Горение. Механизм реакции горения

Дата публикации 10.02.2013 20:58

Горением называется реакция окисления, протекающая с высокой скоростью, которая сопровождается выделением тепла в большом количестве и, как правило, ярким свечением, которое мы называем пламенем. Процесс горения изучает физическая химия, в которой к горению принято относить все экзотермические процессы, имеющие самоускоряющуюся реакцию. Такое самоускорение может происходить из-за повышения температуры (т. е. иметь тепловой механизм) или накопления активных частиц (иметь диффузионную природу).

Реакция горения имеет наглядную особенность - наличие высокотемпературной области (пламени), ограниченной пространственно, где и происходит большая часть преобразования исходных веществ (топлива) в продукты сгорания. Данный процесс сопровождается выбросом большого количества тепловой энергии. Для начала реакции (появления пламени) требуется затратить некоторое количество энергии на поджигание, затем процесс идет самопроизвольно. Его скорость зависит от химических свойств веществ, участвующих в реакции, а также от газодинамических процессов при сгорании. Реакция горения имеет определенные характеристики, важнейшие из которых - теплотворная способность смеси и та температура (называемая адиабатической), которая теоретически могла бы достигаться при полном сгорании без учета теплопотерь.

По агрегатному состоянию окислителя и горючего процесс сгорания может быть отнесен к одному из трех типов. Реакция горения может быть:

Гомогенной, если горючее и окислитель (предварительно смешанные) находятся в газообразном состоянии,

Гетерогенной, при которой твердое или жидкое горючее вступает во взаимодействие с газообразным окислителем,

Реакцией горения порохов и взрывчатых веществ.

Гомогенное горение является наиболее простым, имеет постоянную скорость, зависящую от состава и молекулярной теплопроводности смеси, температуры и давления.

Гетерогенное горение наиболее распространено как в природе, так и в искусственных условиях. Скорость его зависит от конкретных условий процесса сжигания и от физических характеристик ингредиентов. У жидких горючих на скорость сгорания большое влияние оказывает скорость испарения, у твердых - скорость газификации. Например, при сгорании угля процесс образует две стадии. На первой из них (в случае сравнительно медленного нагрева) выделяются летучие компоненты вещества (угля), на второй догорает коксовый остаток.

Горение газов (например, горение этана) имеет свои особенности. В газовой среде пламя может распространяться на обширное расстояние. Оно может двигаться по газу с дозвуковой скоростью, причем данное свойство присуще не только газовой среде, но и мелкодисперсной смеси жидких и твердых горючих частиц, смешанной с окислителем. Для обеспечения устойчивого горения в таких случаях требуется специальная конструкция устройства топки.

Последствия, которые вызывает реакция горения в газовой среде, бывают двух видов. Первый - это турбулизация газового потока, приводящая к резкому увеличению скорости процесса. Возникающие при этом акустические возмущения потока могут привести к следующей стадии - зарождению ударной волны, ведущей к детонации смеси. Переход горения в стадию детонации зависит не только от собственных свойств газа, но и от размеров системы и параметров распространения.

Сгорание топлива используется в технике и промышленности. Основной задачей при этом является достижение максимальной полноты сгорания (т.е. оптимизация тепловыделения) за заданный промежуток. Используется горение, например, в горном деле - методы разработки различных полезных ископаемых основаны на использовании горючего процесса. Но в определенных природных и геологических условиях явление горения может стать фактором, несущим серьезную опасность. Реальную опасность, например, представляет процесс самовозгорания торфа, приводящий к возникновению эндогенных пожаров.

Горение – это химическая реакция окисления горючего с кислородом, протекающая сравнительно быстро во времени с выделением большого количества теплоты.

В процессе горения продукты сгорания нагреваются до высоких температур.

Общее уравнение горения любого углеводородного газа с кислородом имеет следующий вид:

где m и n – соответственно количество атомов углерода и водорода в молекуле

Q – тепловой эффект реакции окисления.

В таблице 3.1приведены реакции горения основных горючих газов с кислородом.

Реакции горения горючих газов с кислородом

Таблица 3.1

В таблице 3.1приведены реакции окисления наиболее известных горючих газов с кислородом. Однако в реальных условиях окислитель (кислород) подается в зону горения не чистом виде, а в составе воздуха. Известно, что воздух, в основном состоит из двух частей: кислорода и азота. В состав воздуха входит также в незначительном количестве двуокись углерода СО 2 , а также редкие газы. Учитывая их незначительное количество в составе воздуха, то ими пренебрегаем.

Таким образом, если мы примем объем воздуха за 100%, то содержание кислорода составит 21%, а азота 79%. Следовательно, на 1 м 3 кислорода воздуха приходиться 79/21 = 3.76 м 3 азота, или 1 м 3 кислорода содержится в 100/21 = 4.76 м 3 воздуха.

Учитывая выше изложенные соотношения, мы можем записать общее уравнение горения углеводородов с воздухом:

В таблице 3.2 приведены уравнения реакции горения горючих газов с воздухом.

Следует отметить, что приведенные в таблицах 3.1 и 3.2 уравнения являются стехиометрическими, т.е. такое соотношение горючего газа и окислителя (кислорода, воздуха), при котором горючему газу подается теоретически необходимое количество окислителя. Однако в практике сжигания газа в реальных условиях приходится подавать в зону несколько больше окислителя, чем это следует из стехиометрических уравнений. Это связано, главным образом с несовершенством качества перемешивания горючего газа и окислителя.

