Где содержатся хлоропласты в отличие от митохондрий. Строение и функции митохондрий и пластид

Жизнь как биологический процесс едина во всей биосфере, и она существует на основании фундаментальных принципов. А потому разные формы жизни, а также различные структурные компоненты представителей биологических видов, имеют значительные сходства. Отчасти они обеспечиваются общностью происхождения или выполнением похожих функций. В данном контексте следует детально разобрать, в чем проявляется сходство митохондрий и хлоропластов, хотя с первого взгляда эти клеточные органеллы имеют мало общего.

Митохондрии

Митохондриями называются двухмембранные клеточные структуры, ответственные за энергообеспечение ядра и органелл. Их находят в растений, грибов и животных. Они отвечают за то есть конечное усваивание кислорода, из чего в результате биохимического превращения извлекается энергия для синтеза макроэргов. Достигается это путем передачи заряда через мембрану митохондрий и ферментативное окисление глюкозы.

Хлоропласты

Хлоропластами называются клеточные органеллы растений, некоторых фотосинтезирующих бактерий и протистов. Это клеточные двухмембранные структуры, в которых синтезируется глюкоза благодаря использованию энергии солнечного света. Этот процесс достигается передачей энергии фотона и протеканием ферментативных реакций, связанных с передачей заряда через мембрану. Результатом фотосинтеза является утилизация углекислого газа, синтез глюкозы и высвобождение молекулярного кислорода.

Сходство митохондрий и хлоропластов

Хлоропласты и митохондрии являются клеточными органеллами с двумя мембранами. Первым слоем они ограждаются от цитоплазмы клетки, а второй формирует многочисленные складки, на которых протекают процессы передачи зарядов. Принцип их работы схож, однако направлен в разные стороны. У митохондрий происходит ферментативное с использованием кислорода, а в качестве продуктов реакции выступает углекислый газ. В результате превращения также синтезируется энергия.

В хлоропластах наблюдается обратный процесс — синтез глюкозы и высвобождение кислорода из углекислого газа с расходом энергии света. Это принципиальное различие между данными органеллами, но отличается лишь направление процесса. Его электрохимия практически идентична, хотя для этого используются разные посредники.

Также можно детально рассмотреть, в чем проявляется сходство митохондрий и хлоропластов. Оно заключается в автономности органелл, так как они имеют даже свою молекулу ДНК, хранящую коды структурных белков и ферментов. В обеих органеллах имеется свой автономный аппарат биосинтеза белка, потому хлоропласты и митохондрии способны самостоятельно обеспечивать себя необходимыми ферментами и восстанавливать свою структуру.

Резюме

Главное сходство митохондрий и хлоропластов — их автономия внутри клетки. Отделившись от цитоплазмы двойной мембраной и имея свой собственный комплекс ферментов биосинтеза, они ни в чем не зависят от клетки. Также они имеют свой собственный набор генов, а потому могут считаться отдельным живым организмом. Существует филогенетическая теория, что на ранних этапах развития одноклеточной жизни митохондрии и хлоропласты были простейшими прокариотами.

Она гласит, что в определенный период произошло их поглощение другой клеткой. Из-за наличия отдельной мембраны они не были расщеплены, став донором энергии для «хозяина». В ходе эволюции за счет обмена генами у доядерных организмов произошло встраивание ДНК хлоропластов и митохондрий в геном клетки-хозяина. С этого момента клетка сама была способна осуществить сборку этих органелл, если они не были переданы ей в ходе митоза.

Митохондрии есть у всех типов эукариотных клеток (рис. 1). Они имеют вид либо округлых телец, либо палочек, реже - нитей. Их размеры колеблются от 1 до 7 мкм. Число митохондрий в клетке составляет от нескольких сотен до десятков тысяч (у крупных простейших).

