Электронный пучок. A

ЭЛЕКТРОННЫЙ ПУЧОК

ЭЛЕКТРОННЫЙ ПУЧОК

- поток электронов, движущихся по близким траекториям в одном направлении, имеющий размеры, значительно большие в направлении движения, чем в поперечной плоскости. Поскольку Э. п. является совокупностью одноимённых заряж. частиц, внутри него имеется пространственный заряд электронов, создающий собств. электрич. . С др. стороны, движущиеся по близким траекториям электроны можно рассматривать как линейные токи, создающие собств. магн. поле. Электрич. поле пространств. заряда создаёт силу, стремящуюся расширить пучок ("кулоновское расталкивание"), магн. поле линейных токов создаёт силу Лоренца, стремящуюся сжать пучок. Расчёт показывает, что пространств. заряда начинает заметно сказываться (при энергиях электронов в неск. кэВ) при токах в неск. десятых мА, тогда как "стягивающее" действие собств. магн. поля заметно проявляется только при скоростях электронов, близких к скорости света-энергии электронов порядка МэВ. Поэтому при рассмотрении Э. п., используемых в разл. электронных приборах, техн. установках, в первую очередь необходимо принимать во внимание действие собств. пространств. заряда, а действие собств. магн. поля учитывать только для релятивистских пучков.

Интенсивность Э. п. Осн. критерием условного разделения Э. п. на неинтенсивные и интенсивные является необходимость учёта действия поля собств. пространств. заряда электронов пучка. Очевидно, чем больше пучка, тем больше пространств. заряда, сильнее расталкивание. С др. стороны, чем больше электронов, тем меньше скажется на характере движения электронов собств. электрич. поле пучка - чем выше электронов, тем "жёстче" пучок. Количественно действие поля пространств. заряда характеризуется коэф. пространственного заряда - п е р в е а н с о м, определяемым как

где I -ток пучка; U- ускоряющее , определяющее энергию электронов пучка.

Заметное влияние пространств. заряда на электронов в пучке начинает проявляться при P>=P* = = 10 -8 А/В 3/2 = 10 -2 мкА/В 3/2 . Поэтому к интенсивным пучкам принято относить Э. п. с Р>P*.

Неинтенсивные пучки (с Р<Р* )малого сечения, часто называемые электронными лучами, рассчитываемые по законам геом. электронной оптики без учёта действия поля собств. пространств. заряда, формируются с помощью электронных прожекторов и используются в основном в разл. электронно-лучевых приборах.

В интенсивных пучках действие собств. пространств. заряда существенно влияет на характеристики Э. п. Во-первых, интенсивный Э. п. в пространстве, свободном от внеш. электрич. и магн. полей, за счёт кулоновского расталкивания неограниченно расширяется; во-вторых, за счёт отрицат. электрич. заряда электронов пучка происходит падение потенциала в пучке. Если с помощью внеш. электрич. или магн. полей ограничить расширение интенсивного пучка, то при достаточно большом токе внутри пучка может понизиться до нуля, пучок "оборвётся". Поэтому для интенсивных пучков существует понятие предельного (максимального) первеанса. Практически при ограничении расширения пучка внеш. полями удаётся сформировать протяжённые устойчивые интенсивные пучки с P 5 . 10 мкА/В 3/2 .

Полное матем. описание интенсивных Э. п. затруднительно, поскольку реальный электронный поток состоит из множества движущихся электронов, учесть между к-рыми практически невозможно. При введении нек-рых упрощающих предположений, в частности, заменяя сумму сил, действующих на выбранный со стороны соседних электронов, силой действия на этот электрон нек-рой электрически заряженной среды с непрерывно распределённой плотностью пространств. заряда и разбивая весь пучок на совокупность "трубок тока", удаётся с помощью рассчитать с достаточной для практич. целей точностью осн. параметры интенсивного пучка: форму пучка (огибающую), плотности тока и потенциала по сечению пучка.

Геометрия Э. п. Практически применяются пучки трёх конфигураций: ленточные (плоские), имеющие в поперечном сечении вид прямоугольника с "толщиной", значительно меньшей "ширины", осесимметричные, имеющие в поперечном сечении форму круга, и трубчатые, имеющие в поперечном сечении форму кольца. Для формирования Э. п. таких типов разработаны соответствующие электронные пушки и системы ограничения.

Влияние пространств. заряда неодинаково в пучках разл. конфигурации. Наиб. влияние на характер движения электронов на границе Э. п. имеет составляющая напряжённости электрич. поля, создаваемого пространств. зарядом, направленная перпендикулярно оси осесимметричных пучков и широкой стороне ленточных.

Радиальная составляющая напряжённости электрич. поля на границе осесимметричного пучка прямо пропорциональна току пучка и обратно пропорциональна радиусу его сечения и скорости электронов пучка. Это создаёт силу, направленную от оси, стремящуюся расширить пучок. Расталкивающая тем больше, чем больше ток, меньше скорость и радиус пучка. Теоретически в осесимметричных пучках траектории электронов не могут пересечь ось, а пучка нельзя свести в точку, т. к. при уменьшении сечения расталкивающая сила неограниченно возрастает.


Огибающие осесимметричных электронных пучков: g 0 -угол входа пучка в свободное от полей прост ранство; r 0 - начальный радиус; 1 - расходящийся пучок (g 0 >0); 2-цилиндрический пучок (g 0 =0); 3, 4, 5-сходящиеся пучки (g 0 <0). Пучок 4 - опти мальный, так как кроссовер (наименьшее сечение) пучка находится на самом удалённом расстоянии (z/l =0,5) от исходной плоскости.

