Интересные факты о звуковых волнах. Интересные факты о звуке и звуковых волнах Звук интересные факты физика

Звуки это самое первое, с чем сталкивается человек, появляясь на свет. И самое последнее, что слышит, покидая мир. А между первым и вторым проходит целая жизнь. И вся она построена на шумах, тонах, бряцании, грохоте, музыки, в общем, полной какофонии звуков.

Вот десять самых интересных фактов о них.

1. Их уровень измеряют в децибелах (дБ). Максимальный порог для человеческого слуха (когда наступают уже болевые ощущения), это интенсивность в 120-130 децибел. А смерть наступает при 200.

2. Звук и шум не одно и то же . Хотя обычным людям кажется и так. Однако для специалистов между этими двумя терминами – большая разница. Звук - это колебания, воспринимаемые органами чувств животных и человека. А шум - это беспорядочное смешение звуков.

3. Наш голос в записи иной, потому что мы слышим «не тем ухом». Это звучит странно, но это так. А все дело в том, что когда мы говорим, то воспринимаем свой голос двумя путями - через внешний (слуховой канал, барабанную перепонку и среднее ухо) и внутренний (через ткани головы , которые усиливают низкие частоты голоса).

А во время прослушивания со стороны задействован только наружный канал.

4. Некоторые люди могут слышать звук вращения своих глазных яблок . А также свое дыхание. Это происходит из-за

порока внутреннего уха, когда его чувствительность повышена сверх нормы.

5. Шум моря, который мы слышим через морскую раковину , на самом всего лишь звук крови, протекающей по нашим сосудам. Такой же шум можно услышать, приложив к уху обычную чашку. Попробуйте!

6. Глухие все же могут слышать. Один только пример этого: знаменитый композитор Бетховен , как известно, был глухим, однако мог создавать великие произведения. Каким образом? Он слушал… зубами! Композитор приставлял к роялю конец трости, а другой конец зажимал в зубах - так звук доходил до внутреннего уха, которое у композитора было абсолютно здоровым, в отличие от уха внешнего.

7. Звук может превращаться в свет . Такое явление называется «сонолюминесценция». Возникает, если в воду опустить резонатор, создающий сферическую ультразвуковую волну. В фазе разрежения волны из-за очень низкого давления возникает кавитационный пузырёк, который некоторое время растёт, а затем в фазе сжатия быстро схлопывается. В этот момент в центре пузырька возникает голубой свет.

8. «А» - самый распространённый в мире звук . Он есть во всех языках нашей планеты. А всего в мире их насчитывается около 6,5-7 тысяч. Больше всего людей говорят на китайском, испанском, хинди, английском, русском, португальском и арабском.

9. Нормой считается, когда человек слышит негромкую разговорную речь с расстояния не менее 5-6 метров (если это низкие тона). Или при 20 метрах при тонах повышенных. Если вы плохо слышите, что говорят с расстояния 2-3 метров, стоит провериться у сурдолога.

10. Мы можем не замечать, что теряем слух . Потому что процесс происходит, как правило, не одномоментно, а постепенно. Причем на первых порах ситуацию еще можно исправить, однако человек не замечает, что с ним «что-то не так». А когда наступает необратимый процесс, поделать ничего уже нельзя.

