Горизонтальная касательная. Угловой коэффициент касательной как тангенс угла наклона

Касательная – это прямая, проходящая через точку кривой и совпадающая с ней в этой точке с точностью до первого порядка (рис.1).

Другое определение : это предельное положение секущей при Δx →0.

Пояснение : Возьмем прямую, пересекающую кривую в двух точках: А и b (см.рисунок). Это секущая. Будем поворачивать ее по часовой стрелке до тех пор, пока она не обретет только одну общую точку с кривой. Так мы получим касательную.

Строгое определение касательной:

Касательная к графику функции f , дифференцируемой в точке x о , - это прямая, проходящая через точку (x о ; f (x о )) и имеющая угловой коэффициент f ′(x о ).

Угловой коэффициент имеет прямая вида y = kx + b . Коэффициент k и является угловым коэффициентом этой прямой.

Угловой коэффициент равен тангенсу острого угла, образуемого этой прямой с осью абсцисс:


k = tg α

Здесь угол α – это угол между прямой y = kx + b и положительным (то есть против часовой стрелки) направлением оси абсцисс. Он называется углом наклона прямой (рис.1 и 2).

Если угол наклона прямой y = kx + b острый, то угловой коэффициент является положительным числом. График возрастает (рис.1).

Если угол наклона прямой y = kx + b тупой, то угловой коэффициент является отрицательным числом. График убывает (рис.2).

Если прямая параллельна оси абсцисс, то угол наклона прямой равен нулю. В этом случае угловой коэффициент прямой тоже равен нулю (так как тангенс нуля есть ноль). Уравнение прямой будет иметь вид y = b (рис.3).

Если угол наклона прямой равен 90º (π/2), то есть она перпендикулярна оси абсцисс, то прямая задается равенством x = c , где c – некоторое действительное число (рис.4).

Уравнение касательной к графику функции y = f (x ) в точке x о :


Пример : Найдем уравнение касательной к графику функции f (x ) = x 3 – 2x 2 + 1 в точке с абсциссой 2.

Решение .

Следуем алгоритму.

1) Точка касания x о равна 2. Вычислим f (x о ):

f (x о ) = f (2) = 2 3 – 2 ∙ 2 2 + 1 = 8 – 8 + 1 = 1

2) Находим f ′(x ). Для этого применяем формулы дифференцирования, изложенные в предыдущем разделе. Согласно этим формулам, х 2 = 2х , а х 3 = 3х 2 . Значит:

f ′(x ) = 3х 2 – 2 ∙ 2х = 3х 2 – 4х .

Теперь, используя полученное значение f ′(x ), вычислим f ′(x о ):

f ′(x о ) = f ′(2) = 3 ∙ 2 2 – 4 ∙ 2 = 12 – 8 = 4.

3) Итак, у нас есть все необходимые данные: x о = 2, f (x о ) = 1, f ′(x о ) = 4. Подставляем эти числа в уравнение касательной и находим окончательное решение:

у = f (x о ) + f ′(x о ) (x – x о ) = 1 + 4 ∙ (х – 2) = 1 + 4х – 8 = –7 + 4х = 4х – 7.

Ответ : у = 4х – 7.

Начальный уровень

Уравнение касательной к графику функции. Исчерпывающий гид (2019)

Ты уже знаешь что такое производная? Если нет, сперва прочти тему . Итак, ты говоришь, что знаешь производную. Сейчас проверим. Найди приращение функции при приращении аргумента, равном. Справился? Должно получиться. А теперь найди производную функции в точке. Ответ: . Получилось? Если в каком-нибудь из этих примеров возникли сложности, настоятельно рекомендую вернуться к теме и проштудировать ее еще раз. Знаю, тема очень большая, но иначе нет смысла идти дальше. Рассмотрим график какой-то функции:

Выберем на линии графика некую точку. Пусть ее абсцисса, тогда ордината равна. Затем выберем близкую к точке точку с абсциссой; ее ордината - это:

Проведем прямую через эти точки. Она называется секущей (прямо как в геометрии). Обозначим угол наклона прямой к оси как. Как и в тригонометрии, этот угол отсчитывается от положительного направления оси абсцисс против часовой стрелки. Какие значения может принимать угол? Как ни наклоняй эту прямую, все равно одна половина будет торчать вверх. Поэтому максимально возможный угол - , а минимально возможный - . Значит, . Угол не включается, поскольку положение прямой в этом случае в точности совпадает с, а логичнее выбирать меньший угол. Возьмем на рисунке такую точку, чтобы прямая была параллельна оси абсцисс, а - ординат:

По рисунку видно, что, а. Тогда отношение приращений:

(так как, то - прямоугольный).