Огибающая интенсивного осесимметричного пучка в пространстве, свободном от электрич. и магн. полей, описывается зависимостью, близкой к экспоненциальной. На рис. показаны огибающие осесимметричных пучков, имеющих до входа в свободное цилиндрическую (кривая 2, g 0 = 0), расходящуюся (кривая 1, g 0 >0) и сходящуюся (кривые 3-4, g 0 <0) формы (g 0 - угол наклона касательной к огибающей пучка, угол входа). Как видно на рис., пучки, первоначально сформированные как цилиндрические (g 0 = 0) и расходящиеся (g 0 >0), в свободном от полей пространстве неограниченно расширяются; пучки, сформированные как сходящиеся, вначале сжимаются (r /r 0 <1), проходят плоскость наименьшего сечения (плоскость кроссовера), затем также начинают расширяться. Радиус мин. сечения пучка - радиус кроссовера-определяется выражением

где r 0 - радиус Э. п. до входа в свободное .

Радиус кроссовера тем меньше, чем меньше первеанс и больше | g 0 |. С ростом (по абс. величине) угла входа пучка в свободное от полей пространство (g 0) плоскость кроссовера сначала удаляется от исходной плоскости, за-

тем начинает приближаться к ней (последовательно кривые 3, 4, 5). Для каждого значения первеанса существует оптимальный "угол влёта" g 0 , при к-ром кроссовер наиб. удалён от исходной плоскости, то есть Э. п. с данным первеансом может быть проведён на наибольшее расстояние с радиусом, не превышающим исходный.

Ленточные интенсивные пучки в свободном от электрич. и магн. полей пространстве также неограниченно расширяются (становятся "толще"), контур огибающей пучка описывается параболич. законом. В отличие от осесимметричного пучка, ленточный пучок при оптимальном входном угле теоретически может быть сведён в линию, т. е. может быть получен линейный . Пучки др. конфигураций в свободном пространстве также неограниченно расширяются; трубчатый Э. п. расширяется несколько меньше, чем сплошной осесимметричный.

Эксперим. проверка полученных расчётных соотношений затруднена, поскольку само понятие границы (огибающей) интенсивного пучка условно, т. к. в реальных пучках плотность тока при удалении от оси осесимметричного или от ср. плоскости ленточного пучков спадает постепенно, и границей пучка условно считается окружность или прямая, вдоль к-рой плотность тока составляет нек-рую малую долю (~0,1) её макс. величины на оси.

Потенциал Э. п. Падение потенциала внутри интенсивного пучка ограничивает возможность формирования протяжённого интенсивного пучка с высоким первеансом. Тео-ретич. исследования показывают, что в интенсивном неограниченном потоке, заполняющем пространство между двумя плоскими параллельными проводящими поверхностями с одинаковым потенциалом, определяющим энергию электронов потока, с увеличением тока в ср. плоскости образуется минимум потенциала. При достижении P= 18,64 мкА/В 3/2 потенциал спадает до нуля, образуется виртуальный , часть электронов проходит через плоскость минимума, часть отражается к исходной плоскости, токопрохождение нарушается. Эксперим. проверка подтверждает это, именно при приближении P к 18,64 мкА/В 3/2 в потоке возникают неустрйчивости, электронных слоев, прохождение тока нарушается.

В реальных Э. п., ограниченных внеш. электрич. и магн. полями, также происходит падение потенциала, но т. к. в большинстве приборов, где используются интенсивные Э. п., протяжённый пучок пропускается через трубу с положит. потенциалом, на поверхности пучка удаётся поддерживать потенциал, близкий к потенциалу трубы. Но и при наличии проводящей трубы потенциал на оси осесимметричного или в ср. плоскости ленточного пучков заметно понижается, и по достижении достаточно большого первеанса (большего, чем в случае неограниченного потока) возникает неустойчивость, пучок обрывается.

Формирование Э. п. Поскольку Э. п. в свободном пространстве неограниченно расширяется, при практич. использовании интенсивных пучков кроме системы, формирующей пучок,- электронной пушки-необходима система, ограничивающая расхождение пучка. Расширение Э. п. ограничивается с помощью внеш. электрич. и магн. полей. Классич. пример протяжённого интенсивного Э. п.- т. н. п о т о к Б р и л л ю э н а - цилиндрич. пучок, ограниченный продольным однородным магн. полем. При определ. соотношении четырёх величин - нач. радиуса r 0 , тока пучка I , напряжения U 0 , определяющего энергию электронов до входа в магн. поле, и магн. индукции продольного однородного магн. поля B 0 - теоретически возможно получить устойчивый цилиндрич. Э. п. При оптимальном соотношении r 0 , I , U 0 и B 0 макс. первеанс бриллюэновского потока достигает 25,4 мкА/В 3/2 . При макс. первеансе потенциал на оси пучка составляет всего 1/3 значения на границе. При ограничении магн. полем трубчатых пучков можно получить ещё большие значения первеанса.

· Электронные пучки. Под электронными пучками понимают направленные потоки электронов, поперечные размеры которых значительно меньше их длины. Электронные пучки впервые были обнаружены в газовомразряде, происходящем при пониженном давлении.

При тлеющем разряде положительными ионами с катода выбивается большое число электронов. Если разряд происходит в трубке при очень больших разрежениях, то средняя длина свободного пробега электронов увеличивается и катодное темное пространство расширяется. Электроны, выбитые с катода положительными ионами, движутся почти без столкновений и образуют катодные лучи. Эти лучираспространяются нормально к поверхности катода. Если в аноде электронной лампы сделать отверстие, то часть электронов, ускоренных электрическим полем, пролетит в отверстие, образуя за анодом электронный пучок.

· Свойства и применение электронных пучков. Электронные пучки вызывают свечение(флуоресценцию) некоторых веществ. К ним относятся стекло, сульфиды цинка, кадмия и др. Эти вещества называются люминофо-рами. Это свойство электронных пучков применяется в вакуумной электро-нике – свечение экранов телевизоров, осциллографов, электронно-оптических преобразователей и др. Попадая на тела, электронные пучки вызывают их нагревание. Это свойство пользуется для сварки сверхчистых металлов в вакууме.

Электронные пучки отклоняются в электрическом и магнитном полях. Возможность управления электронным пучком с помощью электрического и магнитного поля и свечение экранов, покрытых люминофором под действием электронных пучков, используют в электронно-лучевых трубках.