Рис . 1. Митохондрии. Вверху - митохондрии (?) в мочевых канальцах, видимые в световом микроскопе. Внизу - трехмерная модель организации митохондрии: 1 - кристы; 2 - внешняя мембрана; 3 - внутренняя мембрана; 4 - матрикс

Митохондрия образована двумя мембранами - внешней и внутренней , между которыми расположено межмембранное пространство . Внутренняя мембрана образует множество впячиваний - крист, представляющих собой либо пластины, либо трубочки. Такая ее организация обеспечивает огромную площадь внутренней мембраны. На ней располагаются ферменты, обеспечивающие преобразование энергии, заключенной в органических веществах (углеводах, липидах), в энергию АТФ, необходимую для жизнедеятельности клетки. Следовательно, функция митохондрий - участие в энергетических клеточных процессах. Именно поэтому большое количество митохондрий присуще, например, мышечным клеткам, выполняющим большую работу.

Пластиды . В растительных клетках обнаруживаются особые органоиды - пластиды, имеющие чаще веретеновидную или округлую форму, иногда более сложную. Различают три вида пластид - хлоропласты (рис. 2), хромопласты и лейкопласты.

Хлоропласты отличаются зеленым цветом, который обусловлен пигментом - хлорофиллом , обеспечивающим процесс фотосинтеза , т. е. синтеза органических веществ из воды (Н 2 О) и углекислого газа (СО 2) с использованием энергии солнечного света. Хлоропласты содержатся преимущественно в клетках листьев (у высших растений). Они сформированы двумя параллельно расположенными друг другу мембранами, окружающими содержимое хлоропластов - строму . Внутренняя мембрана образует многочисленные уплощенные мешочки - тилакоиды , которые сложены в стопки (наподобие стопки монет) - граны - и лежат в строме. Именно в тила-коидах и содержится хлорофилл.

Хромопласты определяют желтый, оранжевый и красный цвет многих цветков и плодов, в клетках которых присутствуют в большом количестве. Основными пигментами в их составе являются каротины . Функциональное назначение хромопластов состоит в цветовом привлечении животных, обеспечивающих опыление цветков и распространение семян.

Рис. 2. Пластиды: а - хлоропласты в клетках листа элодеи, видимые в световом микроскопе; б - схема внутреннего строения хлоропласта с гранами, представляющими собой стопки плоских мешочков, расположенных перпендикулярно поверхности хлоропласта; в - более подробная схема, на которой видны анастомозирующие трубочки, соединяющие отдельные камеры гран

Лейкопласты - это бесцветные пластиды, содержащиеся в клетках подземных частей растений (например, в клубнях картофеля), семян и сердцевины стеблей. В лейкопластах, главным образом, происходит образование из глюкозы крахмала и накапливание его в запасающих органах растений.

Пластиды одного вида могут превращаться в другой. Например, при осеннем изменении цвета листьев хлоропласты превращаются в хромопласты.

1. Распределите органоиды на три группы: одномембранные, двумембранные и немембранные.

Рибосомы, лизосомы, пластиды, комплекс Гольджи, вакуоли, клеточный центр, митохондрии, эндоплазматическая сеть.

Одномембранные: лизосомы, комплекс Гольджи, вакуоли, эндоплазматическая сеть.

Двумембранные: пластиды, митохондрии.

Немембранные: рибосомы, клеточный центр.

2. Как устроены митохондрии? Какую функцию они выполняют?

Митохондрии могут иметь вид округлых телец, палочек, нитей. Это двумембранные органоиды. Наружная мембрана гладкая, она отделяет содержимое митохондрии от гиалоплазмы и отличается высокой проницаемостью для различных веществ. Внутренняя мембрана менее проницаема, она образует кристы – многочисленные складки, направленные внутрь митохондрий. За счёт крист площадь поверхности внутренней мембраны существенно увеличивается. Внутренняя мембрана митохондрий содержит ферменты, участвующие в процессе клеточного дыхания и обеспечивающие синтез АТФ. Между наружной и внутренней мембранами имеется межмембранное пространство.

Внутреннее пространство митохондрий заполнено гелеобразным матриксом. В нём содержатся различные белки, в том числе ферменты, аминокислоты, кольцевые молекулы ДНК, все типы РНК и другие вещества, а также рибосомы.