Уравнения реакций горения горючих газов с воздухом

Таблица 3.2

Отношение действительного расхода окислителя (кислорода или воздуха) к теоретически необходимому называется коэффициентом избытка воздуха и обозначается α , т.е.:

где V д – действительный расход воздуха;

V т – теоретически необходимое количество воздуха.

В таблице 3.3 приведены значения теоретически необходимого количества окислителя (кислорода и воздуха), а также объема продуктов сгорания при сжигании 1 м 3 газа и коэффициенте избытка воздуха равном 1 (a = 1).

Теоретически необходимое количество окислителя и объем продуктов сгорания при сжигании 1м 3 при α = 1


Таблица 3.3

В практических расчетах иногда нам не известен химический состав газов, а известна лишь теплота сгорания. Необходимо определить теоретически необходимое количество воздуха, необходимое для полного сжигания 1 м 3 газа.

Для этого случая имеется эмпирическая формула Д.И. Менделеева:

где Q н – низшая теплота сгорания газа, кДж /м 3 .

Уравнения реакций горения различных газов с кислородом и воздухом отражает лишь соотношение между горючим и окислителем, а не объясняют механизма протекания этих реакций. В реальных условиях процесс горения значительно сложнее.

Разработал современную теорию механизма кинетики реакции горения газов советский ученый, академик Н.Н. Семенов . Согласно его теории в пламени газовоздушной смеси протекают цепные реакции горения газов. В результате чего образуются промежуточные нестойкие продукты в виде свободных атомов радикалов. В соответствии с теорией Н.Н. Семенова реакция горения водорода с кислородом не сводится просто к соединению двух молекул водорода и одной кислорода с образованием двух молекул воды. В ходе взаимодействия этих двух газов сначала происходит образование промежуточных веществ в виде атомов водорода и кислорода, а также происходит образование свободных гидроксильных радикалов ОН.

Для начала процесса горения необходимо каким-то образом активизировать горючую смесь. Иными словами необходимо создать такие условия, при которых реагенты будут обладать большим запасом энергии. Этот запас энергии необходим для реализации процесса горения. Указанный выше запас энергии может быть создан подогревом газовоздушной смеси до температуры ее воспламенения. Эта энергия, называемая энергией активации, необходима главным образом для того, чтобы разрушить имеющиеся межмолекулярные связи в реагентах.

В процессе горения происходит непрерывное образование новых связей наряду с разрушением старых. При образовании новых связей происходит значительное выделение энергии, в то время как разрыв старых связей сопровождается всегда затратами энергии. Благодаря тому, что в процессе горения энергия, которая выделяется при образовании новых связей, имеет большое значение, по сравнению с энергией, затраченной на разрыв старых связей, суммарный тепловой эффект остается положительным.

Реакция водорода с кислородом является наиболее простой и изученной. Поэтому рассмотрим эту разветвленную реакцию на примере.

В соответствии с теорией Н.Н. Семенова в начальный момент реакции, в результате энергии активации и столкновения молекул водорода и кислорода, происходит образование двух гидроксильных радикалов ОН:

. (3.5)

Свободный же атом водорода Н, в свою очередь, вступает в реакцию с молекулой кислорода. В результате чего образуется гидроксильный радикал ОН и свободный атом кислорода т.е.:

. (3.7)

Радикал может опять вступить в химическую реакцию с водородом и опять, в результате реакции, образовать воду и свободный водород, а атом кислорода, в свою очередь, может вступить в реакцию с молекулой водорода, что приведет к образованию еще одного радикала ОН и атома водород Н, т.е.:

. (3.8)

Указанный выше механизм цепной реакции горения водорода с кислородом показывает возможность многократного взаимодействия одного радикала ОН с атомами водорода. В результате этого взаимодействия образуются молекулы воды.

Следовательно, свободные атомы и радикалы являются активными центрами при создании цепной реакции.

Реакцию горения водорода с кислородом, объясняющую механизм цепной реакции, можно записать так:

H 2 O O + (H 2)…

OH + (H 2) ® H +(O 2) ® OH + (H 2)…

O + (H 2) ® OH +(H 2) ® H 2 O

H +(O 2) ® OH +H 2 …

Механизм горения окиси углерода с кислородом отличается большей сложностью. По данным ученых Института Химической физики АН СССР окись углерода не вступает в реакцию с сухим кислородом. Ими было установлено также, что добавление в смесь небольшого количества водорода или влаги приводит к началу реакции окисления. В результате происходит следующая последовательность химических реакций:

H 2 O ® OH + H; (3.10)

OH + CO ® CO 2 + H; (3.11)

H + O 2 ® OH + O; (3.12)

CO + OH ® CO 2 + H; (3.13)

CO + O ® CO 2 ; (3.14)

H + O 2 = OH + O (3.15)

Как следует из приведенных химических реакций, наличие небольшого количества влаги приводит к образованию в зоне горения гидроксилов и свободных атомов. Как было отмечено ранее и гидроксильные радикалы, и свободные атомы являются инициаторами создания и носителями цепной реакции.