· Электронно-лучевая трубка. Устройство электронно-лучевой трубки показано на рис. 12.4.1. Она представляет собой стеклянный вакуумный баллон L , в котором находится «электронная пушка», состоящая из накаленного катода К , эмитирующего электроны, и анода с диафрагмой (чаще нескольких анодов, расположенныхдруг за другом) D 1 , D 2 . Между катодом и анодом создают разность потенциалов U , позволяющую разогнать электроны до большой скорости и получить узкий пучок. В месте попадания электронного пучка на экран Е , покрытый флуоресцирующим составом, возникает яркая светящаяся точка.

Управление пучком электронов производится двумя парами пластин С 1 и С 2 расположенных перпендикулярно друг другу. Поле пластин С 1 смещает луч в горизонтальном направлении, поле пластин С 2 - в вертикальном. На пластины С 1 и С 2 можно подавать либо постоянное, либо переменное напря­жение. В зависимости от этого светящееся пятно на экране будет либо оставаться на месте, либо перемещаться, образуя прямую, синусоиду и т. д. На этом свойстве основано устройство осциллографа. В более сложных случаях на экране можно получить чередование темных и светлых пятен, которые дают изображение предметов. Такое явление мы наблюдаем в электронно-лучевой трубке телевизора.

Вопросы для повторения:

1. В чем состоит ионизация газа и рекомбинация ионов в газе?

2. Что такое газовый разряд?

3. В чем заключается разница между самостоятельным и несамостоя-тельным газовыми разрядами?

4. Что представляют собой дуговой и тлеющий разряды?

5. Что такое плазма? Какими свойствами она обладает?

6. Что такое диод, как он устроен и почему может работать выпрямителем переменного тока?

7. Что такое электронные пучки, какими свойствами обладают, где применяются?

8. Приведите примеры применения тлеющего разряда в технике.

9. Приведите примеры практического применения плазмы.

10. Опишите механизм образования электронно-ионных лавин.

Резюме:

В процессе изучения темы мы ознакомились со свойствами газовых разрядов и протеканием электрического тока в газах и вакууме.

Приложение

Приложение N 1.

Распределение электронов и дырок описывается функцией Ферми–Дирака.

,

где f Ф-Д (Е ) – вероятность того, что энергетическое состояние занято и может колебаться от 0 до 1 ,

E F – уровень Ферми, часто называемый энергией Ферми или электрохи-мическим потенциалом.


Согласно принципу Паули каждое квантовое состояние может быть заня-то только одним электро-ном. При большем их числе, при абсолютном нуле температур все состояния ниже E F заполнены:

f Ф-Д (Е ) = 1 , а выше E F – свободны от электронов и f Ф-Д (Е ) = 0 . Так как при Т = 0ºК электроны проводимости обладают ненулевой энергией, но распределены по всем разрешенным состояниям от 0 до E F (эВ) то

.

Уровень Ферми в собственном полупроводнике определяется уравнением:

Плотность состояний g(E)

Число состояний на единичный энергетический интервал в единице объема полупроводника как функция энергии.

В двух прилегающих друг к другу фазах электронное равновесие до-стигается при равенстве уровней Ферми. -

Приложение N 2.

Для определения вида функции φ(х) мы воспользовались известным из электростатики уравнением Пуассона, связывающим потенциал поля U(x) с объемной плотностью ρ(х) неподвижных зарядов, создающих это поле.

Это уравнение имеет вид:

