способом, которым можно осуществить получение окислов - это окислительно-восстановительные реакции

Cu + 4HNO 3 (конц.)→ Cu(NO 3) 2 + 2NO 2 + 2H 2 O

S + 2H 2 SO 4 (конц.)→ 3SO 2 + 2H 2 O

Оксиды хлора

Молекула ClO 2 Молекула Cl 2 O 7 Закись азота N 2 O Азотистый ангидрид N 2 O 3 Азотный ангидрид N 2 O 5 Бурый газ NO 2

Известны следующие оксиды хлора : Cl 2 O, ClO 2 , Cl 2 O 6 , Cl 2 O 7 . Все они, за исключением Cl 2 O 7 , имеют желтую или оранжевую окраску и не устойчивы, особенно ClO 2 , Cl 2 O 6 . Все оксиды хлора взрывоопасны и являются очень сильными окислителями.

Реагируя с водой, они образуют соответствующие кислородсодержащие и хлорсодержащие кислоты :

Так, Cl 2 O - кислотный оксид хлора хлорноватистой кислоты.

Cl 2 O + H 2 O→ 2HClO - Хлорноватистая кислота

ClO 2 - кислотный оксид хлора хлорноватистой и хлорноватой кислоты, так как при химической реакции с водой образует сразу две этих кислоты:

ClO 2 + H 2 O→ HClO 2 + HClO 3

Cl 2 O 6 - тоже кислотный оксид хлора хлорноватой и хлорной кислот:

Cl 2 O 6 + H 2 O→ HClO 3 + HClO 4

И, наконец, Cl 2 O 7 - бесцветная жидкость - кислотный оксид хлора хлорной кислоты:

Cl 2 O 7 + H 2 O→ 2HClO 4

Оксиды азота

Азот - газ, который образует 5 различных соединений с кислородом - 5 оксидов азота . А именно:

N 2 O - гемиоксид азота . Другое его название известно в медицине под названием веселящий газ или закись азота - это бесцветный сладковатый и приятный на вкус на газ.
- NO - моноксид азота - бесцветный, не имеющий ни запаха ни вкуса газ.
- N 2 O 3 - азотистый ангидрид - бесцветное кристаллическое вещество
- NO 2 - диоксид азота . Другое его название - бурый газ - газ действительно имеет буро-коричневый цвет
- N 2 O 5 - азотный ангидрид - синяя жидкость, кипящая при температуре 3,5 0 C

Из всех этих перечисленных соединений азота наибольший интерес в промышленности представляют NO - моноксид азота и NO 2 - диоксид азота. Моноксид азота (NO) и закись азота N 2 O не реагируют ни с водой, ни с щелочами. (N 2 O 3) при реакции с водой образует слабую и неустойчивую азотистую кислоту HNO 2 , которая на воздухе постепенно переходит в более стойкое химическое вещество азотную кислоту Рассмотрим некоторые химические свойства оксидов азота :

Реакция с водой:

2NO 2 + H 2 O→ HNO 3 + HNO 2 - образуется сразу 2 кислоты: азотная кислота HNO 3 и азотистая кислота.

Реакция с щелочью:

2NO 2 + 2NaOH→ NaNO 3 + NaNO 2 + H 2 O - образуются две соли: нитрат натрия NaNO 3 (или натриевая селитра) и нитрит натрия (соль азотистой кислоты).

Реакция с солями:

2NO 2 + Na 2 CO 3 → NaNO 3 + NaNO 2 + CO 2 - образуются образуются две соли: нитрат натрия и нитрит натрия, и выделяется углекислый газ.

Получают диоксид азота (NO 2) из моноксида азота (NO) с помощью химической реакции соединения c кислородом :

2NO + O 2 → 2NO 2

Оксиды железа

Железо образует два оксида : FeO - оксид железа (2-валентный) - порошок чёрного цвета, который получают восстановлением оксида железа (3-валентного) угарным газом по следующей химической реакции:

Fe 2 O 3 +CO→ 2FeO+CO 2

Этот основной оксид, легко вступающий в реакции с кислотами. Он обладает восстановительными свойствами и быстро окисляется в оксид железа (3-валентный).