Еще более сложный механизм окисления углеводородов. Наряду с некоторым сходством с механизмом горения водорода и окиси углерода, механизм горения углеводородов имеет и ряд существенных отличий. Анализируя продукты сгорания, было установлено, что в них присутствуют альдегиды и главным образом формальдегид (НСНО).

Рассмотрим механизм окисления углеводородов на примере самого простого из них – метана. Механизм окисления метана проходит четыре стадии, на каждой из которых протекают следующие химические реакции:

На первой стадии:

H + O 2 ® OH + O; (3.16)

CH 4 + OH ® CH 3 + H 2 O; (3.17)

CH 4 + O ® CH 2 + H 2 O. (3.18)

На второй стадии:

CH 3 + O 2 ® HCHO + OH; (3.19)

CH 2 + O 2 ® HCHO + O; (3.20)

На третьей стадии:

HCHO + OH ® HCO + H 2 O (3.21)

HCHO + O ®СО + H 2 O; (3.22)

HCO+ O 2 ® CO + O + OH (3.23).

На четвертой стадии:

CO + O ® CO 2 (3.24)

Тема 3. ХИМИЧЕСКИЕ ОСНОВЫ ГОРЕНИЯ.

3.1. Химизм реакций горения.

Как Вы уже уяснили, горением называется быстропротекающая хими-ческая реакция, сопровождающаяся выделением тепла и свечением (пламе-нем). Обычно – это экзотермическая окислительная реакция соединения го-рючего вещества с окислителем – кислородом воздуха.

Горючими веществами могут быть и газы, и жидкости, и твердые те-ла. Это Н 2 , СО, сера, фосфор, металлы, С m H n (углеводороды в виде газов, жидкостей и твердых веществ, т.е. органические вещества. Природными уг-леводородами, например, являются природный газ, нефть, уголь). В принци-пе, горючими могут все вещества, способные к окислению.

Окислителями служат: кислород, озон, галогены (F, Cl, Br, J), закись азота (NO 2), аммиачная селитра (NH 4 NO 3) и др. У металлов окислителями могут быть также СО 2 , Н 2 О, N 2 .

В некоторых случаях горение возникает при реакциях разложения ве-ществ, полученных в эндотермических процессах. Например, при распаде ацетилена:

С 2 Н 2 = 2С + Н 2 .

Экзотермические реакции – это реакции, проходящие с выделением тепла.

Эндотермические реакции – это реакции, проходящие с поглощением тепла.

Например:

2Н 2 +О 2 = 2Н 2 О+Q – экзотермическая реакция,

2Н 2 О+Q=2Н 2 +О 2 – эндотермическая реакция,

где: Q – тепловая энергия.

Таким образом, эндотермические реакции могут протекать только с внесением внешней тепловой энергии, т.е. при нагреве.

В химических реакциях по закону сохранения масс вес веществ до ре-акции равен весу веществ, образованных после реакции. При уравнивании химических уравнений получаются стехиометрические составы.

Например, в реакции

СН 4 + 2О 2 = СО 2 + 2Н 2 О

имеем 1 моль СН 4 + 2 моля О 2 = 1 моль СО 2 + 2 моля Н 2 О.

Количество молей перед формулами веществ называется стехиометри-ческими коэффициентами.

Учитывая понятия «молярный объем», «молярная концентрация», «парциальное давление», получаем, что для полного реагирования метана надо смешать 1 моль СН 4 с 2 молями О 2 , или 1/3= 33,3% СН 4 и 2/3=66,7% О 2 . Такой состав и называется стехиометрическим.

Если рассмотреть горение СН 4 в воздухе, т.е. в смеси 21% О 2 +79% N 2 или О 2 +79/21N 2 или О 2 +3,76N 2 , то реакция запишется так:

СН 4 +2О 2 +2×3,76N 2 =СО 2 +2Н 2 О+2×3,76N 2 .

1 моль СН 4 +2 моля О 2 +7,52 моля N 2 = 10,52 моля смеси О 2 , N 2 и СН 4 .

Тогда стехиометрический состав смеси будет:

(1/10,52)*100%=9,5% СН 4 ; (2/10,52)*100%=19,0% О 2 ;

(7,52/10,52)*100%=71,5% N 2 .

Значит в наиболее горючей смеси вместо 100% (СН 4 +О 2) в реакции с кислородом будет 24% (СН 4 +О 2) в реакции с воздухом, т.е. тепла выделится значительно меньше.

Та же картина получится, если смешивать произвольные, нестехиомет-рические составы.

Например, в реакции 2СН 4 +2О 2 =СО 2 +2Н 2 О+СН 4 1 моль СН 4 не про-реагирует.

В реакции СН 4 +4О 2 =СО 2 +2Н 2 О+2О 2 2 моля О 2 не участвует в реак-ции, а играют роль балласта, требующие на свой нагрев какое-то количество тепла.

Таким образом, если сравнить реакции горения метана в кислороде и воздухе или в избытке СН 4 и О 2 , то ясно, что количество выделяемого тепла в первой реакции будет больше, чем в остальных, так как в них:

Меньше концентраций реагирующих веществ в общей смеси;

Часть тепла уйдет на нагрев балласта: азота, кислорода или метана.

Зададимся вопросами:

Какая же энергия может выделиться при реакции?