Конец формы

Фи­зи­ка 9 класс

Тема урока: Ме­ха­ни­ка. Ко­ле­ба­ния и волны. Зву­ко­вые волны

Про­дол­жа­ем изу­чать ме­ха­ни­ку. Мы на­хо­дим­ся в главе 7, «Ко­ле­ба­ния и волны». Па­ра­граф 7, ко­то­рый се­год­ня по­свя­щен зву­ко­вым вол­нам. Зву­ко­вые волны – это осо­бые волны, ко­то­рые вы­зы­ва­ют ко­ле­ба­ния среды, ко­то­рые вос­при­ни­ма­ют­ся нашим ор­га­ном слуха – ухом. Раз­дел, ко­то­рый за­ни­ма­ет­ся в фи­зи­ке этими вол­на­ми, на­зы­ва­ет­ся аку­сти­ка. Про­фес­сия людей, ко­то­рых в про­сто­на­ро­дье на­зы­ва­ют слу­ха­ча­ми, на­зы­ва­ют аку­сти­ка­ми. Зву­ко­вая волна – это волна, рас­про­стра­ня­ю­ща­я­ся в упру­гой среде, это про­доль­ная волна, и, когда она рас­про­стра­ня­ет­ся в упру­гой среде, у нас че­ре­ду­ют­ся сжа­тие и раз­ря­же­ние. Пе­ре­да­ет­ся она с те­че­ни­ем вре­ме­ни на рас­сто­я­ние. К зву­ко­вым вол­нам от­но­сят­ся такие ко­ле­ба­ния, ко­то­рые осу­ществ­ля­ют­ся с ча­сто­той 20 Гц и 20 тыс. Гц. Я на­пи­са­ла, что этот диа­па­зон будет на­зы­вать­ся слы­ши­мый звук. Этим дли­нам волн со­от­вет­ству­ет в той среде, о ко­то­рой мы го­во­ри­ли, воз­дух при t = 20 °C со­от­вет­ству­ет 17 м длина волны и 20 тыс. Гц ча­сто­та – 17 мм. Су­ще­ству­ют еще такие диа­па­зо­ны, ко­то­ры­ми за­ни­ма­ют­ся аку­сти­ки, – ин­фра­зву­ко­вые и уль­тра­зву­ко­вые. Ин­фра­зву­ко­вые – это те, ко­то­рые имеют ча­сто­ту мень­ше 20 Гц. И уль­тра­зву­ко­вые – это те, ко­то­рые имеют ча­сто­ту боль­ше 20 тыс. Гц. Каж­дый об­ра­зо­ван­ный че­ло­век дол­жен ори­ен­ти­ро­вать­ся в диа­па­зоне ча­стот зву­ко­вых волн и знать, что если он пой­дет на УЗИ, то кар­тин­ка на экране ком­пью­те­ра будет стро­ить­ся с ча­сто­той боль­ше 20 тыс. Гц. Ин­фра­звук – тоже важ­ные волны, ко­то­рые ис­поль­зу­ют для ко­ле­ба­ний по­верх­но­сти (на­при­мер, чтобы раз­ру­шить ка­кие-ни­будь боль­шие объ­ек­ты). Мы за­пус­ка­ем ин­фра­звук в почву – и почва дро­бит­ся. Где такое ис­поль­зу­ет­ся? На­при­мер, на ал­маз­ных при­ис­ках, где берут руду, в ко­то­рых есть ал­маз­ные ком­по­нен­ты, и дро­бят на мел­кие ча­сти­цы, чтобы найти эти ал­маз­ные вкрап­ле­ния. Зна­чит, ско­рость звука за­ви­сит от усло­вий среды и тем­пе­ра­ту­ры. Я спе­ци­аль­но вы­пи­са­ла эти важ­ные рас­хож­де­ния, ко­то­рые про­ис­хо­дят с вол­ной, если мы берем дру­гую среду или уве­ли­чи­ва­ем тем­пе­ра­ту­ру. По­смот­ри­те, в воз­ду­хе ско­рость звука при t=0 °C V= 331 м/с, при t=1 °C ско­рость уве­ли­чи­ва­ет­ся на 1,7 с. Если вы – ис­сле­до­ва­тель, то вам могут при­го­дить­ся такие зна­ния. Вы, может быть, даже при­ду­ма­е­те ка­кой-ни­будь тем­пе­ра­тур­ный дат­чик, ко­то­рый будет фик­си­ро­вать или будет рас­хож­де­ния тем­пе­ра­ту­ры ме­рить путем из­ме­не­ния ско­ро­сти звука в среде. Я го­во­ри­ла: чем плот­нее среда, чем более се­рьез­ное вза­и­мо­дей­ствие между ча­сти­ца­ми среды, тем быст­рее рас­про­стра­ня­ет­ся волна. Мы в про­шлом па­ра­гра­фе об­су­ди­ли это на при­ме­ре воз­ду­ха су­хо­го и воз­ду­ха влаж­но­го. По­смот­ри­те, в воде ско­рость, для воды V = 1400 м/с. Звук, если мы его будем рас­про­стра­нять (сту­чать по ка­мер­то­ну, на­при­мер, или по же­лез­ке ка­ким-ни­будь пред­ме­том в воде и в воз­ду­хе), то ско­рость рас­про­стра­не­ния уве­ли­чи­ва­ет­ся почти в 4 раза. По воде ин­фор­ма­ция дой­дет быст­рее в 4 раза, чем по воз­ду­ху. А в стали и того быст­рее, по­смот­ри­те, V = 5000 м/с = 5 км/с. Я, чтобы вы это за­пом­ни­ли, спе­ци­аль­но на­пи­са­ла такой ма­я­чок – Илья Му­ро­мец. Вы зна­е­те из былин, что Илья Му­ро­мец поль­зо­вал­ся (да и все бо­га­ты­ри, да и обыч­ные рус­ские люди и маль­чи­ки РВС Гай­да­ра), поль­зо­ва­лись очень ин­те­рес­ным спо­со­бом об­на­ру­же­ния объ­ек­та, ко­то­рый идет да­ле­ко еще, при­бли­жа­ет­ся, но рас­по­ла­га­ет­ся еще да­ле­ко. Звук, ко­то­рый он из­да­ет при дви­же­нии – поезд либо кон­ни­ца вра­же­ская, еще не видно и не слыш­но этой кон­ни­цы. Илья Му­ро­мец, при­пав ухом к земле, может ее услы­шать. По­че­му? По­то­му что по твер­дой земле пе­ре­да­ет­ся звук с боль­шей ско­ро­стью, зна­чит, быст­рее дой­дет до уха Ильи Му­ром­ца и он смо­жет под­го­то­вить­ся к встре­че непри­я­те­ля. Самые ин­те­рес­ные зву­ко­вые волны – му­зы­каль­ные звуки и нему­зы­каль­ные шумы. Какие пред­ме­ты могут со­здать зву­ко­вые волны? Если мы возь­мем ис­точ­ник волны и упру­гую среду, если мы за­ста­вим ис­точ­ник звука ко­ле­бать­ся гар­мо­ни­че­ски, то у нас воз­ник­нет за­ме­ча­тель­ная зву­ко­вая волна, ко­то­рая будет на­зы­вать­ся – звук му­зы­каль­ный. Вы, зна­е­те эти ис­точ­ни­ки зву­ко­вых волн: на­при­мер, стру­ны у ги­та­ры или стру­ны у рояля. Это, может быть, зву­ко­вая волна, ко­то­рая со­зда­на в за­зо­ре воз­душ­ном трубы (на­при­мер, ор­га­на или трубы, ду­хо­вых ка­ких-ни­будь ин­стру­мен­тов). Из уро­ков му­зы­ки вы зна­е­те ноты: до, ре, ми, фа, соль, ля, си. На­зы­ва­ют­ся в аку­сти­ке тоны. Обо­зна­ча­ют­ся та­ки­ми бук­ва­ми. Самое уди­ви­тель­ное, что все пред­ме­ты, ко­то­рые могут из­да­вать тоны, у всех них будут осо­бен­но­сти. Чем они раз­ли­ча­ют­ся? Они раз­ли­ча­ют­ся дли­ной волны и ча­сто­той. Если эти зву­ко­вые волны со­зда­ют­ся не гар­мо­ни­че­ски зву­ча­щи­ми те­ла­ми или не свя­за­ны в общую ка­кую-то ор­кест­ро­вую пьесу, то такое ко­ли­че­ство зву­ков будет на­зы­вать­ся шумом. Ха­о­ти­че­ская смесь зву­ков – это шум. По­ня­тие шум есть бы­то­вое, есть фи­зи­че­ское, оно очень по­хо­же, и по­это­му мы его вво­дим как от­дель­ный важ­ный объ­ект рас­смот­ре­ния.