Давай теперь уменьшать. Тогда точка будет приближаться к точке. Когда станет бесконечно малым, отношение станет равно производной функции в точке. Что же при этом станет с секущей? Точка будет бесконечно близка к точке, так что их можно будет считать одной и той же точкой. Но прямая, имеющая с кривой только одну общую точку - это ни что иное, как касательная (в данном случае это условие выполняется только на небольшом участке - вблизи точки, но этого достаточно). Говорят, что при этом секущая занимает предельное положение .

Угол наклона секущей к оси назовем. Тогда получится, что производная

то есть производная равна тангенсу угла наклона касательной к графику функции в данной точке.

Поскольку касательная - это прямая, давай теперь вспомним уравнение прямой:

За что отвечает коэффициент? За наклон прямой. Он так и называется: угловой коэффициент . Что это значит? А то, что равен он тангенсу угла между прямой и осью! То есть вот что получается:

Но мы получили это правило, рассматривая возрастающую функцию. А что изменится, если функция будет убывающей? Посмотрим:
Теперь углы и тупые. А приращение функции - отрицательное. Снова рассмотрим: . С другой стороны, . Получаем: , то есть все, как и в прошлый раз. Снова устремим точку к точке, и секущая примет предельное положение, то есть превратится в касательную к графику функции в точке. Итак, сформулируем окончательно полученное правило:
Производная функции в данной точке равна тангенсу угла наклона касательной к графику функции в этой точке, или (что то же самое) угловому коэффициенту этой касательной:

Это и есть геометрический смысл производной. Окей, все это интересно, но зачем оно нам? Вот пример:
На рисунке изображен график функции и касательная к нему в точке с абсциссой. Найдите значение производной функции в точке.
Решение.
Как мы недавно выяснили, значение производной в точке касания равно угловому коэффициенту касательной, который в свою очередь равен тангенсу угла наклона данной касательной к оси абсцисс: . Значит, для нахождения значения производной нам нужно найти тангенс угла наклона касательной. На рисунке у нас отмечено две точки, лежащие на касательной, координаты которых нам известны. Так давай достроим прямоугольный треугольник, проходящий через эти точки, и найдем тангенс угла наклона касательной!

Угол наклона касательной к оси - это. Найдем тангенс этого угла: . Таким образом, производная функции в точке равна.
Ответ: . Теперь попробуй сам:

Ответы:

Зная геометрический смысл производной , можно очень просто объяснить правило, что производная в точке локального максимума или минимума равна нулю. Действительно, касательная к графику в этих точках «горизонтальна», то есть параллельна оси абсцисс:

А чему равен угол между параллельными прямыми? Конечно, нулю! А тангенс нуля тоже равен нулю. Вот и производная равна нулю:

Более подробно об этом читай в теме «Монотонность функций. Точки экстремума».

А сейчас сосредоточимся на произвольных касательных. Предположим, у нас есть какая-то функция, например, . Мы нарисовали ее график и хотим провести касательную к нему в какой-нибудь точке. Например, в точке. Берем линейку, пристраиваем ее к графику и чертим:

Что мы знаем об этой прямой? Что самое важное нужно знать о прямой на координатной плоскости? Поскольку прямая - это изображение линейной функции, очень удобно было бы знать ее уравнение. То есть коэффициенты и в уравнении

Но ведь мы уже знаем! Это угловой коэффициент касательной, который равен производной функции в этой точке:

В нашем примере будет так:

Теперь остается найти. Это проще простого: ведь - значение при. Графически - это координата пересечения прямой с осью ординат (ведь во всех точках оси):

Проведём (так, что - прямоугольный). Тогда (тому самому углу между касательной и осью абсцисс). Чему равны и? По рисунку явно видно, что, а. Тогда получаем:

Соединяем все полученные формулы в уравнение прямой:

Теперь реши сам:

  1. Найди уравнение касательной к функции в точке.
  2. Касательная к параболе пересекает ось под углом. Найди уравнение этой касательной.
  3. Прямая параллельна касательной к графику функции. Найдите абсциссу точки касания.
  4. Прямая параллельна касательной к графику функции. Найдите абсциссу точки касания.

Решения и ответы:


УРАВНЕНИЕ КАСАТЕЛЬНОЙ К ГРАФИКУ ФУНКЦИИ. КРАТКОЕ ОПИСАНИЕ И ОСНОВНЫЕ ФОРМУЛЫ

Производная функции в конкретной точке равна тангенсу угла наклона касательной к графику функции в этой точке, или угловому коэффициенту этой касательной:

Уравнение касательной к графику функции в точке:

Алгоритм действий для нахождения уравнения касательной:

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье - 299 руб.
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - 999 руб.