Функция митохондрий – синтез АТФ за счёт энергии, высвобождающейся в процессе клеточного дыхания при окислении органических соединений. Начальные этапы окисления веществ в митохондриях происходят в матриксе, а последующие – на внутренней мембране. Таким образом, митохондрии являются «энергетическими станциями» клетки.

3. Какие типы пластид вам известны? Чем они различаются? Почему осенью листья меняют окраску с зелёной на жёлтую, красную, оранжевую?

Основные типы пластид – хлоропласты, лейкопласты и хромопласты.

Хлоропласты имеют зелёную окраску т.к. содержат основные фотосинтетические пигменты – хлорофиллы. Также в хлоропластах содержатся оранжевые, жёлтые или красные каротиноиды. Обычно хлоропласты имеют форму двояковыпуклой линзы. Хорошо развита внутренняя мембранная система, тилакоиды собраны в стопки – граны. Главная функция хлоропластов – осуществление фотосинтеза.

Лейкопласты – бесцветные пластиды. Они не имеют гран и не содержат пигментов. В лейкопластах откладываются запасные питательные вещества – крахмал, белки, жиры.

Хромопласты имеют оранжевый, жёлтый или красный цвет, что связано с содержанием в них каротиноидов. Форма хромопластов разнообразная – дисковидная, серповидная, ромбическая, пирамидальная и т.п. В этих пластидах отсутствует внутренняя мембранная система. Хромопласты обусловливают яркую окраску зрелых плодов (например, томатов, рябины, шиповника) и некоторых других органов растений (например, корнеплодов моркови).

При старении листьев растений в хлоропластах происходит разрушение хлорофилла, внутренней мембранной системы, и они превращаются в хромопласты. Поэтому осенью листья меняют окраску с зелёной на жёлтую, красную, оранжевую.

4. Охарактеризуйте строение и функции хлоропластов.

Хлоропласты – зелёные пластиды, их цвет обусловлен наличием основных фотосинтетических пигментов – хлорофиллов. Хлоропласты содержат также вспомогательные пигменты – оранжевые, жёлтые или красные каротиноиды.

Чаще всего хлоропласты имеют форму двояковыпуклой линзы. Это двумембранные органоиды, между наружной и внутренней мембранами есть межмембранное пространство. Наружная мембрана ровная, а внутренняя образует впячивания, которые превращаются в замкнутые дисковидные образования – тилакоиды. Стопки лежащих друг над другом тилакоидов называются гранами.

В мембранах тилакоидов расположены фотосинтетические пигменты, а также ферменты, которые участвуют в преобразовании энергии света. Внутренняя среда хлоропласта – строма. В ней содержатся кольцевые молекулы ДНК, все типы РНК, рибосомы, запасные вещества (липиды, зёрна крахмала) и различные белки, в том числе ферменты, участвующие в фиксации углекислого газа.

Основная функция хлоропластов – осуществление фотосинтеза. Кроме того, в них происходит синтез АТФ, некоторых липидов и белков.

5. Клетки летательных мышц насекомых содержат по нескольку тысяч митохондрий. С чем это связано?

Главная функция митохондрий – синтез АТФ, т.е. митохондрии являются "энергетическими станциями" клетки. Для работы летательных мышц необходимо большое количество энергии, поэтому каждая клетка содержит несколько тысяч митохондрий.

6. Сравните хлоропласты и митохондрии. Выявите черты их сходства и различия.

Сходство:

● Двумембранные органоиды. Наружная мембрана ровная, а внутренняя образует многочисленные впячивания, служащие для увеличения площади поверхности. Между мембранами имеется межмембранное пространство.

● Имеют собственные кольцевые молекулы ДНК, все типы РНК и рибосомы.

● Способны к росту и размножению путём деления.

● В них осуществляется синтез АТФ.

Различия:

● Впячивания внутренней мембраны митохондрий (кристы) имеют вид складок или гребней, а впячивания внутренней мембраны хлоропластов образуют замкнутые дисковидные структуры (тилакоиды), собранные в стопки (граны).

● Митохондрии содержат ферменты, участвующие в процессе клеточного дыхания. Внутренняя мембрана хлоропластов содержит фотосинтетические пигменты и ферменты, участвующие в преобразовании энергии света.