Пе­ре­хо­дим к ко­ли­че­ствен­ным оцен­кам зву­ко­вых волн. Какие у му­зы­каль­ных зву­ко­вых волн ха­рак­те­ри­сти­ки? Эти ха­рак­те­ри­сти­ки рас­про­стра­ня­ют­ся ис­клю­чи­тель­но на гар­мо­ни­че­ские му­зы­каль­ные ко­ле­ба­ния. Итак, гром­кость звука . Чем опре­де­ля­ет­ся гром­кость звука? Я здесь на­ри­со­ва­ла рас­про­стра­не­ние зву­ко­вой волны во вре­ме­ни или ко­ле­ба­ния ис­точ­ни­ка зву­ко­вой волны. Он рас­по­ла­га­ет­ся здесь и на­чи­на­ет ко­ле­бать­ся, при этом ко­леб­лет­ся гар­мо­ни­че­ски, вы­зы­ва­ет му­зы­каль­ный звук. При этом, если мы до­ба­ви­ли в си­сте­му не очень много звука (стук­ну­ли ти­хо­неч­ко по ноте фор­те­пи­а­но, на­при­мер), то будет тихий звук. Если мы гром­ко, вы­со­ко под­ни­мая руку, вы­зо­вем этот звук, сту­кая по кла­ви­ше, по­лу­чим гром­кий звук. От чего это за­ви­сит? По-мо­е­му, всем по­нят­но, что все будет за­ви­сеть от ам­пли­ту­ды ко­ле­ба­ния ис­точ­ни­ка звука. У ти­хо­го звука ам­пли­ту­да ко­ле­ба­ний мень­ше, чем у гром­ко­го звука А т < А гр .