принимаем ρ(х) = qNd


Глоссарий

Аморфные вещества С термодинамической точки зрения аморфное ТТ находится в метастабильном состоянии и со временем должно закристаллизоваться. Аморфные вещества ведут себя как жидкости с аномально высокой вязкостью. К ним относятся стекла, пластмассы и смолы, При повышении температуры они постепенно размягчаются и приобретают способность течь, как жидкости [§1.1].
Анизотропия Неодинаковость свойств кристалла в разных направлениях, которая является результатом его симметрии и внутреннего строения[§1.1].
Акцепторные уровни Примеси, захватывающие электроны из валентной зоны полупровод-ника, называют акцепторными акцепторными уровнями. Полупроводники, содержащие такие примеси, называются дырочными полупроводниками, или полупроводниками p -типа;часто их называютакцепторными полупроводниками . [§ 3.6.1].
Адсорбционный слой См. [§ 4.2.2].
Барьерная емкость При обратном напряжении, приложенном к p -n переходу, носители заря-дов обоих знаков находятся по обе стороны перехода, а в области самого перехода их очень мало. Таким образом, в режиме обратного напряжения p -n переход представляет собой емкость. Эту емкость называют барьерной (С б) . [§ 8.5].
Ван-дер-ваальсовские связи Силы взаимодействия в таких кристаллах определяются наличием у молекул естественных или индуцированных электрических моментов [§ 1.3].
Валентная зона При сближении атомов на растояние примерно 10 –8 см.,будет происходить перекрытие волновых функций атомарных электронов. Благодаря этому энергетический уровень валентных электронов превращается в зону.Эта зона носит название валентной [§ 2.1].
Водородная связь В кристаллах с водородными связями каждый атом водорода связан силами притяжения одновременно с двумя другими атомами. Водородная связь вместе с электростатическим притяжением дипольных моментов молекул воды определяет свойства воды и льда[§1.1].
Вольтамперная характеристика p-n перехода См. [§8.4].
Время жизни носителей Среднее время существования носителей заряда в полупроводнике обычно называют временем жизни носителей [ § 3.8].
Вырожденный газ В вырожденном газе в формировании электропроводности могут участвовать не все свобод-ные электроны, а лишь те из них, которые располагаются непосредственно у уровня Ферми.[§ 5.2.2].
Генерация носителей заряда Генерация носителей заряда (образование свободных электронов и дырок) происходит при воздействии теплового хаотического воздействия атомов кристаллической решетки (тепловая генерация), при воздействии поглощенных полупроводником квантов света (световая генерация) и других энергетических факторов [§ 3.4].
Гетеропереход Гетеропереходом называют переход, образующийся на границе контакта двух полупроводников с различной шириной запрещенной зоны. [§ 9.3].
Дефекты в кристалле Нрушения периодичности решетки, которые не сводятся к тепловым движениям, называются дефектами [§ 1.7].
Дефекты по Шоттки В реальных кристаллах некоторые узлы кри-сталлической решетки, в которых должны находиться атомы, оказываются незанятыми [§ 1.7].
Дефекты по Френкелю Они возникают в том случае, когда атом покидает свое место в узле кристаллической решетки и размещается в междоузлии в окружении атомов, расположенных на своих законных местах [§ 1.7].
Дислокации Этот вид дефектов возникает в случае, когда между атомными плоскостями вклинивается неполная дополнительная атомная плоскость [§ 1.7].
Дырка Вакантное место в ковалентной связи получило название дырки. Незавершенная связь будет иметь избыточный положительный заряд равный по величине заряду электрона [§ 3.2].
Донорные уровни Примеси, являющиеся источником электронов проводимости, называютсядонорами , а энергетические уровни этих примесей – донорными уровнями. Полупроводники, содержащие донорную примесь, называются электронными полупроводниками, или полупроводниками п -типа;часто их называют такжедонорными полупроводниками [§3.6.1].
Дрейфовый ток Ток, обусловленный внешним электрическим полем, получил название дрейфового тока. [ § 3.8].
Диффузионный ток Ток, возникающий в результате диффузии носителей из области, где их концентрация повышена, в направлении области с более низкой концентрацией, называется диффузионным бездрейфовым током . [ § 3.8].
Диффузионная длина Среднее расстояние, которое проходят за время жизни носители, называют диффузионной длиной носителей заряда. .
Двойной электрический слой Совокупность положительных ионов у поверхности металла и электронов, появляющихся над поверхностью, называется двойным элект-рическим слоем. .
Запрещенная зона Зоны дозволенных энергий отделены друг от друга интервалом, называемым запрещенной зоной или энергетической щелью [§ 2.1].
Зона проводимости Если же в самой верхней занятой, но не полной зоне, имеются свободные энергетические уровни, на которые могут переходить электроны, то они образуют так называемую зону проводимости [§ 2.1].
Ионные кристаллы Ионные кристаллы (NaСl, KC1 и др.) характерны тем, что силы притяжения, действующие между ионами - электростатические. [§1.1].
Индексы Миллеры В ристаллографии принято пользоваться для обозначения плоскостей особыми индексами Миллера. [ § 1.6].
Инжекционный лазер См.[§10.6].
Инверсия населенностей Инверсия населенностей – соотношение между населенностями разных энергетических уровней атомов или молекул вещества, при котором число частиц на верхнем из данной пары уровней больше, чем на нижнем. [§10.5].
Кристалл Кристалл, представляет собой совокупность атомов, упорядоченно расположенных в пространстве и удерживаемых около положения равновесия силами взаимодействия. Структурными единицами ТТ служат атомы, молекулы или ионы. Термодинамически устойчивыми ТТ являются кристаллические, так как они обладают минимальной внутренней энергией, с повышением температуры, по достижении определенной температуры, называемой температурой плавления, они скачкомпереходят в жидкое состояние. Кристалл имеет прерывистую периодическую структуру. [§1.1].
Ковалентный кристалл В ковалентных кристаллах (алмаз, Ge, Si и др.) валентные электроны соседних атомов обобществлены, поэтому ковалентный кристалл можно рассматривать как одну огромную молекулу [§1.1].
Класс симметрии В кристаллографии показано, что существуют всего 32 возможные комбинации элементов симметрии. Каждая из таких возможных комбинаций называется классом симметрии. В природе существуют только кристаллы, относящиеся к одному из 32 классов симметрии [§ 1.3].
Коэффициент Холла См.[§ 6.1.1].
Контактная разность потенциалов См. [§ 7.1.1].
Когерентность Когерентность – согласованное протекание во времени нескольких колебательных или волновых процессов. Т.е. если разность фаз двух колебаний остается постоянной во времени, или же два идеальных монохроматических колебания имеют одну и ту же частоту, то такие колебания называются когерентными. [§10.5].
Лазеры Вынужденное когерентное излучение называют стимулированным или индуцированным, а излучатели таких волн получили название лазеров (от английского Light Amplification by Stimulated Emission of Radiation – усиление света за счет индуцированного излучения). [§10.4].
Металлическая связь В металлических кристаллах связь (металлическая связь) обуслов-лена коллективным взаимодействием подвижных электронов с остовом кристаллической решетки. Для переходных металлов характерна также ковалентная связь, осуществляемая электронами незаполненных внутренних оболочек [§1.1].
Молекулярные кристаллы В молекулярных кристаллах молекулы связаны между собой относительно слабыми электростатическими силами (ван-дер-ваальсовы силы) обусловленными динамической поляризацией молекул [§1.1].
Неравновесная концентрация Если с помощью какого либо внешнего воздействия динамическое равновесие концентраций электронов и дырок в полупроводнике нарушено, то появляется дополнительная неравновесная концентрация носителей заряда. [§3.8].
Невырожденный газ В случае невырожденного газа плотность заполнения зоны проводи-мости электронами на столько небольшая, что они практически никогда не встречаются так близко, что бы их поведение могло ограничиваться принци-пом Паули.[§ 5.2.1, § 5.2.2].
Несамостоятельный газовый разряд Процесс протекания тока через газ называют газовым разрядом. Ток в газе, возникающий при наличии внешнего ионизатора, называется несамостоятельным газовым разрядом.
Ось симметрии Если кристалл обладает осью симметрии (поворотной осью), то он может быть совмещен сам с собой, т.е. приведен в положение неотличимое от исходного, путем поворота на некоторый угол вокруг этой оси. В зависимости от симметрии кристалла величина угла поворота, необходимого для совмещения кристалла с самим собой, может составлять 360, 180, 120, 90, 60 градусов. (2п / п, где n = 1, 2, 3, 4 или 6) [§ 1.3].
Основные носители Электроны, составляющие подавляющее большинство носителей заряда в полупроводниках п -типа, называют основными носителями заряда, а дырки – неосновными.. И на оборот, дырки составляющие подавляющее большинство носителей заряда в полупроводниках p -типа, называют основными носителями заряда, а электроны– неосновными. [§ 3.6.2, § 3.6.3].
Омический переход Контакт, электрическое сопротивление которого мало и не зависит от направления тока в заданном рабочем диапазоне токов. [§9.3.3].
Период трансляции Трансляция а представлена вектором, имеющим определенное направление и численное значение, равное а, называемое периодом трансляции [§1.3].