Отчего зависит количество теплоты, т.е. тепловой эффект ре-

Сколько нужно добавить тепловой энергии, чтобы протекла

эндотермическая реакция?

Для этого введено понятие теплосодержание вещества.

3.2.Теплосодержание веществ.

Откуда же взялась теплота в реакции горения метана? Значит она была скрыта в молекулах СН 4 и О 2 , а теперь высвободилась.

Приведем пример более простой реакции:

2Н 2 +О 2 =2Н 2 О+Q

Значит энергетический уровень стехиометрической смеси водорода с кислородом был выше, чем у продукта реакции Н 2 О и «лишняя» энергия вы-свободилась из вещества.

При обратной реакции электролиза воды, т.е. разложения воды с помо-щью электрической энергии, происходит перераспределение атомов в моле-куле воды с образованием водорода и кислорода. При этом теплосодержание Н 2 и О 2 повышается.

Таким образом, каждое вещество при его образовании получает или от-даст определенную энергию, и мера тепловой энергии, накапливаемой веще-ством при его образовании, называется теплосодержанием, или энтальпией .

В отличие от химии, в химической термодинамике теплота образования вещества обозначается не символом Q, а символом DН со знаком (+), если теплота поглощается химическим соединением, и со знаком (-), если теплота выделяется при реакции, то есть «уходит» из системы.

Стандартная теплота образования 1 моля вещества при давлении 101,3 кПа и температуре 298 К обозначается .

В справочниках даны теплоты образования соединений из про-стых веществ.

Например:

У СО 2 = - 393,5 кДж/моль

У Н 2 О газ = - 241,8 кДж/моль

Но у веществ, образующихся при эндотермических процессах, напри-мер, ацетилена С 2 Н 2 = +226,8 кДж/моль, при образовании атома водо-рода Н + по реакции Н 2 = Н + + Н + =+217,9 кДж/моль.

Для чистых веществ, состоящих из одного химического элемента в ус-тойчивой форме (Н 2 , О 2 , С, Na и др.) DН условно принята равной нулю.

Однако, если мы обсуждаем макроскопические свойства веществ, то выделяем несколько форм энергии: кинетическую, потенциальную, химиче-скую, электрическую, тепловую, ядерную энергии и механическую работу. А если рассматривать вопрос на молекулярном уровне, то эти формы энергии можно объяснить исходя лишь из двух форм – кинетической энергии движе-ния и потенциальной энергией покоя атомов и молекул.

При химических реакциях изменяются только молекулы. Атомы оста-ются неизменными. Энергия молекулы – это энергия связи ее атомов, нако-пленная в молекуле. Она определяется силами притяжения атомов друг к другу. Кроме того, существует потенциальная энергия притяжения молекул друг к другу. В газах она мала, в жидкостях больше и еще больше в твердых телах.

Каждый атом обладает энергией, часть которой связана с электронами, а часть – с ядром. Электроны обладают кинетической энергией вращения во-круг ядра и потенциальной электрической энергией притяжения друг к другу и отталкивания друг от друга.

Сумма этих форм молекулярной энергии и составляет теплосодержание молекулы.

Если просуммировать теплосодержание 6,02×10 23 молекул вещества, то получим молярное теплосодержание этого вещества.

Почему теплосодержание одноэлементных веществ (молекул одного элемента) взято за ноль, можно пояснить следующим образом.

DН химического элемента, то есть энергия его образования, связана с внутриядерными процессами. Ядерная энергия связана с силами взаимодей-ствия внутриядерных частиц и превращением одного химического элемента в другой при ядерных реакциях. Например, реакция распада урана:

или проще: U+n®Ba+Kr+3n.

где: n o – нейтронная частица с массой 1 и нулевым зарядом.

Уран захватывает нейтрон, в результате чего расщепляется (распадает-ся) на два новых элемента – барий и криптон – с образованием 3 х нейтронов, и выделяется ядерная энергия.

Следует сказать, что с ядерными реакциями связаны в миллионы раз большие изменения энергии, чем при химических реакциях. Так, энергия распада урана составляет 4,5×10 9 ккал/моль×урана. Это в 10 млн. раз больше, чем при сгорании одного моля угля.

В химических реакциях атомы не изменяются, а изменяются молекулы. Поэтому энергия образования атомов химиками не учитывается, и DН одно-элементных газовых молекул и атомов чистых веществ принята равной нулю.

Приведенная реакция распада урана – это классический пример цепной реакции. Теорию цепного механизма реакции горения мы будем рассматри-вать позднее. А вот откуда берется нейтрон и что заставляет его реагировать с ураном – это связано с так называемой энергией активации, которую рас-смотрим чуть позднее.

3.3. Тепловой эффект реакции.

То, что в каждом индивидуальном веществе заключено определенное количество энергии, служит объяснением тепловых эффектов химических реакций.

По закону Гесса: Тепловой эффект химической реакции зависит только от природы начальных и конечных продуктов и не зависит от числа проме-жуточных реакций перехода от одного состояния к другому.

Следствие 1 этого закона: Тепловой эффект химической реакции равен разности между суммой теплот образования конечных продуктов и суммой теплот образования исходных веществ с учетом коэффициентов при форму-лах этих веществ в уравнении реакции.

Например, в реакции 2Н 2 +О 2 =2Н 2 О±DН.