Сле­ду­ю­щая важ­ная ха­рак­те­ри­сти­ка му­зы­каль­но­го звука и лю­бо­го дру­го­го – вы­со­та . От чего за­ви­сит вы­со­та звука? Вы­со­та за­ви­сит от ча­сто­ты. Мы можем за­ста­вить ис­точ­ник ко­ле­бать­ся часто, а можем за­ста­вить не очень быст­ро ко­ле­бать­ся, со­вер­шать за еди­ни­цу вре­ме­ни мень­шее ко­ли­че­ство ко­ле­ба­ний. По­смот­ри­те, как я это ма­те­ма­ти­че­ски на­ри­со­ва­ла на доске. Пер­вый низ­кий звук ко­леб­лет­ся таким об­ра­зом. Здесь раз­верт­ка во вре­ме­ни. Ко­ле­ба­ния про­ис­хо­дят тут, можно за­ста­вить стру­ну так ко­ле­бать­ся. Мы будем ко­ле­ба­ния опи­сы­вать таким об­ра­зом. При этом то вир­ту­аль­ное, то, чего нету, а есть толь­ко в нашем со­зна­нии, раз­верт­ка во вре­ме­ни, мы ее таким об­ра­зом на­ри­со­ва­ли.

У меня длина волны одной укла­ды­ва­ет­ся в такой про­ме­жу­ток вре­ме­ни. У вто­рой волны я спе­ци­аль­но ам­пли­ту­ду сде­ла­ла оди­на­ко­вой, чтобы гром­кость звука была оди­на­ко­вой. Ока­жет­ся, что если мы умуд­рим­ся за то же время со­вер­шить два ко­ле­ба­ния ис­точ­ни­ком звука, то звук по­лу­чит­ся вы­со­кий. По­это­му можно сде­лать ин­те­рес­ный вывод. Если че­ло­век поет басом, то у него ис­точ­ник звука (это го­ло­со­вые связ­ки) ко­леб­лет­ся в несколь­ко раз мед­лен­нее, чем у че­ло­ве­ка, ко­то­рый, на­при­мер, жен­щи­на, ко­то­рая поет со­пра­но. У нее чаще ко­леб­лют­ся го­ло­со­вые связ­ки, по­это­му вы­зы­ва­ют чаще очаги сжа­тия и раз­ря­же­ния в рас­про­стра­не­нии волны. Есть еще одна ин­те­рес­ная ха­рак­те­ри­сти­ка зву­ко­вых волн, ко­то­рую фи­зи­ки не изу­ча­ют. Это тембр . Вы зна­е­те и легко раз­ли­ча­е­те одну и ту же му­зы­каль­ную пьесу, ко­то­рую ис­пол­ня­ют на ба­ла­лай­ке или на ви­о­лон­че­ли. Чем от­ли­ча­ют­ся эти зву­ча­ния или чем от­ли­ча­ет­ся это ис­пол­не­ние? Мы по­про­си­ли в на­ча­ле экс­пе­ри­мен­та людей, ко­то­рые из­вле­ка­ют звуки, де­лать их при­мер­но оди­на­ко­вой ам­пли­ту­ды. Гром­кость звука чтобы была оди­на­ко­ва. Это так в ор­кест­ре, если не тре­бу­ет­ся вы­де­ле­ния ка­ко­го-то ин­стру­мен­та, все иг­ра­ют при­мер­но оди­на­ко­во, в оди­на­ко­вую силу. Так вот тембр ба­ла­лай­ки и ви­о­лон­че­ли от­ли­ча­ет­ся, по­то­му что звук, если бы мы его на­ри­со­ва­ли, ко­то­рый из­вле­ка­ют из од­но­го ин­стру­мен­та из дру­го­го, мы бы на­ри­со­ва­ли с по­мо­щью диа­грамм, то ничем бы не от­ли­чал­ся. Но вы легко от­ли­ча­е­те эти ин­стру­мен­ты по звуку. Еще один при­мер, по­че­му тембр важен. Два певца, ко­то­рые за­кан­чи­ва­ют один и тот же му­зы­каль­ный вуз, кон­сер­ва­то­рию, у оди­на­ко­вых пе­да­го­гов, учи­лись оди­на­ко­во хо­ро­шо на пя­тер­ки. По­че­му-то один ста­но­вит­ся вы­да­ю­щим­ся ис­пол­ни­те­лем, а дру­гой всю жизнь недо­во­лен своей ка­рье­рой, пы­та­ет­ся сде­лать что-то лучше. На самом деле это опре­де­ля­ет­ся ис­клю­чи­тель­но их ин­стру­мен­том, ко­то­рый вы­зы­ва­ет как раз го­ло­со­вые ко­ле­ба­ния в среде, т.е. у них от­ли­ча­ют­ся го­ло­са по темб­ру. Если тембр го­ло­са таков, что он вы­зы­ва­ет у всех осталь­ных людей ка­кие-то силь­ные эмо­ции (на­при­мер, самая про­стая эмо­ция – это му­раш­ки по коже бе­га­ют), если даже такое фи­зи­че­ское из­ме­не­ние среды при пе­ре­да­че от певца к вам в уши этого ко­ле­ба­ния вы­зы­ва­ет у вас из­ме­не­ние кож­но­го по­кро­ва, вы мо­же­те смело счи­тать, что этот че­ло­век – гений. Спа­си­бо за вни­ма­ние.