● Основная функция митохондрий – синтез АТФ. Основная функция хлоропластов – осуществление фотосинтеза.

И (или) другие существенные признаки.

7. Докажите на конкретных примерах справедливость утверждения: «Клетка представляет собой целостную систему, все компоненты которой находятся в тесной взаимосвязи друг с другом».

Структурные компоненты клетки (ядро, поверхностный аппарат, гиалоплазма, цитоскелет, органоиды) относительно обособлены друг от друга, и каждый из них выполняет специфические функции. Тем не менее, все клеточные компоненты тесно взаимосвязаны, и клетка представляет собой единое целое.

Наследственная информация клетки хранится в ядре, а реализуется на рибосомах в виде конкретных белков. Структурные компоненты рибосом (субъединицы) формируются в ядре. Некоторые рибосомы находятся в свободном состоянии в гиалоплазме, другие же прикрепляются к мембранам ЭПС и ядра. Вещества, синтезированные на мембранах ЭПС, поступают для хранения и модификации в комплекс Гольджи. От цистерн комплекса Гольджи отшнуровываются экзоцитозные пузырьки и лизосомы. Из пузыревидных расширений ЭПС и пузырьков комплекса Гольджи формируются вакуоли. Цитоплазматическая мембрана участвует в отборе веществ, необходимых клетке. Некоторые из них могут быть использованы только после предварительного расщепления с помощью лизосом. Часть полученных веществ служит источником энергии для клетки, подвергаясь расщеплению в гиалоплазме, а затем – в митохондриях. Другие вещества используются в качестве материала для синтеза более сложных соединений. Эти процессы протекают в различных частях клетки – в гиалоплазме, ЭПС, комплексе Гольджи, на рибосомах, а энергию, необходимую для всех процессов биосинтеза, поставляют митохондрии (в виде АТФ). Внутриклеточный транспорт частиц и органоидов обеспечивают микротрубочки, сборку которых инициирует клеточный центр. Гиалоплазма объединяет все внутриклеточные структуры, обеспечивая их различные взаимодействия.

И (или) другие примеры, иллюстрирующие взаимосвязь структурных компонентов клетки.

8. В чём заключается относительная автономность митохондрий и хлоропластов в клетке? Чем она обусловлена?

Относительная автономность митохондрий и хлоропластов обусловлена наличием собственного генетического аппарата (молекул ДНК) и системы биосинтеза белка (рибосом и всех типов РНК). Поэтому митохондрии и хлоропласты самостоятельно синтезируют ряд белков (в том числе ферментов), необходимых для их функционирования. В отличие от других органоидов, митохондрии и хлоропласты способны к размножению путём деления. Однако эти органоиды не являются полностью автономными, т.к. в целом их состояние и функционирование контролируется ядром клетки.

9. В чём проявляется взаимосвязь и взаимозависимость митохондрий и рибосом?

С одной стороны, на рибосомах происходит синтез белков из аминокислот, а энергию, необходимую для осуществления этого процесса, поставляют митохондрии в виде АТФ. Кроме того, митохондрии имеют собственные рибосомы, их рРНК кодируется митохондриальной ДНК и сборка субъединиц осуществляется непосредственно в матриксе митохондрий. С другой стороны, все белки, входящие в состав митохондрий и необходимые для функционирования этих органоидов, синтезируются на рибосомах.

1. Распределите органоиды на три группы: одномембранные, двумембранные и немембранные.

Одномембранные: лизосомы, комплекс Гольджи, вакуоли, ЭПС. Двумембранные: пластиды, митохондрии. Немембранные: рибосомы, клеточный центр.

2. Как устроены митохондрии? Какую функцию они выполняют?