Плоскость симметрии Если одна половина кристалла совмещается с другой при отражении в некоторой плоскости, как в зеркале, то такая плоскость называется плоскостью симметрии [§ 1.3].
Поворотно-зеркальная ось К этому элементу симметрии приводит одновременное применение двух операций: поворота вокруг оси и зеркального отражения в плоскости, перпендикулярной оси [§ 1.3].
Полупроводники Полупроводники, широкий класс веществ с электронным механизмом электропроводности, по её удельному значению sзанимающих про-межуточное положение между металлами (s ~ 10 4 -10 6 Ом -1 см -1) и хорошими диэлектриками (s ~ 10 -12 -10 -11 Ом -1 см -1) (интервалы значений sуказаны при комнатной температуре) [§ 3.1].
Примесный полупроводник Полупроводник, имеющий примеси, называется примесным, а его электропроводность обусловленную наличием в кристалле примесей-примесной [§ 3.6.1].
Полупроводник n-типа См. Донорные уровни. [§ 3.6.1].
Полупроводник p-типа См. Акцепторные уровни [§ 3.6.1].[ § 3.6.3].
Примесная проводимость Проводимость, вызванная присутствием в кристалле полупроводника примесей из атомов с иной валентностью, называется примесной [§ 3.6.2].
Переход Шоттки Выпрямляющий контакт металл – полупро-водник п -типа называют переходом Шоттки. Важнейшей особенностью перехода Шоттки по сравнению с р-п переходом является отсутствие инжекции неосновных носителей заряда . [§9.1].
Поверхностные явления в полупроводниках Физические явления, возникающие у поверхности полупроводникового кристалла вызванные нарушением распределения потенциала кристаллической решетки полупроводника вследствие его обрыва у поверхности; наличием нескомпенсированных валентных связей у поверхностных атомов; искажением потенциала решетки из-за поверхностных атомов; искажением потенциала решетки из-за возможных поверхностных дефектов структуры кристалла. [§9.2].
Поверхностный потенциал Если принять потенциал в объеме полупроводника равным нулю, то потенциал поверхности будет отличен от нуля из-за наличия зарядов между объемом и поверхностью. Разность потен-циалов между поверхностью и объемом называют поверхностным потенциалом [§9.2].
Пробой Туннельный -основан на изученном нами туннельном эффекте – когда электроны проходят через потенциальный барьер р-п- перехода, не изменяя своей энергии.
Лавинный -Механизм лавинного пробоя подобен механизму ударной ионизации в газах. Под действием сильного электрического поля электроны могут освободиться из ковалентных связей и получить энергию, достаточную для преодоления потенциального барьера в р-п- переходе. Двигаясь с большой скоростью в области р-п- перехода они сталкиваются с нейтральными атомами и ионизируют их.
Тепловой -Электрический и тепловой пробой во многих случаях происходят одновременно. Во время электрического пробоя полупроводник разогревается и затем происходит тепловой пробой. Тепловая генерация пар электрон –дырка приводит к увеличению концентрации неосновных носителей заряда и к росту обратного тока, а увеличение тока, приводит в свою очередь к дальнейшему повышению температуры. Процесс нарастает лавинообразно. При чрезмерном разогреве кристалла, р-п- переход необратимовыходит из строя.
Работа выхода Работой выхода называется работа по перемещению электрона из проводника в окружающее пространство равна произведению заряда электрона е на пройденную разность потенциалов φ 0 .[§ 4.2.1].
Рекомбинация носителей заряда Процесс превращения свободного электрона в связанный электрон и исчезновение пары носителей заряда (электрон-дырка) носит название рекомбинации.
Силы взаимодействия Природа сил взаимодействия между атомами в кристаллах хорошо известна. Это – электрические силы отталкивания и притяжения по-ложительно и отрицательно заряженных частиц, имеющихся в каждом атоме. [§1.1].
Сингония В кристаллографии принято объединять 32 класса симметрии в 7 систем симметрии или 7 сингоний, которые носят следующие названия в порядке возрастания симметрии триклинная система, включающая два класса симметрии, тригональная система, объединяющая семь классов, моноклинная система, куда входят три класса, гексагональная система - пять классов, ромбическая, также с тремя классами, тетрагональная система с семью классами, кубическая система [§ 1.3]. [§ 1.3].
Собственный полупроводник Полупроводник будет являться собственным, если влияние примесей на его свойства пренебрежимо мало. В нем свободные носители заряда возникают только за счет разрыва валентных связей [§ 3.2].
Стимулированное излучение Может воз-никнуть процесс, при котором все возбужденные атомы излучают почти одновременно, взаимосвязано и так, что генерируемые фотоны абсолютно неотличимы от тех, которые эту генерацию вызвали. Такое вынужденное когерентное излучение называют стимулированным или индуцированным [§10.4.].
Термопара См.[§11.2.1].
Термоэлемент См. [§ 11.2.2].
Термоэлектрические явления См. [§10.1.1].
Трансляция Кристалл имеет прерывистую периодическую структуру. С геомет-рической точки зрения такую структуру можно создать с помощью операции параллельного смещения, которая называется трансляцией [§1.3].
Твердое тело Твердым телом (ТТ) называют такое агрегатное состояние вещества, которое характеризуется постоянством формы рассматриваемой макро-системы и особым характером теплового движения атомов, составляющих макросистему. Различают кристаллические и аморфные ТТ. Термодинами-чески устойчивыми ТТ являются кристаллические, так как они обладают минимальной внутренней энергией[§1.1].
Трансляционная группа Положение любой точки в пространственной решетке определяться комбинацией перемещений ma+nb+pc. Комбинация трех векторов а,b,с называется трансляционной группой [§1.3].
Тепловой пробой p-n перехода Тепловой пробойp-nперехода происходит вследствие вырывания ва-лентных электронов из связей в атомах при тепловых колебаниях кристалли-ческой решетки. Тепловая генерация пар электрон-дырка приводит к увели-чению концентрации не-основных носителей заряда и к росту обратного тока. [§8.4].
Туннельный эффект Туннельный эффект заключается в том, что электроны проходят через потенциальный барьер p-n перехода, не изменяя своей энергии. [§8.6].
Фотопроводимость полупроводников Явлением фотопроводимости называется увеличение электропроводности полупроводника под воздействием электромагнитного излучения. [§ 10.1].
Фоторезистивный эффект Сущность этого явления состоит в том, что при поглощении квантов света с энергией достаточной для ионизации собственных атомов полупроводника или ионизации примесей, происходит увеличение концентрации носителей заряда. [§10.2].
Центр симметрии Если в кристалле существует точка, обладающая тем свойством, что при замене радиуса-вектора r , любой из частиц, составляющих кристалл на обратный ему вектор -r , кристалл переходит в состояние, неотличимое от исходного, то эта точка называется центром симметрии или центром инверсии [§ 1.3].
Экстракция носителей заряда Для неосновных носителей (дырок в n - области и электронов в р - области) потенциальный барьер в электронно-дырочном переходе отсутствует, и они будут втягиваться полем в области p-n перехода. Это явление называется экстракцией. [§ 8.2].
Элементарная ячейка Параллелепипед, построенный на трех элементарных трансляциях а, в, с, называется элементарным параллелепипедом или элементарной ячейкой.[ §1.3].
Элементы симметрии плоскость симметрии, ось симметрии, центр симметрии, зеркально-поворотная ось симметрии[ §1.3].
Электрохимический потенциал Энергия электрохимического потенциала – работа, которую необходимо затратить для изменения числа частиц в системе на единицу при условии постоянства объема и температуры [§ 3.3].
Электрический пробой p-n перехода Электрический пробой происходит в результате внутренней электростатической эмиссии (зинеровский пробой) и под действием ударной ионизации атомов полупроводника (лавинный пробой). [§ 8.4].
Электронная эмиссия См. [§ 4.2.2].
Электронно –дырочный переход (p-n переход). Переход между материалами с электропроводностью n- и p- типа носит название p-n перехода. [§ 7.2].
Электростатический домен См. Эффект Ганна [§ 5.6].
Энергия Ферми При температуре равной абсолютному нулю Т = 0 К энергия всей атомной системы, в том числе и электронного газа минимальна. Однако при этом наблюдается характерная ситуация, когда электроны, находящиеся на верхних энергетических уровнях, обладают еще достаточно большой энергией, которую они не могут сбросить и перейти на нижние уровни из-за запрета Паули. Энергия электронов, занимающих самый верхний из занятых уровней, обозначается ε макс и называется энергией Ферми [§ 2.1, § 3.3].
Эффективная масса Влияние на движение электрона в поле периодического кристаллического потенциала ионов и остальных электронов приводит к тому, что свойства носителей тока в кристалле (электронов проводимости и дырок) во многом отличается от свойств электронов в свободном пространстве. А их масса (эффективная масса) может сильно отличаться от массы свободного электрона и зависеть от направления движения [§ 3.5].
Эффект Ганна См.[§ 5.6].
Эффект Зиннера См.[§ 5.6].
Эффект Зеебека См. [§ 10.1.1].
Эффект Пельтье См. [§ 10.1.2].
Эффект Томсона См. [§ 10.1.3].
Эффект Холла Явление возникновения в полупроводнике с текущим по нему током поперечного электрического поля под действием магнитного поля называют эффектом Холла. [§ 6.1.1].
Эффект Штарка См.[§ 5.6].