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Во втором случае мы подарим тебе тренажер “6000 задач с решениями и ответами, по каждой теме, по всем уровням сложности”. Его точно хватит, чтобы набить руку на решении задач по любой теме.

На самом деле это намного больше, чем просто тренажер - целая программа подготовки. Если понадобится, ты сможешь ею так же воспользоваться БЕСПЛАТНО.

Доступ ко всем текстам и программам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

Рассмотрим следующий рисунок:

На нем изображена некоторая функция y = f(x), которая дифференцируема в точке a. Отмечена точка М с координатами (а; f(a)). Через произвольную точку Р(a + ∆x; f(a + ∆x)) графика проведена секущая МР.

Если теперь точку Р сдвигать по графику к точке М, то прямая МР будет поворачиваться вокруг точки М. При этом ∆х будет стремиться к нулю. Отсюда можно сформулировать определение касательной к графику функции.

Касательная к графику функции

Касательная к графику функции есть предельное положение секущей при стремлении приращения аргумента к нулю. Следует понимать, что существование производной функции f в точке х0, означает, что в этой точке графика существует касательная к нему.

При этом угловой коэффициент касательной будет равен производной этой функции в этой точке f’(x0). В этом заключается геометрический смысл производной. Касательная к графику дифференцируемой в точке х0 функции f - это некоторая прямая, проходящая через точку (x0;f(x0)) и имеющая угловой коэффициент f’(x0).

Уравнение касательной

Попытаемся получить уравнение касательной к графику некоторой функции f в точке А(x0; f(x0)). Уравнение прямой с угловым коэффициентом k имеет следующий вид:

Так как у нас угловой коэффициент равен производной f’(x0) , то уравнение примет следующий вид: y = f’(x0) *x + b.

Теперь вычислим значение b. Для этого используем тот факт, что функция проходит через точку А.

f(x0) = f’(x0)*x0 + b, отсюда выражаем b и получим b = f(x0) - f’(x0)*x0.

Подставляем полученное значение в уравнение касательной:

y = f’(x0)*x + b = f’(x0)*x + f(x0) - f’(x0)*x0 = f(x0) + f’(x0)*(x - x0).

y = f(x0) + f’(x0)*(x - x0).

Рассмотрим следующий пример: найти уравнение касательной к графику функции f(x) = x 3 - 2*x 2 + 1 в точке х = 2.

2. f(x0) = f(2) = 2 2 - 2*2 2 + 1 = 1.

3. f’(x) = 3*x 2 - 4*x.

4. f’(x0) = f’(2) = 3*2 2 - 4*2 = 4.

5. Подставим полученные значения в формулу касательной, получим: y = 1 + 4*(x - 2). Раскрыв скобки и приведя подобные слагаемые получим: y = 4*x - 7.

Ответ: y = 4*x - 7.

Общая схема составления уравнения касательной к графику функции y = f(x):

1. Определить х0.

2. Вычислить f(x0).

3. Вычислить f’(x)

Пример 1. Дана функция f (x ) = 3x 2 + 4x – 5. Напишем уравнение касательной к графику функции f (x ) в точке графика с абсциссой x 0 = 1.

Решение. Производная функции f (x ) существует для любого x R . Найдем ее:

= (3x 2 + 4x – 5)′ = 6x + 4.

Тогда f (x 0) = f (1) = 2; (x 0) = = 10. Уравнение касательной имеет вид:

y = (x 0) (x x 0) + f (x 0),

y = 10(x – 1) + 2,

y = 10x – 8.

Ответ. y = 10x – 8.

Пример 2. Дана функция f (x ) = x 3 – 3x 2 + 2x + 5. Напишем уравнение касательной к графику функции f (x ), параллельной прямой y = 2x – 11.

Решение. Производная функции f (x ) существует для любого x R . Найдем ее:

= (x 3 – 3x 2 + 2x + 5)′ = 3x 2 – 6x + 2.

Так как касательная к графику функции f (x ) в точке с абсциссой x 0 параллельна прямой y = 2x – 11, то ее угловой коэффициент равен 2, т. е. (x 0) = 2. Найдем эту абсциссу из условия, что 3x – 6x 0 + 2 = 2. Это равенство справедливо лишь при x 0 = 0 и при x 0 = 2. Так как в том и в другом случае f (x 0) = 5, то прямая y = 2x + b касается графика функции или в точке (0; 5), или в точке (2; 5).

В первом случае верно числовое равенство 5 = 2×0 + b , откуда b = 5, а во втором случае верно числовое равенство 5 = 2×2 + b , откуда b = 1.

Итак, существует две касательные y = 2x + 5 и y = 2x + 1 к графику функции f (x ), параллельные прямой y = 2x – 11.

