Исследовательская работа «Сила трение и её полезные свойства. Опыты по физике

Описание презентации Исследовательский проект по физике Сила трения Цель: по слайдам

Цель: выяснить, какую роль играет сила трения в нашей жизни, как человек получил знания об этом явлении, какова её природа. Задачи: проследить исторический опыт человека по использованию и применению этого явления: выяснить природу явления трения, закономерности трения; провести эксперименты, подтверждающие; закономерности и зависимости силы трения; подумать и создать демонстрационные эксперименты, доказывающие зависимость силы трения от силы нормального давления, от свойств соприкасающихся поверхностей, от скорости относительного движения тел.

Отчёт группы теоретиков Цель: показать, какую роль играет явление трения или его отсутствие в нашей жизни; ответить на вопрос: «Что мы (обыватели) знаем об этом явлении? »

Группа изучила пословицы, поговорки, сказки, в которых проявляется сила трения, покоя, качения, скольжения, изучила человеческий опыт в применении трения, способов борьбы с трением. Пословицы и поговорки: Тише едешь, дальше будешь. Любишь кататься, люби и саночки возить. Врёт, что шёлком шьёт. Сказки: «Репка» — трение покоя. «Курочка ряба» — трение покоя «Медвежья горка» — трение скольжения.

Трение – явление, сопровождающее нас с детства, буквально на каждом шагу, а потому ставшее таким привычным и незаметным.

Трение даёт нам возможность ходить, сидеть, работать без опасения, что книги и тетради упадут со стола, что стол будет скользить, пока не упрётся в угол, а ручка выскользнет из пальцев.

Однако маленькое трение на льду может быть успешно использовано технически. Свидетельство этому так называемые ледяные дороги, которые устраивали для вывозки леса с места рубки к железной дороге или к пунктам сплава. На такой дороге, имеющий гладкие ледяные рельсы, две лошади тащат сани, нагруженные 70 тоннами брёвен.

Вот данные, которые нам сообщили в больнице; число обратившихся за медицинской помощью в декабре – январе, только школьников, в возрасте 15 -17 лет – 6 человек. В основном диагнозы: переломы, вывихи, ушибы. Есть среди обратившихся за помощью и люди пожилого возраста. 3 21 2 15 лет 16 лет 17 лет Пожилой возраст

Данные из ГИБДД о дорожно-транспортных происшествиях за зимний период: число ДТП, в том числе по причине скользких дорог —

Группа провела и небольшой социологический опрос группы жителей, которым задавались следующие вопросы: 1. Что вы знаете о явлениях трения? 2. Как вы относитесь к гололеду, скользким тротуарам и дорогам? 3. Ваши предложения администрации нашего района?

Отчет группы теоретиков Цели: изучить природу сил трения; исследовать факторы, от которых зависит трение; рассмотреть виды трения.

Сила трения Если мы попытаемся сдвинуть с места шкаф, то сразу убедимся, что не так-то просто это сделать. Его движению будет мешать взаимодействие ножек с полом, на котором он стоит. Различают 3 вида трения: трение покоя, трение скольжения, трение качения. Мы хотим выяснить, чем эти виды отличаются друг от друга и что между ними общего?

Трение покоя Прижмём свою руку к лежащей на столе тетради и передвинем её. Тетрадь будет двигаться относительно стола, но покоиться по отношению нашей ладони. С помощью чего мы заставили эту тетрадь двигаться? С помощью трения покоя тетради о руку. Трение покоя перемещает грузы, находящиеся на движущейся ленте транспортёра, препятствует развязыванию шнурков, удерживает гвозди, вбитые в доску, и т. д.