Электрон как устойчивая материальная частица может быть сравнительно просто выделен различными физическими спосо­бами, что и обусловило его широкое использование в различных областях науки и техники.

Внутри кристалла каждый атом удерживается симметрично направ­ленными силами связи. На свобод­ной поверхности кристалла или жидкости атом неуравновешен вследствие того, что со стороны ок­ружающей среды связь отсутствует или заметно ослаблена. Это вызыва­ет повышение энергии поверхност­ного слоя кристалла wn. Если необ­ходимая атому энергия, для переме­щения внутри тела равна wq (см. Рис. 1.2. Потенциальный барь - рис. 1.2), то для выхода в окружаю - ер для системы атомов у по - щую среду она равна wn, причем

Wq. Поэтому для соединения

границе твердой и жидкой фаз ДВуХ монокристаллов в один требу - (iб) в начальный период их ется введение извне деформацион-

контакта «

ной или тепловой энергии, превы­шающей граничную энергию wT.

Внешняя деформационная энергия будет затрачиваться на пре­одоление сил отталкивания, возникающих между сближаемыми поверхностными атомами. Когда расстояния между ними будут равны межатомному расстоянию в кристаллической решетке, воз­никнут квантовые процессы взаимодействия электронных оболо­чек атомов. После этого общая энергия системы начнет снижаться до уровня, соответствующего энергии атомов в решетке целого кристалла, и появится «выигрыш» энергии, равный избыточной энергии поверхностных атомов кристаллов до их соединения - энергии активации.

Тепловая энергия, сообщенная поверхностным атомам при по­вышении температуры, увеличивает вероятность развития кванто­вых процессов электронного взаимодействия в соединении.