Митохондрии - органоиды, участвующие в процессе клеточного дыхания и обеспечивающие клетку энергией в виде АТФ. Митохондрии могут иметь вид округлых телец, палочек, нитей. Они образованы двумя мембранами - наружной и внутренней, между которыми имеется межмембранное пространство. Наружная мембрана гладкая, она отделяет содержимое митохондрии от гиалоплазмы и отличается высокой проницаемостью для различных веществ. Внутренняя мембрана менее проницаема, она образует кристы - многочисленные складки, направленные внутрь митохондрий. За счет крист площадь поверхности внутренней мембраны существенно увеличивается. Внутренняя мембрана митохондрий содержит ферменты, участвующие в процессе клеточного дыхания и обеспечивающие синтез АТФ. Внутреннее пространство митохондрий заполнено гелеобразным матриксом. В нем содержатся различные белки, в том числе ферменты, аминокислоты, кольцевые моле кулы ДНК, все типы РНК и другие вещества, а также рибосомы. Функция митохондрий - синтез АТФ за счет энергии, высвобождающейся при окислении органических соединений.

3. Какие типы пластид вам известны? Чем они различаются? Почему осенью листья меняют окраску с зеленой на желтую, красную, оранжевую?

Пластиды - органоиды клеток растений и водорослей. У растений различают три основных типа пластид: хлоропласты (зеленые), хромопласты (красный, желтый) и лейкопласты (бесцветные). Пластиды одного типа могут превращаться в пластиды другого. Под действием низкой температуры (осень) в хлоропластах разрушается хлорофилл и внутренняя мембранная система, и они превращаются в хромопласты и приобретают желтую и красную окраску.

4. Охарактеризуйте строение и функции хлоропластов.

Хлоропласты - органоиды, осуществляющие процесс фотосинтеза. Зеленый цвет хлоропластов обусловлен присутствием в них основных фотосинтетических пигментов - хлорофиллов. Чаще всего хлоропласты имеют форму двояковыпуклой линзы. Для хлоропластов характерно двумембранное строение. Между наружной и внутренней мембранами находится межмембранное пространство. Внутренняя мембрана в ходе развития хлоропласта образует впячивания, которые превращаются в замкнутые дисковидные образования - тилакоиды. Стопки лежащих друг над другом тилакоидов называются гранами. В мембранах тилакоидов расположены фотосинтетические пигменты, поглощающие свет, а также ферменты, которые участвуют в преобразовании энергии света. Внутренняя среда хлоропласта - строма. В ней содержатся кольцевые молекулы ДНК, все типы РНК, рибосомы, запасные вещества (липиды, зерна крахмала) и различные белки, в том числе ферменты, участвующие в фиксации CО Основная функция хлоропластов - осуществление фотосинтеза. Кроме того, в них происходит синтез АТФ, некоторых липидов и белков.

5. Клетки летательных мышц насекомых содержат по нескольку тысяч митохондрий. С чем это связано?

Особенно много митохондрий содержится в тех клетках, которые нуждаются в большом количестве энергии. Клетки летательных мышц относятся к таковым, так как насекомые совершают большое количество взмахов в секунду.

6. Сравните хлоропласты и митохондрии. Выявите черты их сходства и различия.

Сходство: митохондрии и хлоропласты относятся к двумембранным органоидам, внутренняя мембрана имеет выросты. Различия: они выполняют различную функцию, в митохондриях выросты внутренней мембраны не образуют тилакоиды и граны.

7. Докажите на конкретных примерах справедливость утверждения: «Клетка представляет собой целостную систему, все компоненты которой находятся в тесной взаимосвязи друг с другом».

Митохондрии являются «энергетическими станциями» клетки, в которых происходит синтез АТФ. Полученная энергия используется клеткой в процессах жизнедеятельности, например, процессе синтеза белка, который затем идет на построение различных органоидов клетки, в том числе и митохондрий.

8. В чем заключается относительная автономность митохондрий и хлоропластов в клетке? Чем она обусловлена?

Так во внутреннем пространстве митохондрий и хлоропластов содержатся различные белки, в том числе ферменты, аминокислоты, кольцевые моле кулы ДНК, все типы РНК и другие вещества. Наличие собственных молекул ДНК обеспечивает некоторую автономность, хотя в целом их работа координируется ядром клетки.

9. В чем проявляется взаимосвязь и взаимозависимость митохондрий и рибосом?

Функция митохондрий - синтез АТФ за счет энергии, высвобождающейся при окислении органических соединений. Данная энергия идет на синтез белка в рибосомах.