Звук – это призывающий и творческий символ. Многие мифы о творении свидетельствуют, что Вселенная была создана с помощью звука. Согласно Гермесу Трисмегисту, звук был первым, что потревожило предвечную тишину, и посему он являлся причиной всего созданного в мире, предшествуя свету, воздуху и огню. В индуизме звук Аум привел космос к бытию.

Сила звука измеряется в единицах, получивших название белл – в честь Александра Белла, изобретателя телефона. Однако на практике оказалось более удобным использовать десятые доли бела, то есть децибелы. Максимальным порогом силы звука для человека является интенсивность 120...130 децибел. Звук такой силы вызывает боль в ушах.

Звук, который вы слышите, когда «ломаете» суставы, фактически является звуком разрывания пузырей газа азота.

Первое определение скорости распространения звука в воздухе было произведено французским физиком и философом Пьером Гассенди в середине XVII в - она оказалась равной 449 метрам в секунду. Звук рева тигра можно услышать на расстоянии 3 км.

Интересный факт: быть глухим не значит ничего не слышать, и тем более не значит не иметь «музыкальный слух». Великий композитор Бетховен, например, вообще был глухим. Он приставлял к роялю конец своей трости, а другой ее конец прижимал к зубам. И звук доходил до его внутреннего уха, которое было здоровым.

Томас Эдисон считал свой аппарат для записи и воспроизведения звука игрушкой, непригодной для серьезного практического применения.

Громкая музыка, звучащая из наушников, очень нагружает нервы в слуховой системе и в мозге. Этот факт приводит к ухудшению способности различать звуки, причем сам человек даже не ощущает, что его слуховое здоровье ухудшается.

Кузнечики издают звук при помощи задних ног.

Шелест листьев производит шум силой 30 децибел, громкая речь – 70 децибел, оркестр – 80 децибел, а реактивный двигатель – от 120 до 140 децибел.

Если взять в зубы тикающие наручные часы и заткнуть себе уши, то тиканье превратится в сильные, тяжелые удары - настолько оно усилится.

Гранит проводит звук в десять раз лучше, чем воздух.

Водопад Ниагара производит шум, сравнимый с шумом фабричного цеха (90-100 децибел).

Громкий храп может достигать того же уровня звука, что и отбойный молоток. Ударяясь о барабанную перепонку в ухе, звук колеблет ее, и она повторяет колебания воздушных волн.

Человек способен услышать звук, даже если барабанная перепонка под его воздействием отклонилась на расстояние, равное радиусу ядра атома водорода.

Заключение

Итак, подведем итог, звук - это распространение в виде упругих волн механических колебаний в твёрдой, жидкой или газообразной среде. Звук – это один из видов информации, который человек получает из окружающего мира с помощью органов чувств. Человек начинает воспринимать звуки и реагировать на них ещё до своего рождения. Представление о многих вещах и предметах впервые создаются в сознании человека именно на слух. В утробе матери каждый из нас познаёт голоса родителей, их речь, звучание многих предметов и явлений из окружающего мира. Только спустя время ребёнок сможет увидеть, пощупать и попробовать на вкус то, о чём он знает изначально только на слух. Первое знакомство с окружающим миром – это самое важное знакомство, и этот «первый раз» связан именно со звуком. Об этом стоит помнить при создании звуковой рекламы, поскольку звуковое сообщение является наиболее естественным и простым для восприятия большинства людей, а, следовательно – и наиболее действенным.

С приобретением жизненного опыта звуки начинают вызывать эмоции и переживания. Но некоторые звуки заставляют реагировать инстинктивно. Для животных некоторые звуки являются неоспоримым доказательством опасности. В кошке, например, шуршащие и царапающие звуки будят охотничий инстинкт. Человек так же инстинктивно реагирует на звуки, окружающие его: вздрагивает от резких и громких звуков, неуютно себя чувствует в полной тишине, покрывается мурашками от негромких, но неожиданных звуков и т.д. Одни звуки вызывают страх: гром, крики, звериный вой. Другие, напротив, располагают к спокойствию и расслаблению: звук морских волн, журчание ручья, спокойное дыхание, шелест деревьев, пение птиц. Одни звуки, известные и повсеместные, становятся нейтральными и обыденными, а новые и неизвестные – напротив, вызывают тревогу и смятение.

В мире существует большое количество предметов, имеющих своё неповторимое звучание. Ведь вы без труда с закрытыми глазами по звуку сможете определить десятки предметов и явлений, не говоря уже о голосах знакомых вам людей: от родных и близких, до известных актёров и певцов.

Без звука жизнь невозможна.

Список используемой литературы

1. Брюханов А.В., Пустовалов Г.Е., Рыдник В. Толковый физический словарь. Основные термины: около 3600 терминов. М.: Рус. яз., 1987.