Стадийность процесса сварки. Результаты исследований и теоретический анализ показывают, что сварку и пайку можно от­нести к классу так называемых топохимических* реакций, которые отличаются двухстадийностью процесса образования прочных связей между атомами соединяемых веществ (рис. 1.3), характер­ной только для микроучастков соединяемых поверхностей.

Топохимические реакции - это химические реакции с участием твердых

На первой стадии (А) развивается фи­зический контакт, т. е. осуществляется сближение соединяемых веществ на рас­стояния, требуемые для межатомного взаимодействия. При этом энергетические уровни связи соответствуют уровням, ха­рактерным для физической адсорбции = 0,04...0,4 кДж/моль). На второй стадии (Б) - стадии химического вза­имодействия (схватывания) - заканчива­ется процесс образования прочного соединения. Схватывание - бездиффузи - онный процесс и в принципе может про­исходить при любых температурах, если возможна микропластическая деформа­ция.

На практике получение монолитных соединений осложняется тем, что свари­ваемые поверхности имеют:

Микронеровности - 10 м даже при тщательной обработке (поэтому при совмещении поверхностей контакт возможен лишь в отдельных точках);

Загрязнения, так как на любой поверхности твердого тела ад­сорбируются атомы внешней среды.

Для монолитного соединения материалов при сварке необхо­димо обеспечить контакт по большей части стыкуемых поверхно­стей и их активацию.

Энергия активации. Активация поверхности заключается в том, что поверхностным атомам твердого тела сообщается некото­рая энергия, необходимая:

Для разрыва старых связей между атомами тела и атомами внешней среды, обусловленных физико-химическим состоянием поверхности;

Для повышения энергии поверхностных атомов до уровня по­тенциального барьера, при котором возможно образование новых химических связей, т. е. схватывание.

В общем случае энергия активации может быть сообщена в форме теплоты (термическая активация), упругопластической де­формации (механическая активация), электронного, ионного и Других видов облучения (радиационная активация).

Наиболее простой способ получения электронов - нагрев твер­дых тел (чаще всего металлов), которые при этом начинают испус­кать термоэлектроны. Для сообщения электронам необходимой энергии и формирования из них потока частиц, несущих опреде­ленную энергию, могут использоваться различные методы. Самый простой из них и наиболее распространенный - ускорение элек­тронов с помощью электрического поля, создаваемого в электрон­ной пушке между катодом и анодом, в котором на электрон дейст­вует сила

где е = 1,6* 10 Кл - заряд электрона; Е - напряженность элек­трического поля, В/м.

При движении электрона в электрическом поле между точками с разностью потенциалов U он приобретает энергию

Это приращение энергии электрона происходит вследствие его ускорения полем - увеличения его кинетической энергии, т. е.

где те - масса электрона, кг; v, г0 - конечная и начальная скоро­сти электрона, м/с. Принимая Vq = 0, получим

т. е. энергия электрона зависит от его массы и скорости. В реаль­ных условиях, когда масса электрона постоянна, единственный путь увеличения его энергии - повышение скорости его движения, что и реализуется в электронной пушке.

Из формулы (3.4) можно получить выражение для скорости движения электрона при прохождении между точками с разностью потенциалов U:

где п - концентрация газа на пути движения электронов; г - газо­кинетический радиус взаимодействия молекул газа.

Значения средней длины свободного пробега электрона в воз­духе (при 300 К) для разных значений давленияр приведены ниже:

р, Па................................ 1,01 105 133 1,33 1,3 ■ 10-2

Л, мм................................ 3,5 10^ 2,6- 10~‘ 26,6 2660

Таким образом, исходя из конструктивных особенностей уста­новок, максимально допустимым давлением в камере для элек-

условиях давление стараются довести до 5 10 или 5-Ю Па, так как при ухудшении вакуума в электронной пушке резко увеличи­вается число ионизированных электронами ионов остаточных га­зов и это может привести к пробою промежутка между анодом и катодом электронной пушки. При повышении давления в камере До 1...10 Па рассеяние электронного пучка становится существен­ным в пространстве его дрейфа и это ограничивает возможную Длину пучка.

Очевидно, что выводить электронный пучок из вакуума в об­ласть с более высоким давлением имеет смысл только в том слу­чае, если длина свободного пробега электронов в этой области предельно мала. Такие электронные пушки с выводом электронно­го пучка в атмосферу иногда применяют для сварки. При этом электронная пушка перемещается непосредственно по сваривае­мому изделию, ход пучка в атмосфере составляет не более 10 мм. Применяемое ускоряющее напряжение составляет 150...200 кВ, а в зону между пушкой и свариваемой поверхностью подают защит­ный газ (гелий или аргон).

При падении электронного пучка на обрабатываемую поверх­ность кинетическая энергия электронов в результате их взаимо­действия с атомами вещества обрабатываемой поверхности пре­вращается в другие виды энергии.

Максимальное значение плотности мощности qim электронно­го пучка в зоне его воздействия на вещество может достигать 7 8 2

10 ...10 Вт/см, что позволяет проводить размерную обработку материалов путем их локального испарения в месте воздействия пучка на изделие. По мере уменьшения qim (это сравнительно просто можно осуществить расфокусировкой пучка) возможно проведение термических процессов (плавки, сварки, нагрева в ва­кууме), а также нетермических процессов - стерилизации, поли­меризации и т. п.

Достигая обрабатываемой поверхности, электроны пучка внед­ряются в вещество, испытывая торможение и проходя при этом некоторый путь. Длина этого пути, изученная Шонландом, опре­деляется по формуле

где 8 - глубина проникания электрона в вещество, см; U - ускоряющее напряжение, В; р - плотность вещества, г/см.