Из-за чего постепенно останавливаются санки, скатившиеся с горы? Из-за трения скольжения. Почему замедляет своё движение шайба, скользящая по льду? Вследствие трения скольжения, направленного всегда в сторону, противоположную направлению движение тела. Трение скольжения

Причины возникновения силы трения: Шероховатость поверхностей соприкасающихся тел. Даже те поверхности, которые выглядят гладкими, на самом деле всегда имеют микроскопические неровности (выступают, впадины). При скольжении одного тела по поверхности другого эти неровности зацепляются друг за друга и тем самым мешают движению Межмолекулярное притяжение, действующее в местах контакта трущихся тел. Между молекулами вещества на очень малых расстояниях возникает притяжение. Молекулярное притяжение проявляется в тех случаях, когда поверхность соприкасающихся тел хорошо отполированы. Так, например, при относительном скольжении двух металлов с очень чистыми и ровными поверхностями, обработанными в вакууме с помощью специальной технологии, сила трения между брусками дерева друг с другом, и дальнейшее скольжение становиться невозможно.

Трение качения Если тело не скользит по поверхности другого тела, а, подобно колесу или цилиндру, катится, то возникающее в месте их контакта трение называют трение качения. Катящееся колесо несколько вдавливается в полотно дороги, и потом перед ним все время оказывается небольшой бугорок, который необходимо преодолевать. Именно тем, что катящемуся колесу постоянно приходится наезжать на появляющийся впереди бугорок, и обусловлено трение качения. При этом, чем дорога тверже, тем трение качения меньше. При одинаковых нагрузках сила трения качения значительно меньше силы трения скольжения.

Но ведь знания о природе трения пришли к нам не сами. собой Этому предшествовала большая — исследовательская работа ученых экспериментаторов. на протяжении нескольких веков Не все знания, приживались легко и просто многие требовали, многократных экспериментальных проверок. доказательств Самые светлые умы последних столетий изучали зависимость модуля силы трения от: многих факторов от площади соприкосновения, поверхностей от рода материала от нагрузки от, неровностей поверхностей и шероховатостей от. относительной скорости движения тел Имена этих: , ученых Леонардо да Винчи Амонтон Леонард Эйлер – , Шарль Кулон это наиболее известные имена но были. , еще рядовые труженики науки Все ученые, участвовавшие в этих исследованиях ставили опыты в которых совершалась работа по преодолению силы. трения

Леонардо да Винчи Он таскал по полу то плотно свитую веревку, то ту же веревку во всю длину. Его интересовал ответ на вопрос: зависит ли сила трения скольжения от величины площади соприкасающихся в движении тел? Механики того времени были глубоко убеждены, что чем больше площадь касания, тем больше сила трения. Они рассуждали примерно так, что чем больше таких точек, тем больше сила. Совершенно очевидно, что на большей поверхности будет больше таких точек касания, поэтому сила трения должна зависеть от площади трущихся тел.

Он получил следующие результаты: 1. От площади не зависит. 2. От материала не зависит. 3. От величины нагрузки зависит (пропорционально ей). 4. От скорости скольжения не зависит. 5. Зависит от шероховатости поверхности.

Французский ученый Амонтон В результате своих опытов так ответил на те же пять вопросов. На первые три – так же, на четвертый – зависит. На пятый – не зависит. Получалось, и Амонтон подтвердил столь неожиданный вывод Леонардо да Винчи о независимости силы трения от площади соприкасающихся тел. Но в то же время он не согласился с ним в том, что сила трения не зависит от скорости скольжения; он считал, что сила трения скольжения зависит от скорости, а с тем, что сила трения зависит от шероховатостей поверхностей, не соглашался.

Российской Академии наук Леонард Эйлер Действительный член Российской Академии наук Леонард Эйлер опубликовал свои ответы на пять вопрос о трении. На первые три- такие же, как и у предыдущих, но в четвертом он согласился с Амонтом, а в пятом – с Леонардо да Винчи.

Французский физик Кулон Он ставил опыты на судостроительной верфи, в одном из портов Франции. Там о нашел те практические производственные условия, в которых сила трения играла очень важную роль. Кулон на все вопросы ответил – да. Общая сила трения в какой-то малой степени все же зависит от размеров поверхностей трущихся тел, прямо пропорциональна силе нормального давления, зависит от материала соприкасающихся тел, зависит от скорости скольжения и от степени гладкости трущихся поверхностей. В дальнейшем ученых стал интересовать вопрос о влиянии смазки, и были выделены виды трения: жидкостное, чистое, сухое и граничное.