На вопрос Помогите!!! В чем проявляется сходство? заданный автором Пользователь удален лучший ответ это В целом организмы можно разделить на две группы: на организмы, клетки которых содержат настоящие клеточные ядра, и организмы, которые этим свойством не обладают. Первые называются эукариотами, вторые - прокариотами. К прокариотам относятся бактерии и сине-зеленые водоросли. Эукариоты объединяют все остальные одно- и многоклеточные живые существа. В противоположность прокариотам, кроме обладания клеточными ядрами, эти существа отличаются выраженной способностью к образованию органоидов. Органоиды - это разделенные мембранами составные части клеток. Так, самыми большими клеточными органоидами (по крайней мере, различимыми в световой микроскоп) , которыми обладают эукариоты, являются митохондрии, а растительные организмы обладают еще и пластидами. Митохондрии и пластиды большей частью отделены от цитоплазмы клетки двумя мембранами. (Некоторые подробности строения см. на рис. 6.13). Митохондрии часто называют "силовыми станциями" эукариотических клеток, так как они играют
большую роль в образовании и превращении энергии в клетке. Пластиды для растений не менее важны: хлоропласта, которые являют собой основной тип пластид, заключают в себе механизм фотосинтеза, который осуществляет превращение солнечного света в химическую энергию.
Так как прокариоты устроены значительно проще, чем эукариоты, то по канонам эволюционной модели считается, что прокариотические живые существа возникли раньше. Этим объясняется употребление приставки "про" (в смысле "до того"). Более нейтральным названием было бы, вероятно, "акариоты" ("а" = "не"). В ходе дальнейшей эволюции одноклеточные живые существа должны были, вероятно, когда-то совершить переход от про- к эукариотам. Один из важных частичных аспектов этого шага пытаются объяснить так называемой эндосимбиотической гипотезой (ЭСТ). В своем первоначальном виде она была выдвинута еще в 1883 году шимпером. Она являлась не единственной попыткой объяснения, но считалась на тот момент наиболее вероятной. Согласно этой теории, митохондрии происходят от аэробных (дышащих кислородом) бактерий, а хлоропласты - от фотосинтезирующих сине-зеленых водорослей, которые внедрились в "хозяйскую клетку" (в предка-прокариота) и в ходе эволюции превратились там из симбионтов (эндосимбионтов, точнее цитосимбионтов = клеточных симбионтов) в клеточные органоиды. Некоторые биологи предполагают (см. рис. 6.14), что жгутиково-центриольная система эукариотов произошла от ранее самостоятельных прокариотов (типа спирохет). Следующие факты рассматриваются в качестве наиболее важных для поддержки ЭСГ:
Митохондрии и пластиды происходят путем деления им подобных. Клетка не может образовать вновь эти органы, если они утеряны.
Обладание двойной мембраной создает впечатление, что речь идет о "внедренной клетке", чья мембрана при внедрении оказалась окруженной мембраной клетки-хозяина.
Внутренняя мембрана митохондрии содержит липид кардиолипин, который, кроме этого, встречается только в мембранах прокариотов. Внешняя мембрана, напротив, как другие мембраны эуцитов (так называются клетки эукариотов) , содержит холестерин, которого нет ни во внутренних мембранах, ни у бактерий.
Митохондрии и пластиды содержат ДНК, которые, как и у прокариотов, "голые", что означает "не соединенные с протеинами", и часто имеют кольцеобразную форму. Они обладают также своим собственным механизмом синтеза протеинов, составные части которого (рибосомы, т-РНК и РНК-полимеразы) соответствуют составным частям прокариотов.
Рибосомная РНК пластид или, соответственно, митохондрий имеет большое сходство с РНК прокариотических рибосом.
Митохондрии реагируют на некоторые (не на все) направленные против бактерий антибиотики.
Среди существующих ныне организмов встречаются случаи симбиоза между одноклеточными жгутиковыми, не имеющими пластид, и клетками водорослей, которые могли бы служить моделью определенной ступени филогенетического процесса эндосимбиоза.
Амеба Pelomyxa palustris не имеет ми