; ; .

В итоге общее уравнение реакции будет выглядеть так:

2Н 2 +О 2 =2Н 2 О – 582 кДж/моль.

И если DН со знаком (-), то реакция экзотермическая.

Следствие 2 . По закону Лавуазье-Лапласа тепловой эффект разложе-ния химического соединения равен и противоположен по знаку тепловому эффекту его образования.

Тогда реакция разложения воды будет:

2Н 2 О=2Н 2 +О 2 +582 кДж/моль, т.е. эта реакция эндотермическая.

Пример более сложной реакции:

СН 4 +2О 2 =СО 2 +2Н 2 О.

Тогда реакция запишется так:

СН 4 + 2О 2 = СО 2 + 2Н 2 О – 742,3 кДж/моль, значит реакция экзотермиче-ская.

3.4. Кинетические основы газовых реакций.

По закону действующих масс скорость реакции при постоянной темпе-ратуре пропорциональна концентрации реагирующих веществ или, как гово-рят, «действующих масс».

Скоростью химической реакции (υ ) принято считать количество веще-ства, реагирующего в единицу времени (d t ) в единице объема (dV ).

Рассмотрим реакцию, протекающую по уравнению:

А + В = С + Д.

Поскольку скорость реакции характеризует уменьшение во времени концентрации реагирующих веществ и увеличение концентрации продуктов реакции, то можно записать:

, (3.1)

где минусы при производных говорят о направлении изменения концентра-ции компонентов, а в квадратных скобках указаны концентрации компонен-тов.

Тогда прямая необратимая реакция при Т = const протекает со скоро-стью:

, (3.2)

где: k – константа скорости химической реакции. Она не зависит от концентрации компонентов, а изменяется только с температурой.

По закону действующих масс концентрации компонентов реакции вхо-дят в кинетическое уравнение в степени, равной стехиометрическому коэф-фициенту этого компонента.

Так, для реакции

аА + bB = cC + dД

Кинетическое уравнение имеет вид:

Показатели степеней a, b, c, d принято называть порядками реакции по компонентам А, В, С, Д, а сумму показателей – общим порядком реакции.

Например, реакции типа

А ® bB + cC – I порядка,

2А = bB + cC – II порядка,

А + B = cC + dД – III порядка.

Поскольку концентрации всех реагирующих компонентов связаны ме-жду собой стехиометрическими уравнениями, то простейшие кинетические уравнения I порядка являются дифференциальными уравнениями I порядка с одной независимой переменной – концентрацией – и могут быть проинтегри-рованы.

Простейшим кинетическим уравнением является уравнение I порядка типа

для которого . (3.4)

Обозначим через концентрацию компонента А до начала реакции и, проинтегрировав уравнение при граничном условии t=0, [А]=[А 0 ], получа-ем:

Или [A]=×e - kt . (3.5)

Таким образом, зависимость скорости реакции от концентрации ве-ществ имеет экспоненциальный характер.

Кинетическая энергия газов объясняет это так. По гипотезе Аррениуса реакция между молекулами проходит лишь в том случае, если они являются активными, т.е. обладают избыточной энергией, достаточной для разрыва межатомных связей, так называемой энергией активации Е А.

Т.е. скорость химической реакции зависит не от количества столкнове-ний всех молекул, а только активированных.

По закону Больцмана, число активных молекул

n A = n о * e - E / RT , (3.6)

где: Е – энергия активации,

Т – температура газовой смеси,

n о – общее число молекул.

Тогда и число эффективных соударений, совпадающее со скоростью реакции, равно:

υ р = Z эфф = Z 0 * e - E / RT , (3.7)

где: Z 0 – общее число соударений молекул.

1) скорость реакции пропорциональна концентрации активных моле-кул, число которых зависит от температуры и давления в смеси, так как дав-ление и есть количество молекул, сталкивающихся с какой-либо поверхно-стью;

2) реакция возможна лишь в том случае, если взаимодействующие мо-лекулы получают определенный запас энергии, достаточный для разрыва или ослабления межатомных связей. Активация заключается в переходе молекул в такое состояние, в котором возможно химическое превращение.

Чаще всего процесс активации идет путем образования промежуточных неустойчивых, но высокоактивных соединений атомов.

Таким образом, не только для протекания эндотермических процессов нужен внешний подвод энергии, но и для экзотермических. Чтобы произош-ла экзотермическая реакция, надо сообщить ей какой-то импульс тепловой энергии. Например, для протекания реакции горения в смеси водорода с ки-слородом, надо ее поджечь.

Минимальное количество тепловой энергии, необходимое для «запус-ка» химической реакции, называется энергией активации.

3.5. Энергия активации реакции.

Для объяснения данного явления часто пользуются следующим приме-ром (рис. 9):

На площадке лежит шар. Площадка расположена перед горкой. Поэто-му шар мог бы скатиться сам вниз, если бы не горка. Но для самопроизволь-ного спуска его надо поднять на вершину горки. При этом освободится не только энергия подъема на горку, но и энергия спуска вниз.

Рис. 9. Схема активирования реакции.

Рассмотрим две реакции:

1) Н 2 +О 2 =Н 2 О-

2) Н 2 О=Н 2 +О 2 +

Как видно из рисунка, Е 2 =+Е 1 ;

В общем, при любой реакции

.