4FeO +O 2 → 2Fe 2 O 3

Оксид железа (3-валентный) - красно-бурый порошок (гематит), обладающий амфотерными свойствами (может взаимодействовать и с кислотами и со щелочами). Но кислотные свойства этого оксида выражены настолько слабо, что наиболее часто он его используют, как основной оксид .

Есть ещё так называемы смешанный оксид железа Fe 3 O 4 . Он образуется при горении железа, хорошо проводит электрический ток и обладает магнитными свойствами (его называют магнитным железняком или магнетитом). Если железо сгорает, то в результате реакции горения образуется окалина, состоящая сразу из двух оксидов: оксида железа (III) и (II) валентные.

Оксид серы

Сернистый газ SO 2

Оксид серы SO 2 - или сернистый газ относится к кислотным оксидам , но кислоту не образует, хотя отлично растворяется в воде - 40л оксида серы в 1 л воды (для удобства составления химических уравнений такой раствор называют сернистой кислотой).

При нормальных обстоятельствах - это бесцветный газ с резким и удушливым запахом горелой серы. При температуре всего -10 0 C его можно перевести в жидкое состояние.

В присутствии катализатора -оксида ванадия (V 2 O 5) оксид серы присоединяет кислород и превращается в триоксид серы

2SO 2 +O 2 → 2SO 3

Растворённый в воде сернистый газ - оксид серы SO 2 - очень медленно окисляется, в результате чего сам раствор превращается в серную кислоту

Если сернистый газ пропускать через раствор щелочи, например, гидроксида натрия, то образуется сульфит натрия (или гидросульфит - смотря сколько взять щёлочи и сернистого газа)

NaOH + SO 2 → NaHSO 3 - сернистый газ взят в избытке

2NaOH + SO 2 → Na 2 SO 3 + H 2 O

Если сернистый газ не реагирует с водой, то почему его водный раствор даёт кислую реакцию?! Да, не реагирует, но он сам окисляется в воде, присоединяя к себе кислород. И получается, что в воде накапливаются свободные атомы водорода, которые и дают кислую реакцию (можете проверить каким-нибудь индикатором!)

Вы можете приобрести видеоурок (запись вебинара, 1,5 часа) и комплект теории по теме «Оксиды: получение и химические свойства». Стоимость материалов — 500 рублей. Оплата через систему Яндекс.Деньги (Visa, Mastercard, МИР, Maestro) по ссылке .

Внимание! После оплаты необходимо прислать сообщение с пометкой «Оксиды» с указанием адреса электронной почты, на которую можно выслать ссылку для скачивания и просмотра вебинара. В течение суток после оплаты заказа и получения сообщения материалы вебинара поступят на вашу почту. Сообщение можно прислать одним из следующих способов:

  • через смс, Viber или whatsapp на номер +7-977-834-56-28;
  • через e-mail: [email protected]

Без сообщения мы не сможем идентифицировать платеж и отправить Вам материалы.

Химические свойства основных оксидов

Подробно про оксиды, их классификацию и способы получения можно прочитать .

1. Взаимодействие с водой. С водой способны реагировать только основные оксиды, которым соответствуют растворимые гидроксиды (щелочи). Щелочи образуют щелочные металлы (литий, натрий, калий, рубидий и цезий) и щелочно-земельные (кальций, стронций, барий). Оксиды остальных металлов с водой химически не реагируют. Оксид магния реагирует с водой при кипячении.

CaO + H 2 O → Ca(OH) 2

CuO + H 2 O ≠

2. Взаимодействие с кислотными оксидами и кислотами. При взаимодействии основным оксидов с кислотами образуется соль этой кислоты и вода. При взаимодействии основного оксида и кислотного образуется соль:

основный оксид + кислота = соль + вода

основный оксид + кислотный оксид = соль

При взаимодействии основных оксидов с кислотами и их оксидами работает правило:

Хотя бы одному из реагентов должен соответствовать сильный гидроксид (щелочь или сильная кислота) .

Иными словами, основные оксиды, которым соответствуют щелочи, реагируют со всеми кислотными оксидами и их кислотами. Основные оксиды, которым соответствуют нерастворимые гидроксиды, реагируют только с сильными кислотами и их оксидами (N 2 O 5 , NO 2 , SO 3 и т.д.).

3. Взаимодействие с амфотерными оксидами и гидроксидами.