2. Вилли К. Биология М.: Мир, 1968.

3. Дубровский И. М., Егоров Б. В., Рябошапка К.П. Справочник по физике. - Киев: Наукова думка, 1986.

4. Кикоин И.К., Кикоин А.К. Физика: Учеб. для 9 кл. сред. шк. - 3-е изд. - М.: Просвещение, 1994.

5. Кошкин Н. И., Ширкевич М.Г. Справочник по элементарной физике 10-е изд., М.: Наука, 1988.

6. Льоццы М. История физики. - М.: Мир, 1970.

8. Мясников Л.Л. Неслышимый звук.

9.Пирс Дж. Почти всё о волнах.- М.: Мир, 1976.

10. Разговор муравьёв. "Наука и жизнь", 1978, No.1, стр. 141

11. Храмов Ю. А. Физики: Биографический справочник. 2-е изд. - М.: Наука, 1983.

12. Элементарный учебник физики: Учеб. пособие. В 3 т. / Под ред. Г.С. Ландсберга: Т.III. Колебания и волны. Оптика. Атомная и ядерная физика. 11-е изд.--М.: Наука. Физматлит, 1995.

13. Энциклопедический словарь юного техника Cост. Б. В. Зубков С. В. Чумаков. - 2-е изд., М.: Педагогика, 1987.

Есть интересные факты о звуке как о физическом явлении воспринимаемом человеком органами слуха.

Звуки для человека имеют важную информацию получаемую из окружающего мира. В медицине, например, широко применяется .

Интересные факты о звуке не доходят до современного человека, оставаясь где-то на страницах школьных учебников и детских энциклопедий.

Одной из самых интересных тем физики можно назвать свойства и возможности звуковых волн.

Факты о свойствах и возможностях звуковых волн

Вот, например, такой интересный факт: мы привыкли считать, что глухие люди – это те, которые не слышат звуки. Но все не совсем так, глухие вполне воспринимают их и могут даже иметь музыкальный слух. Пример тому – известный великий композитор, Бетховен, который использовал нехитрое изобретение для распознавания звука.

Людвиг ван Бетховен

Известно, что великий композитор написавший более 240 сочинений, из которых – девять завершенных симфоний, пять фортепианных концертов и 18 струнных квартетов в 45 лет потерял слух. Так вот после 45 лет Бетховен приставлял к роялю конец палки, в то время как другой ее конец брал в зубы. Таким образом, звук вибрационным путем передавался через костные шары зубов и черепа и доходил до самого внутреннего уха, которое было здоровым.

Для подобного эксперимента, вы можете взять в зубы механические наручные часы и закрыть уши. Тиканье часов превратится в гулкие удары, настолько сильным оно будет казаться. Удивительно, что практические глухие и полностью глухие люди могут говорить по телефону при помощи распознавания вибраций. Они прижимают трубку не к раковине уха, а к височной кости. Люди с нарушениями слуха могут быть и отличными танцорами, так как колебания проникают во внутреннее ухо не только через раковину, но и через все кости скелета, к ногам через пол.

Забавный факт с инфразвуком

Немало интересных фактов в себе таит тема инфразвуковых волн. Инфразвуком называют колебания ниже, чем частота в 16 Гц. Эти волны отлично передаются по воде, поэтому с их помощью общаются многие морские животные, прекрасно ориентируясь на низких глубинах и широких водных пространствах. Инфразвук распространяется даже на сотни километров. Ученые увлеченно проводят исследования на тему влияния инфразвука на человека.

Есть в истории очень известный случай, связанный с инфразвуком.

Роберт Вуд

Однажды в девятнадцатом веке в каком-то театре ставилась пьеса о Средневековье, в связи с чем знаменитый на то время физик Р. Вуд (1868-1955) получил заказ на огромную органную трубу, метров сорока длиной. Настолько длинная труба нужна была для издавания очень низких, почти не воспринимаемых человеческим ухом звуков. Звуковая волна в сорокаметровой трубе приблизительно составляет около 8 Гц.

Но во время спектакля произошел конфуз: инфразвук, который выдал инструмент не был слышен, но при этом стал вторить альфа-волнам мозговой активности, сработала . Мало кто знал тогда, что этот альфа-ритм, созданный искусственно так повлияет на людей: у зрителей началась паника и они все разбежались, даже не досмотрев спектакль.