И от разности Е 1 и Е 2 , которые всегда положительные, зависит знак те-плового эффекта.

Таким образом, энергия активации – это энергия, необходимая для пре-вращения реагирующих веществ в состояние активного комплекса (разрыв межатомных связей, сближение молекул, накопление энергии в молекуле…).

С повышением температуры газов резко увеличивается доля активных молекул (е -Е/ RT), а значит скорость реакции по экспоненциальной зависимо-сти. Эту зависимость можно проиллюстрировать следующим образом:

Рис. 10. Зависимость скорости реак-ции от температуры: 1 – скорость 1-ой реакции, 2 – скорость 2-ой реак-ции.

Как видно из рисунка 10, скорость первой реакции меньше скорости второй реакции, а энергия активации 1-ой реакции больше, чем Е второй. И при одинаковой температуре Т 2 υ 2 > υ 1 . Чем больше энергия активации, тем выше температура, необходимая для достижения данной скорости реакции.

Причина этого в том, что когда Е больше, то существующие межатом-ные связи в молекулах реагирующих компонентов сильнее, и нужно больше энергии на преодоление этих сил. При этом доля активных молекул соответ-ственно меньше.

Из сказанного видно, что величина энергии активации является важ-нейшей характеристикой химического процесса. Она определяет высоту энергетического барьера, преодоление которого представляет собой условие протекание реакции. С другой стороны, она характеризует скорость реакции от температуры, т.е. чем выше энергия активации, тем выше температура для достижения заданной реакции.

3.6. Катализ.

Кроме повышения температуры и концентрации веществ, для ускоре-ния химической реакции используют катализаторы , т.е. вещества, которые вводятся в реагирующую смесь, но не расходуются при реакции, а ускоряют ее путем снижения энергии активации.

Процесс увеличения скорости реакции с помощью катализаторов назы-вается катализом .

Катализаторы участвуют в промежуточных реакциях по созданию ак-тивированного комплекса за счет ослабления связей в молекулах исходных веществ, их разложения, адсорбции молекул на поверхности катализатора, либо ввода активных частиц катализатора.

Характер участия катализатора можно пояснить следующей схемой:

Реакция без катализатора: А + В = АВ.

С катализатором Х: А + Х = АХ ® АХ + В = АВ + Х.

Приведем картинку, подобно представленной на рис. 9.

Рис. 11. Схема действия ката-лизатора: Е б.кат и Е с кат – энер-гии активации реакции без ка-тализатора и с катализатором соответственно.

При вводе катализатора (рис. 11) реакция может протекать по иному пути с меньшим энергетическим барьером. Этот путь соответствует новому механизму реакции через образование другого активированного комплекса. И новый более низкий энергетический барьер может преодолеть большее число частиц, что и приводит к увеличению скорости реакции.

Следует отметить, что энергия активации обратной реакции понижает-ся на такую же величину, как и энергия активации прямой реакции, т.е. обе реакции ускоряются одинаково, и катализаторы не инициируют реакцию, они только ускорят реакцию, которая может происходить в их отсутствии, но значительно медленнее.

Катализаторами могут стать промежуточные продукты реакции, тогда эта реакция называется автокаталитической. Так, если скорость обычных ре-акций снижается по мере расходования реагирующих веществ, то реакция горения из-за автокатализа самоускоряется и является автокаталитической.

Наиболее часто в качестве катализаторов используются твердые веще-ства, которые адсорбируют молекулы реагирующих веществ. При адсорбции ослабляются связи в реагирующих молекулах, и таким образом облегчается реакция между ними.

Что же такое адсорбция?

3.7. Адсорбция.

Адсорбция – поверхностное поглощение какого-либо вещества из га-зообразной среды или раствора поверхностным слоем другого вещества – жидкости или твердого тела.

Например, адсорбция токсичных газов на поверхности активированно-го угля, используемого в противогазах.

Различают физическую и химическую адсорбцию.

При физической адсорбции захваченные частицы сохраняют свои свойства, а при химической – образуются химические соединения адсорбата с адсорбентом.

Процесс адсорбции сопровождается выделением теплоты. У физической адсорбции она незначительна (1-5 ккал/моль), у химической – значительно больше (10-100 ккал/моль). Тем самым могут ускоряться химические реакции при катализе.

Для процессов горения и взрыва можно привести следующие примеры:

1. Температура самовоспламенения смеси Н 2 +О 2 равна 500 0 С. В при-сутствии палладиевого катализатора она снижается до 100 0 С.

2. Процессы самовозгорания угля начинаются с химической адсорбции кислорода на поверхности угольных частиц.

3. При работах с чистым кислородом на одежде хорошо адсорбируется кислород (физическая адсорбция). И при наличии искры или пламени одежда легко вспыхивает.

4. Кислород хорошо адсорбируется и абсорбируется техническими мас-лами с образованием взрывчатой смеси. Смесь взрывается самопроизвольно, без источника зажигания (химическая абсорбция).

Cтраница 1


Химические реакции горения начинаются после создания начального очага пламени в подготовленной топливо-воздушной смеси. В поршневых ДВС он создается либо электрической искрой, либо за счет нагрева ТВС до такой температуры, при которой в объеме смеси самопроизвольно возникают многие начальные очаги пламени происходит самовоспламенение смеси.  