При взаимодействии основных оксидов с амфотерными образуются соли:

основный оксид + амфотерный оксид = соль

С амфотерными оксидами при сплавлении взаимодействуют только основные оксиды, которым соответствуют щелочи . При этом образуется соль. Металл в соли берется из более основного оксида, кислотный остаток — из более кислотного. В данном случае амфотерный оксид образует кислотный остаток.

K 2 O + Al 2 O 3 → 2KAlO 2

CuO + Al 2 O 3 ≠ (реакция не идет, т.к. Cu(OH) 2 — нерастворимый гидроксид)

(чтобы определить кислотный остаток, к формуле амфотерного или кислотного оксида добавляем молекулу воды: Al 2 O 3 + H 2 O = H 2 Al 2 O 4 и делим получившиеся индексы пополам, если степень окисления элемента нечетная: HAlO 2 . Получается алюминат-ион AlO 2 — . Заряд иона легко определить по числу присоединенных атомов водорода — если атом водорода 1, то заряд аниона будет -1, если 2 водорода, то -2 и т.д.).

Амфотерные гидроксиды при нагревании разлагаются, поэтому реагировать с основными оксидами фактически не могут.

4. Взаимодействие основных оксидов с восстановителями.

Таким образом, ионы некоторых металлов — окислители (чем правее в ряду напряжений, тем сильнее). При взаимодействии с восстановителями металлы переходят в степень окисления 0.

4.1. Восстановление углем или угарным газом .

Углерод (уголь) восстанавливает из оксидов только металлы, расположенные в ряду активности после алюминия. Реакция протекает только при нагревании.

FeO + C → Fe + CO

Угарный газ также восстанавливает из оксидов только металлы, расположенные после алюминия в электрохимическом ряду:

Fe 2 O 3 + CO → Al 2 O 3 + CO 2

CuO + CO → Cu + CO 2

4.2. Восстановление водородом .

Водород восстанавливает из оксидов только металлы, расположенные в ряду активности правее алюминия. Реакция с водородом протекает только в жестких условиях – под давлением и при нагревании.

CuO + H 2 → Cu + H 2 O

4.3. Восстановление более активными металлами (в расплаве или растворе, в зависимости от металла)

При этом более активные металлы вытесняют менее активные. То есть добавляемый к оксиду металл должен быть расположен левее в ряду активности, чем металл из оксида. Реакции, как правило, протекают при нагревании.

Например , оксид цинка взаимодействует с алюминием:

3ZnO + 2Al → Al 2 O 3 + 3Zn

но не взаимодействует с медью:

ZnO + Cu ≠

Восстановление металлов из оксидов с помощью других металлов — это очень распространенный процесс. Часто для восстановления металлов применяют алюминий и магний. А вот щелочные металлы для этого не очень подходят – они слишком химически активны, что создает сложности при работе с ними.

Например , цезий взрывается на воздухе .

Алюмотермия – это восстановление металлов из оксидов алюминием.

Например : алюминий восстанавливает оксид меди (II) из оксида:

3CuO + 2Al → Al 2 O 3 + 3Cu

Магниетермия – это восстановление металлов из оксидов магнием.

CuO + H 2 → Cu + H 2 O

4.4. Восстановление аммиаком.

Аммиаком можно восстанавливать только оксиды неактивных металлов. Реакция протекает только при высокой температуре.

Например , аммиак восстанавливает оксид меди (II):

3CuO + 2NH 3 → 3Cu + 3H 2 O + N 2

5. Взаимодействие основных оксидов с окислителями .

Под действием окислителей некоторые основные оксиды (в которых металлы могут повышать степень окисления, например Fe 2+ , Cr 2+ , Mn 2+ и др.) могут выступать в качестве восстановителей.

Например , оксид железа (II) можно окислить кислородом до оксида железа (III):

4FeO + O 2 → 2Fe 2 O 3

Оксидами называются сложные вещества, в состав молекул которых входят атомы кислорода в степни окисления – 2 и какого-нибудь другого элемента.

могут быть получены при непосредственном взаимодействии кислорода с другим элементом, так и косвенным путём (например, при разложении солей, оснований, кислот). В обычных условиях оксиды бывают в твёрдом, жидком и газообразном состоянии, этот тип соединений весьма распространён в природе. Оксиды содержатся в Земной коре. Ржавчина, песок, вода, углекислый газ – это оксиды.