Ответ. y = 2x + 5, y = 2x + 1.

Пример 3. Дана функция f (x ) = x 2 – 6x + 7. Напишем уравнение касательной к графику функции f (x ), проходящей через точку A (2; –5).

Решение. Так как f (2) –5, то точка A не принадлежит графику функции f (x ). Пусть x 0 - абсцисса точки касания.

Производная функции f (x ) существует для любого x R . Найдем ее:

= (x 2 – 6x + 1)′ = 2x – 6.

Тогда f (x 0) = x – 6x 0 + 7; (x 0) = 2x 0 – 6. Уравнение касательной имеет вид:

y = (2x 0 – 6)(x x 0) + x – 6x + 7,

y = (2x 0 – 6)x x + 7.

Так как точка A принадлежит касательной, то справедливо числовое равенство

–5 = (2x 0 – 6)×2– x + 7,

откуда x 0 = 0 или x 0 = 4. Это означает, что через точку A можно провести две касательные к графику функции f (x ).

Если x 0 = 0, то уравнение касательной имеет вид y = –6x + 7. Если x 0 = 4, то уравнение касательной имеет вид y = 2x – 9.

Ответ. y = –6x + 7, y = 2x – 9.

Пример 4. Даны функции f (x ) = x 2 – 2x + 2 и g (x ) = –x 2 – 3. Напишем уравнение общей касательной к графикам этих функции.

Решение. Пусть x 1 - абсцисса точки касания искомой прямой с графиком функции f (x ), а x 2 - абсцисса точки касания той же прямой с графиком функции g (x ).

Производная функции f (x ) существует для любого x R . Найдем ее:

= (x 2 – 2x + 2)′ = 2x – 2.

Тогда f (x 1) = x – 2x 1 + 2; (x 1) = 2 x 1 – 2. Уравнение касательной имеет вид:

y = (2x 1 – 2)(x x 1) + x – 2x 1 + 2,

y = (2x 1 – 2)x x + 2. (1)

Найдем производную функции g (x ):

= (–x 2 – 3)′ = –2x .

Пусть дана функция f , которая в некоторой точке x 0 имеет конечную производную f (x 0). Тогда прямая, проходящая через точку (x 0 ; f (x 0)), имеющая угловой коэффициент f ’(x 0), называется касательной.

А что будет, если производная в точке x 0 не существует? Возможны два варианта:

  1. Касательная к графику тоже не существует. Классический пример - функция y = |x | в точке (0; 0).
  2. Касательная становится вертикальной. Это верно, к примеру, для функции y = arcsin x в точке (1; π /2).

Уравнение касательной

Всякая невертикальная прямая задается уравнением вида y = kx + b , где k - угловой коэффициент. Касательная - не исключение, и чтобы составить ее уравнение в некоторой точке x 0 , достаточно знать значение функции и производной в этой точке.

Итак, пусть дана функция y = f (x ), которая имеет производную y = f ’(x ) на отрезке . Тогда в любой точке x 0 ∈ (a ; b ) к графику этой функции можно провести касательную, которая задается уравнением:

y = f ’(x 0) · (x − x 0) + f (x 0)

Здесь f ’(x 0) - значение производной в точке x 0 , а f (x 0) - значение самой функции.

Задача. Дана функция y = x 3 . Составить уравнение касательной к графику этой функции в точке x 0 = 2.

Уравнение касательной: y = f ’(x 0) · (x − x 0) + f (x 0). Точка x 0 = 2 нам дана, а вот значения f (x 0) и f ’(x 0) придется вычислять.

Для начала найдем значение функции. Тут все легко: f (x 0) = f (2) = 2 3 = 8;
Теперь найдем производную: f ’(x ) = (x 3)’ = 3x 2 ;
Подставляем в производную x 0 = 2: f ’(x 0) = f ’(2) = 3 · 2 2 = 12;
Итого получаем: y = 12 · (x − 2) + 8 = 12x − 24 + 8 = 12x − 16.
Это и есть уравнение касательной.

Задача. Составить уравнение касательной к графику функции f (x ) = 2sin x + 5 в точке x 0 = π /2.

В этот раз не будем подробно расписывать каждое действие - укажем лишь ключевые шаги. Имеем:

f (x 0) = f (π /2) = 2sin (π /2) + 5 = 2 + 5 = 7;
f ’(x ) = (2sin x + 5)’ = 2cos x ;
f ’(x 0) = f ’(π /2) = 2cos (π /2) = 0;

Уравнение касательной:

y = 0 · (x − π /2) + 7 ⇒ y = 7

В последнем случае прямая оказалась горизонтальной, т.к. ее угловой коэффициент k = 0. Ничего страшного в этом нет - просто мы наткнулись на точку экстремума.