Правильные ответы Сила трения не зависит от площади соприкасающихся тел, а зависит от материала тел: чем больше сила нормального давления, тем больше сила трения. Точные измерения показывают, что модуль силы трения скольжения зависит от модуля относительной скорости. Сила трения зависит от качества обработки трущихся поверхностей и увеличения вследствие этого силы трения. Если тщательно отполировать поверхности соприкасающихся тел, что число точек касания при той же силе нормального давления увеличивается, а следовательно, увеличивается и сила трения. Трение связано с преодолением молекулярных связей между соприкасающимися телами.

В опыте с трибометром силой нормального. давления служит вес бруска Измерим силу, нормального давления равную весу чашечки с гирьками в момент равномерного скольжения. бруска Увеличим теперь силу нормального, . давления вдвое поставив грузы на брусок, Положив на чашечку добавочные гирьки снова. заставим брусок двигаться равномерно. Сила трения при этом увеличится вдвое На, основании подобных опытов было установлено, что при неизменных материале и состоянии трущихся поверхностей сила их трения прямо, . . : пропорциональна силе нормального давления т е F тр =µ·N

Величина характеризующая зависимость силы трения от материала и качества обработки трущихся, поверхностей называется. коэффициентом трения Коэффициент трения измеряется отвлеченным, числом показывающим какую часть силы нормального давления составляет сила трения Μ= N/F ТР

В технике и повседневной жизни силы трения. играют огромную роль В одних случаях силы трения, – . приносят пользу в других вред Сила трения, ; удерживает вбитые гвозди винты гайки, . . удерживает нитки в материи завязанные узлы и т д При отсутствии трения нельзя было бы сшить, . одежду собрать станок сколотить ящик

Наличие трения покоя позволяет человеку передвигаться по поверхности Земли. Идя, человек отталкивает от себя Землю назад, а Земля с такой же силой толкает человека вперед. Сила, движущая человека вперед, равна силе трения покоя между подошвой ноги и Землей. Чем сильнее человек толкает Землю назад, тем больше сила трения покоя, приложенная к ноге, и тем быстрее движется человек. Когда человек отталкивает Землю с силой большей, чем предельная сила трения покоя, то нога скользит назад, и это затрудняет ходьбу. Вспомним, как трудно ходить по скользкому льду. Чтобы легче было идти, необходимо увеличить трение покоя. С этой целью скользкую поверхность посыпают песком.

ОТЧЕТ ГРУППЫ ЭКСПЕРИМЕНТАТОРОВ: Ц е л ь выяснить зависимость силы трения: скольжения от следующих факторов — ; от нагрузки — от площади соприкосновения трущихся; поверхностей — (от трущихся материалов при сухих). поверхностях: О б о р у д о в а н и е динамометр лабораторный 40 / ; с жесткостью пружины Н м динамометр (– 12); круглый демонстрационный предел Н – 2 ; ; деревянные бруски штуки набор грузов; деревянная дощечка кусок металлического; ; ; . листа плоский чугунный брусок лед резина

Результаты экспериментов: 1. Зависимость силы трения скольжения от нагрузки м (г) 120 620 1120 F тр (Н) 0, 3 1, 5 2,

2. Зависимость силы трения от площади соприкосновения трущихся поверхностей. S (см 2) 220 228 1140 F тр (Н) 00, 35 00,

3. Зависимость силы трения от размеров неровностей трущихся поверхностей: дерево по дереву (различные способы обработки поверхностей). ч 1 неровное 2 гладкое 3 отшлифованное F тр 1, 5 0, 7 0,