Они бывают солеобразующими и несолеобразующие.

Солеобразующие оксиды – это такие оксиды, которые в результате химических реакций образуют соли. Это оксиды металлов и неметаллов, которые при взаимодействии с водой образуют соответствующие кислоты, а при взаимодействии с основаниями – соответствующие кислые и нормальные соли. Например, оксид меди (CuO) является оксидом солеобразующим, потому что, например, при взаимодействии её с соляной кислотой (HCl) образуется соль:

CuO + 2HCl → CuCl 2 + H 2 O.

В результате химических реакций можно получать и другие соли:

CuO + SO 3 → CuSO 4 .

Несолеобразующими оксидами называются такие оксиды, которые не образуют солей. Примером могут служить СО, N 2 O, NO.

Солеобразующие оксиды в свою очередь бывают 3-х типов: основными (от слова « основание» ), кислотными и амфотерными.

Основными оксидами называются такие оксиды металлов, которым соответствуют гидроксиды, относящиеся к классу оснований. К основным оксидам относятся, например, Na 2 O, K 2 O, MgO, CaO и т.д.

Химические свойства основных оксидов

1. Растворимые в воде основные оксиды вступают в реакцию с водой, образуя основания:

Na 2 O + H 2 O → 2NaOH.

2. Взаимодействуют с кислотными оксидами, образуя соответствующие соли

Na 2 O + SO 3 → Na 2 SO 4 .

3. Реагируют с кислотами, образуя соль и воду:

CuO + H 2 SO 4 → CuSO 4 + H 2 O.

4. Реагируют с амфотерными оксидами:

Li 2 O + Al 2 O 3 → 2LiAlO 2 .

Если в составе оксидов в качестве второго элемента будет неметалл или металл, проявляющий высшую валентность (обычно проявляют от IV до VII), то такие оксиды будут кислотными. Кислотными оксидами (ангидридами кислот) называются такие оксиды, которым соответствуют гидроксиды, относящие к классу кислот. Это, например, CO 2 , SO 3 , P 2 O 5 , N 2 O 3 , Cl 2 O 5 , Mn 2 O 7 и т.д. Кислотные оксиды растворяются в воде и щелочах, образуя при этом соль и воду.

Химические свойства кислотных оксидов

1. Взаимодействуют с водой, образуя кислоту:

SO 3 + H 2 O → H 2 SO 4 .

Но не все кислотные оксиды непосредственно реагируют с водой (SiO 2 и др.).

2. Реагируют с основанными оксидами с образованием соли:

CO 2 + CaO → CaCO 3

3. Взаимодействуют со щелочами, образуя соль и воду:

CO 2 + Ba(OH) 2 → BaCO 3 + H 2 O.

В состав амфотерного оксида входит элемент, который обладает амфотерными свойствами. Под амфотерностью понимают способность соединений проявлять в зависимости от условий кислотные и основные свойства. Например, оксид цинка ZnO может быть как основанием, так и кислотой (Zn(OH) 2 и H 2 ZnO 2). Амфотерность выражается в том, что в зависимости от условий амфотерные оксиды проявляют либо осно́вные, либо кислотные свойства.

Химические свойства амфотерных оксидов

1. Взаимодействуют с кислотами, образуя соль и воду:

ZnO + 2HCl → ZnCl 2 + H 2 O.

2. Реагируют с твёрдыми щелочами (при сплавлении), образуя в результате реакции соль – цинкат натрия и воду:

ZnO + 2NaOH → Na 2 ZnO 2 + H 2 O.

При взаимодействии оксида цинка с раствором щелочи (того же NaOH) протекает другая реакция:

ZnO + 2 NaOH + H 2 O => Na 2 .

Координационное число – характеристика, которая определяет число ближайших частиц: атомов или инов в молекуле или кристалле . Для каждого амфотерного металла характерно свое координационное число. Для Be и Zn – это 4; Для и Al – это 4 или 6; Для и Cr – это 6 или (очень редко) 4;

Амфотерные оксиды обычно не растворяются в воде и не реагируют с ней.

Остались вопросы? Хотите знать больше об оксидах?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.