Химическая реакция горения происходит не при всех условиях столкновения молекул горючего газа с молекулами кислорода.  

Если химические реакции горения не являются автокаталитическими, то причиной распространения пламени может быть только передача тепла от продуктов горения несгоревшей смеси. Такой вид распространения пламени называется тепловым. Это, конечно, отнюдь не исключает того, что одновременно происходит и диффузия реагирующих веществ и продуктов реакции, так что состав реагирующей смеси в зоне реакции отличается от состава исходной смеси. Но в этом случае диффузия является не причиной распространения пламени, а только сопутствующим фактором. В частности, это относится и к цепным реакциям с неразветвляющимися цепями. Диффузия свободных атомов и радикалов, если только они находятся в термодинамическом равновесии или в квазистационарных концентрациях, не может быть причиной распространения пламени, которое остается тепловым. Роль диффузии полностью учитывается в правильной тепловой теории распространения пламени, как будет показано в следующем разделе.  

Если химические реакции горения не являются автокаталитическими, то причиной распространения пламени может быть только передача тепла от продуктов горения несгоревшейсмеси. Такой вид распространения пламени называется тепловым. Это, конечно, отнюдь не исключает того, что одновременно происходит и диффузия реагирующих веществ и продуктов реакции, так что состав реагирующей смеси в зоне реакции отличается от состава исходной смеси. Но в этом случае диффузия является не причиной распространения пламени, а только сопутствующим фактором. В частности, это относится и к цепным реакциям с неразветвляющимися цепями. Диффузия свободных атомов и радикалов, если только они находятся в термодинамическом равновесии или в квазистационарных концентрациях, не может быть причиной распространения пламени, которое остается тепловым. Роль диффузии полностью учитывается в правильной тепловой теории распространения пламени, как будет показано в следующем разделе.  

Скорость химических реакций горения газа с воздухом в горелках очень велика. Эти реакции при высоких температурах протекают за тысячные доли секунды. Продолжительность горения потока газовоздушной смеси определяется непрерывной подачей свежих порций газа и воздуха, которые сгорают в результате быстрого возникновения реакций окисления под действием теплового потока.  

Скорость химических реакций горения газа с воздухом в горелках очень велика. Эти реакции при высоких темлературах протекают за тысячные доли секунды. Продолжительность горения потока газовоздушной смеси определяется непрерывной подачей свежих порций газа и воздуха, которые сгорают в результате быстрого возникновения реакций окисления под действием теплового потока.  

Количественные соотношения химических реакций горения могут быть получены при известных молекулярных массах i веществ и плотностях р ц / 22 4 газов при нормальных физических условиях.  


Механизм ингибирования химических реакций горения изучен недостаточно. Однако исследования, проведенные в последние годы , дают возможность составить некоторые представления о характере воздействия ингибиторов на пламена.  

Предположим, что химическая реакция горения протекает полностью и продуктами реакции являются пары воды Н20, углекислый газ С02 или при недостатке кислорода окись углерода СО. Для стехиометрической водородно-кислородной (гремучей) горючей смеси делением теплоты образования водяного пара 58 ккал / моль на теплоемкость 8 кал / моль-град получим температуру горения 7250 градусов. Для случая полного сгорания твердого углерода в кислороде (Ст 02С02 94 ккал / моль) получим температуру горения ще больше, 11 750 К. Температуры такого же порядка получаются и для других углеводородных топлив. Приведенные здесь фантастически высокие температуры горения относятся к плазменному состоянию вещества, они не осуществляются в действительности; температуры горения кислородных смесей лежат в пределах 3000 - 4000 К.  

Поскольку подогрев и химическая реакция горения смеси протекают весьма быстро, основным фактором, лимитирующим длительность процесса горения, является время, затрачиваемое на перемешивание газа и воздуха.  

Схемы организации горения горючих газов. Горение. а - кинетическое, б - диффузионное, в - смешанное.  

Так как скорость химических реакций горения при высоких температурах очага несоизмеримо выше скорости смесеобразования, то практически скорость сгорания газа всегда равна скорости смешения газа с воздухом. Это обстоятельство позволяет легко регулировать скорость сжигания газа в самых широких пределах. Смешанный метод сжигания горючих газов является промежуточным между кинетическим и диффузионным.  

Поэтому-то уравнение баланса химической реакции горения свечей при определенных условиях действительно является первой попыткой введения количества тепла в описание химической реакции.  

При составлении уравнений химических реакций горения веществ в воздухе поступают следующим образом: горючее вещество и участвующий в горении воздух пишут в левой части, после знака равенства пишут образующиеся продукты реакции. Например, необходимо составить уравнение реакции горения метана в воздухе. Сначала записывают левую часть уравнения реакции: химическую формулу метана плюс химические формулы веществ, входящих в состав воздуха.  

Горение

Горе́ние - сложный физико-химический процесс превращения компонентов горючей смеси в продукты сгорания с выделением теплового излучения, света и лучистой энергии. Описать природу горения можно как бурно идущее окисление .

Дозвуковое горение (дефлаграция) в отличие от взрыва и детонации протекает с низкими скоростями и не связано с образованием ударной волны . К дозвуковому горению относят нормальное ламинарное и турбулентное распространения пламени, к сверхзвуковому - детонацию .