Реальная глубина проникания электрона в вещество в соответ­ствии с формулой (3.9) обычно не превышает нескольких десятков микрометров, но ею нельзя пренебрегать при учете взаимодейст­вия электронов с веществом, особенно при больших значениях плотности мощности в электронном пучке. Проходя сквозь веще­ство, электроны взаимодействуют с кристаллической структурой или отдельными частицами вещества. При этом вследствие обмена энергией увеличивается амплитуда колебаний составляющих ве­щество частиц, изменяются параметры его кристаллической ре­шетки, повышается температура вещества. Достаточно большая энергия, сообщенная электронами атомам, может привести даже к разрыву связей между отдельными атомами.

При торможении электрона в веществе кроме выделения теп­ловой энергии происходит еще ряд различных явлений. Суммар­ное выделение энергии при электронной бомбардировке поверх­ности расходуется на следующие основные процессы:

1) собственно нагрев поверхности, используемый в технологи­ческих целях;

2) тормозное рентгеновское излучение, возникающее при элек­тронной бомбардировке материалов;

3) вторичная электронная эмиссия, отражение электронов и термоэлектронная эмиссия с обрабатываемой поверхности;

4) побочные явления, сопровождающиеся потерями энергии.

Следует отметить, что электронный пучок имеет максималь­ный коэффициент поглощения энергии в обрабатываемом вещест­ве, достигающий 80...95 % полной мощности источника и являет­ся одним из самых эффективных источников энергии для сварки.

Нагрев обрабатываемого материала электронным пучком осу­ществляется в результате выделения тепловой энергии в поверх­ностных слоях вещества и дальнейшей передачи теплоты в его внутренние слои. Высокая интенсивность ввода энергии в вещест­во при электронно-лучевой обработке приводит к развитию значи­тельных поверхностных температур, уровень которых может пре­вышать точку кипения даже самых тугоплавких материалов.

Электронные пучки представляют собой поток быстро летящих электронов. Электронные пучки образуются в электронной лампе и различных газоразрядных устройствах.

Электронные пучки обладают следующими свойствами:

  1. вызывают свечение некоторых твердых и жидких тел (стекла, сульфидов цинка и кадмия). В настоящее время применяются люминофоры, у которых до 25 % энергии электронного пучка превращается в световую:
  2. при торможении быстрых электронных пучков в веществе возникает рентгеновское излучение. Это используется в рентгеновских трубках;
  3. электронные пучки отклоняются в электрических полях, например, в поле плоского конденсатора происходит смещение электронного пучка к положительно заряженной пластине;
  4. электронные пучки отклоняются в магнитных полях вследствие действия на электроны силы Лоренца. Пролетая над северным полюсом магнита, электроны отклоняются в одну сторону, а пролетая над южным полюсом - в противоположную сторону. Отклонение электронных потоков, идущих от Солнца, в магнитном поле Земли приводит к тому, что они огибают поверхность Земли и лишь в полярных областях небольшая часть этих частиц вторгается в верхние слои атмосферы и вызывает свечение газов атмосферы у полюсов (северное сияние);
  5. при попадании на вещество электронные пучки нагревают его и оказывают механическое действие. Нагревание, которое вызывает электронный пучок, попадая на какое-либо тело, используют для плавки сверхчистых металлов в вакууме;
  6. электронный пучок при попадании на фотопленку вызывает ее потемнение.

Благодаря возможности управлять электронным пучком с помощью электрического или магнитного поля и свечению покрытого люминофором экрана под действием пучка его применяют в электронно-лучевой трубке.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 298.

Контуры обратной связи для случаев ЛБВ с внешней обратной связью (а и ЛОВ с внутренней обратной связью (б.  

Электронный пучок должен отдавать полю определенный минимум энергии, выше уровня собственных потерь данной системы. Отсюда в любой конкретной системе возникает необходимость обеспечить определенную, как говорят, пусковую величину электронного тока.  

Схематическое изображение многолучевой электронной пушки с цилиндрической системой электродов..| Схематическое изображение многолучевой электронной - пушки с малой эмиттирую-щей площадью катода.  

Электронный пучок после прохождения точки фокусировки расходится под большим углом. Электронная линза с большой апертурой отклоняет электронные пучки так, чтобы они падали на плоскость растровой линзы перпендикулярно. Каждая микролинза в растровой линзе формирует свой электронный луч. Если считать, что плотность тока в основном электронном луче распределена по закону Гаусса, то.  

Электронный пучок, разряжая по очереди все элементарные емкости, создает в цепи сигнальной пластинки импульсы тока - видеосигнал.  

Электронный пучок, состоящий по длине из отдельных групп электронов - электронных сгустков, можно рассматривать как ток, содержащий высшие гармонические составляющие. Такой электронный пучок называется сгруппированным или промодулированным.  

Электронный пучок характеризуется геометрической формой сечения. В подавляющем большинстве случаев пучки имеют сечение в виде круга и называются цилиндрическими. Для значительного увеличения тока пучка могут применяться трубчатые пучки с сечением в виде кольца, а также ленточные пучки, у которых сечение представляет собой прямоугольник.  


Электронный пучок применяется для сварки металлов, сварки металла с керамикой и др. Отличительной особенностью сварного шва при сварке двух металлов является большая глубина шва при малой его ширине (так называемый кинжальный шов) и высокая однородность шва. Требующиеся диаметры пучка разнообразны и лежат в пределах от 0 01 до 5 - 10 мм. Так как резко очерченный по диаметру пучок обычно не нужен, то допуски на ширину спектра менее жесткие, чем для процессов обработки пучком.  

Электронный пучок фокусируется положительным объемным зарядом прямого ионного пучка с круглым сечением.  


Электронный пучок, ускоряемый от анода к катоду, не будет распространяться в область за анодом, если его ток больше, предельного; накопление пространств, заряда электронов за анодом, запирающее пучок (виртуальный катод), создает потенц. Глубина ямы достигает значений, больших 1 MB. Ионы могут создаваться за счет ионизации электронами атомов остаточного газа или вводиться специально сформированными струями газа. При образовании ионов происходит частичная нейтрализация электронного заряда, запирающее действие накопленного электронного заряда ослабляется и электронный пучок распространяется дальше за анод.