Более причудливые факты

Интересные и жуткие факты:

  • в безвоздушном пространстве звуковые волны не распространяются, потому что нет ничего, чтобы им отталкиваться
  • мухи не слышат звука
  • животные с большими ушами слышат лучше, чем животные с маленькими ушами
  • слух лисы настолько хорош, что она может услышать скрип мыши на расстоянии 100 метров. Она может даже поймать звук мыши скребущей под землей!
  • эхо возникает, когда звуковые волны отскакивают от объекта, а не поглощаются
  • если вы постоянно кричите в течение 8 лет, 7 месяцев и 6 дней, вы произведете достаточно звуковой энергии, чтобы нагреть чашку кофе
  • самый громкий естественный звук на земле – это извержение вулкана

Теперь, когда вы узнали все эти удивительные и интересные факты о звуке, вы знаете, об огромной роли звука в нашей жизни, а может испортить нам жизнь.

Физика - удивительный и интересный предмет, занимательная наука.
Вот несколько интересных фактов и физических явлений из физики звука.
Интересный факт: быть глухим не значит ничего не слышать, и тем более не значит не иметь «музыкальный слух». Великий композитор Бетховен, например, вообще был глухим. Он приставлял к роялю конец своей трости, а другой ее конец прижимал к зубам. И звук доходил до его внутреннего уха, которое было здоровым.
Если взять в зубы тикающие наручные часы и заткнуть себе уши, то тиканье превратится в сильные, тяжелые удары - настолько оно усилится. Удивительные факты - почти глухие люди разговаривают по телефону, прижимая трубку к височной кости. Глухие часто танцуют под музыку, ведь звук проникает в их внутреннее ухо через пол и кости скелета. Вот какими удивительными путями доходят звуки до слухового нерва человека, но «музыкальный слух» при этом остается.

Интересные факты из науки физики об инфразвуке.
Инфразвук - это звуковые колебания частотой меньше 16 Гц. Именно инфразвуки, прекрасно распространяясь в воде, помогают китам и другим морским животным ориентироваться в толще воды. Для инфразвука не помеха даже сотни километров.
Воздействие инфразвука на человека весьма своеобразно. Известен такой интересный случай. Как-то в театре для пьесы о временах Средневековья заказали знаменитому физику Р. Вуду (1868-1955) огромную органную трубу, около 40 метров длиной. Труба издает тем ниже звук, чем она длиннее. Такая длинная труба должна была издать уже не слышимый человеческим ухом звук. Звуковая волна в 40 м длиной соответствует частоте около 8 Гц. А это вдвое ниже нижнего предела слышимости человека по высоте. Конфуз получился, когда попробовали на спектакле воспользоваться этой трубой. Инфразвук такой частоты хотя и не был слышим, но близко подошел к так называемому альфа-ритму человеческого мозга (5 - 7 Гц). Колебания такой частоты вызвали у людей чувство страха и паники. Зрители разбежались, устроив при этом давку. Такие частоты вообще опасны для человека.
Подобными колебаниями некоторые даже объясняют таинственные события в океане, например в Бермудском треугольнике, когда с кораблей исчезают люди. Ветер, отражаясь от длинных волн в океане, может породить инфразвук, губительно действующий на психику людей. Согласно этой гипотезе, люди на кораблях впадают в панику и сами выкидываются за борт.

Интересные факты из физики о резонансе.

Все знакомы с эффектом резонанса из курса школьной физики. Так вот интересный факт: ветер или солдаты, шагающие в ногу, могут разрушить мост. Это происходит если собственная частота моста совпадет с возмущающей силой, что вызывает резонанс. Таких случаев бывало немало. Так, к примеру, в 1940 г. обрушился мост Тэйкома в США от автоколебаний, вызванных ветром. В 1906 году разрушился прочный мост через реку Фонтанка, так отряд солдат шел в ногу. Вот почему проходя по мостам, солдаты получают приказ идти не в ногу, чтобы не вызвать его резонанс.

О знаменитом певце Шаляпине говорят, что он мог запеть так, что лопались плафоны в люстрах. Это не легенда, а вполне объяснимый с точки зрения физики факт. Допустим, мы знаем частоту собственных колебаний стеклянного сосуда, например стакана. Это можно установить по высоте тона звона этого стакана после легкого щелчка по нему. Если громко запеть эту ноту вблизи стакана, то, как Шаляпин, сможем расколоть стакан своим пением. Но петь при этом необходимо так же громко, как Шаляпин.

Удивительный факт: если связать толстой металлической проволокой два фортепиано в разных комнатах и играть на одном из них, то второе (с нажатой педалью!) будет играть ту же мелодию само собой, без пианиста.

Читайте так же ,

Среди наших многочисленных чувств способность слышать звук должна быть одной из лучших. Слушаем ли мы прекрасную мелодию, или рев набирающего скорость автомобиля, звук помогает нам наслаждаться красотой природы и удерживает нас от грозящей гибели. Но звуков гораздо больше, чем способно уловить наше ухо. Например, некоторые животные, такие как дельфины, используют звук, чтобы получить информацию об окружающем мире, используя для этого эхолокацию. Любопытно узнать о звуке больше? Вот 25 случайных и интересных фактов о звуке (вы просто не поверите своим ушам!)