Горение подразделяется на тепловое и цепное . В основе теплового горения лежит химическая реакция, способная протекать с прогрессирующим самоускорением вследствие накопления выделяющегося тепла. Цепное горение встречается в случаях некоторых газофазных реакций при низких давлениях .

Условия термического самоускорения могут быть обеспечены для всех реакций с достаточно большими тепловыми эффектами и энергиями активации .
Горение может начаться самопроизвольно в результате самовоспламенения либо быть инициированным зажиганием. При фиксированных внешних условиях непрерывное горение может протекать в стационарном режиме , когда основные характеристики процесса - скорость реакции , мощность тепловыделения, температура и состав продуктов - не изменяются во времени, либо в периодическом режиме , когда эти характеристики колеблются около своих средних значений. Вследствие сильной нелинейной зависимости скорости реакции от температуры, горение отличается высокой чувствительностью к внешним условиям. Это же свойство горения обусловливает существование нескольких стационарных режимов при одних и тех же условиях (гистерезисный эффект).

Процесс возникновения горения подразделяется на несколько видов: вспышка, возгорание, воспламенение, самовозгорание, самовоспламенение, взрыв и детонация. Кроме того, существуют и особые виды горения: тление и холоднопламенное горение. Вспышка - процесс мгновенного сгорания паров легковоспламеняющихся и горючих жидкостей, вызванный непосредственным воздействием источника воспламенения. Возгорание - явление возникновения горения под действием источника зажигания. Воспламенение - возгорание, сопровождающееся появлением пламени. При этом вся остальная масса горючего вещества остается относительно холодной. Самовозгорание - явление резкого увеличения скорости экзотермических реакций в веществе, приводящее к возникновению горения при отсутствии источника зажигания. Самовоспламенение - это самовозгорание, сопровождающееся появлением пламени. В производственных условиях могут самовозгораться древесные опилки, промасленная ветошь. Самовоспламеняться может бензин, керосин. Взрыв - быстрое химическое превращение вещества (взрывное горение), сопровождающееся выделением энергии и образованием сжатых газов, способных производить механическую работу.

Беспламенное горение

В отличие от обычного горения, когда наблюдаются зоны окислительного пламени и восстановительного пламени , возможно создание условий для беспламенного горения. Примером может служить каталитическое окисление органических веществ на поверхности подходящего катализатора , например, окисление этанола на платиновой черни .

Твердофазное горение

Это автоволновые экзотермические процессы в смесях неорганических и органических порошков, не сопровождающиеся заметным газовыделением, и приводящие к получению исключительно конденсированных продуктов. В качестве промежуточных веществ, обеспечивающих массо-перенос, образуются газовые и жидкие фазы, не покидающие, однако, горящую систему. Известны примеры реагирующих порошков, в которых образование таких фаз не доказано (тантал-углерод).

Как синонимы используются тривиальные термины «безгазовое горение» и «твердопламенное горение».

Примером таких процессов служит СВС (самораспространяющийся высокотемпературный синтез) в неорганических и органических смесях.

Тление

Вид горения, при котором пламя не образуется, а зона горения медленно распространяется по материалу. Тление обычно наблюдается у пористых или волокнистых материалов с высоким содержанием воздуха или пропитанных окислителями .

Автогенное горение

Самоподдерживающиеся горение. Термин используется в технологиях сжигания отходов . Возможность автогенного (самоподдерживающегося) горения отходов определяется предельным содержанием балластирующих компонентов: влаги и золы. На основе многолетних исследований шведский учёный Таннер предложил для определения границ автогенного горения использовать треугольник-схему с предельными значениями: горючих более 25 %, влаги менее 50 %, золы менее 60 %.

См. также

Примечания

Ссылки


Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Горение" в других словарях:

    Физико химический процесс, при котором превращение вещества сопровождается интенсивным выделением энергии и тепло и массообменом с окружающей средой. Горение может начаться самопроизвольно в результате самовоспламенения либо быть инициированным… … Большой Энциклопедический словарь

    ГОРЕНИЕ, горения, мн. нет, ср. (книжн.). Действие и состояние по гл. гореть. Горение газа. Душевное горение. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

    Блеск, переливы, энтузиазм, сияние, игра, взлет, душевный подъем, подъем духа, сверкание, блистание, одержимость, огонь, страсть, огонек, воодушевление, поблескивание, вдохновение, увлеченность, живинка, увлечение, сгорание, подъем Словарь… … Словарь синонимов

    Горение - ГОРЕНИЕ, химическое превращение, которое сопровождается интенсивным выделением тепла и тепло и массообменом с окружающей средой. Может начаться самопроизвольно (самовозгорание) или в результате зажигания. Характерное свойство горения способность… … Иллюстрированный энциклопедический словарь

    Сложная хим. реакция, протекающая в условиях прогрессивного самоускорения, связанного с накоплением в системе теплоты или катализирующих продуктов реакции. При Г. могут достигаться высокие (до неск. тыс. К) темп ры, причём часто возникает… … Физическая энциклопедия

    Физико химический процесс, при котором превращение вещества сопровождается интенсивным выделением энергии и тепло массообменом с окружающей средой. может начаться самопроизвольно в результате самовоспламенения либо может быть инициировано… … Словарь черезвычайных ситуаций