25. Кости среднего уха - молоточек, наковальня и стремечко - помогают превращать волны, вызванные давлением, в механические вибрации.

24. Системы сигнализации издают звуки частотой от 1 до 3 кГц. Этот частотный диапазон очень чувствителен для ушей человека, и нам становится трудно ориентироваться.


Фото: commons.wikimedia.org

23. Музыкальные звуки - это равномерные вибрации, а шумы - нерегулярные вибрации. Музыкальные звуки различаются по высоте, громкости, интенсивности, качеству и тембру.


Фото: Pixabay.com

22. Скорость звука составляет около 344 м в секунду в сухом воздухе при 20 градусах Цельсия.


Фото: Wikipedia Commons.com

21. Ухо здорового молодого человека может улавливать все частоты от 20 до 20 000 герц.


Фото: commons.wikimedia.org

20. Для сравнения, дельфин может слышать и воспроизводить звуки до 150 кГц, что составляет диапазон в 150 000 герц. Это означает, что есть некоторые , издаваемые дельфинами, которые люди даже не слышат. Дельфины постоянно используют разные звуки для эхолокации.


Фото: Wikipedia Commons.com

19. Люди, которые страдают Превосходящим синдромом раскрывания канала, могут испытывать ощущение, что они слышат, как их тело звучит на высоких уровнях, в том числе слышать движения собственных глаз.


Фото: Wikipedia Commons.com

18. Благодаря эффекту Доплера музыкальная пьеса, звучащая на скорости в два раза быстрее скорости звука, будет звучать правильно и стройно, но только в обратную сторону.


Фото: flickr.com

17. Будь то симфонический оркестр или хэви-метал группа, если они будут играть музыку на уровне 120 дБ, то это приведет к повреждению слуха.


Фото: commons.wikimedia.org

16. Поскольку частицы воды расположены ближе друг к другу, чем частицы воздуха, в воде звук распространяется в четыре раза быстрее.


Фото: PublicDomainPictures.net

15. Производители фильмов ужасов используют инфракрасный звук, чтобы вызвать беспокойство, печаль и даже учащенное сердцебиение.


Фото: Wikipedia Commons.com

13. Активные шумопоглощающие наушники используют деструктивные помехи, чтобы аннулировать входящий звук и полностью стереть звуковые волны.


Фото: en.wikipedia.org

12. Если вы хлопнете в ладоши перед пирамидой Чичен-Ица Эль-Кастильо (Chichen Itza"s El Castillo), эхо будет звучать как чириканье птицы.


Фото: commons.wikimedia.org

11. В старых телевизионных пультах использовали алюминиевый стержень и молоточек, чтобы с помощью звука, не воспринимаемого человеческим ухом, переключиться на нужный канал или изменить громкость.


Фото: commons.wikimedia.org

10. Астрономы обнаружили черную дыру, находящуюся на расстоянии 250 миллионов световых лет от нас, которая издавала звук, соответствующий звучанию гитарной струны на определенных октавах.


Фото: commons.wikimedia.org

9. Британские ученые обнаружили, что слонов пугает звук, издаваемый пчелами, и они убегают, когда слышат его.


Фото: MaxPixel.com

8. По некоторым оценкам , звук в 1100 децибел полностью уничтожит вселенную в черной дыре.


Фото: Pexels.com

7. Поскольку электрические автомобили очень тихие, из соображений безопасности требуют, чтобы они издавали некоторые искусственные звуки.


Фото: commons.wikimedia.org

6. Звук не может перемещаться в безвоздушном пространстве потому, что там нет молекул, которые могли бы вибрировать.


Фото: Pixabay.com

5. В 1883 году извержение вулкана на острове Кракатау (Krakatoa) произвело звук, который выбил окна, встряхнул дома и, как сообщается, был слышен на расстоянии 160 км от взрыва. Созданные им атмосферные ударные волны семь раз обогнули Землю, прежде чем рассеялись.


Фото: WIkipedia Commons.com

4. Чтобы оглушить свою добычу, рак щелкун производит чрезвычайно громкий хлопок. Громкость хлопка достигает 218 децибел, что даже громче, чем выстрел из пистолета.


Фото: commons.wikimedia.org

3. Голубые киты могут издавать звуки под водой, достигающие 188 децибел, которые будут слышны на 800 км.


Фото: Pixabay.com

2. Исследования, проводимые в психоакустике, помогают понять, как звук влияет на нашу психологию и нервную систему.


Фото: Wikipedia Commons.com

1. Исследователи из Массачусетского технологического института (Massachusetts Institute of Technology, MIT) обнаружили, что, даже если вы не записываете звук во время видеосъемки, голос на ней можно воссоздать исключительно по небольшим вибрациям окружающих вещей.


Фото: Pixabay.com