1. Неровная поверхность – брусок не обработан. 2. Гладкая поверхность – брусок обструган вдоль волокон дерева. 3. Отшлифованная гладкая поверхность обработана наждачной бумагой. 4. При нанесении силы трения от материалов трущихся поверхностей мы используем один брусок массой 120 г и разные контактные поверхности. Используем формулу: F тр = µ·N № п/п Трущиеся материалы (при сухих поверхностях) Коэффициент трения (при движения) 1 Дерево по дереву (в среднем) 0, 3 2 Дереву по дереву (вдоль волокон) 0, 075 3 Дерево по металлу 0, 4 4 Дерево по чугуну 0, 5 5 Дерево по льду 0,

№ 1 Опыт, . Тщательно натираем смычок канифолью затем проводим им по струне. Продолжительные поющие звуки получают благодаря трению Когда, скрипач начинает вести смычок вдоль струны струна под действием силы. трения покоя увлекается смычком и выгибается При этом натяжение. стремится вернуть ее в первоначальное положение, Когда эта сила превысит силу трения покоя струна срывается и приходит, в колебание скрипач перемещает смычок в противоположную сторону а. затем навстречу. , Скрипка поет Если играть на скрипке без смычка дергая струны, ; пальцами получится звук как у балалайки если натянуть пальцем струну, . и отпустить ее то раздастся резкий звук который быстро затухнет? Зачем натирают смычок канифолью Играет ли канифоль роль смазки при? , трении Оказывается смычок натирают канифолью не только для того, чтобы повысить силу трения но и для того чтобы эта сила заметно – зависела от скорости скольжения быстрее уменьшилась бы с ростом. . скорости Струна под смычком движется всегда медленнее смычка Когда, . смычок и струна движутся в одну сторону струна отстает от смычка Сила. трения препятствует отставанию и увлекает струну за смычком Сила, трения совершает работу смычок тащит за собой струну и наоборот, . тормозит струну замедляя ее движение Совершается работа против сил. трения

№ 2 Опыт Деревянное яйцо с пропущенной через середину нитью. Берут в руки концы этой нити, и одну руку высоко поднимают вверх. Деревянное яйцо по нити быстро соскальзывает вниз. Поднимают вверх другую руку. Яйцо снова устремляется вниз, но вдруг неожиданно застревает на середине нити, затем опять скользит и останавливается. В этом опыте сила трения скольжения пропорциональна силе нормального давления. Яйцо состоит из двух соединяющихся половинок. В центре перпендикулярно нити укреплена корковая пробка. При натяжении нити сила трения нити о пробку увеличивается и яйцо замирает в определенном положении на нити. Если нить не натянута, то сила трения меньше и яйцо свободно скользит вниз.

№ 3 Опыт Деревянная линейка. Кладут линейку горизонтально на указательные пальцы рук и, не торопясь, пальцы начинают сближать. Линейка не движется равномерно по двум пальцам сразу. Она скользит по очереди то по одному, то по другому пальцу. Почему? Под линейкой скользит лишь тот палец, который стоит дальше от центра масс линейки, так как он испытывает меньшую нагрузку и меньшее трение. Его скольжение прекращается, как только он оказывается ближе к центру масс линейки, чем второй палец, и тогда начинает скользить второй палец. Так пальцы движутся к центру тяжести линейки поочередно.

Выводы по результатам работы над проектом Мы выяснили, что человек издавна использует знания о явлении трения, полученные опытным путем. Начиная с ХY – ХYI веков, знания об этом явлении становятся научными: ставятся опыты по определению зависимостей силы трения от многих факторов, выясняются закономерности. Теперь мы точно знаем, от чего зависит сила трения, а что не влияет на нее. Если говорить более конкретно, то сила трения зависит: от нагрузки или массы тела; от рода соприкасающихся поверхностей; от скорости относительного движения тел; от размере неровностей ли шероховатостей поверхностей. А вот от площади соприкосновения она не зависит. Теперь мы можем объяснить все наблюдаемые в практике закономерности строение вещества, силой взаимодействия между молекулами. Мы провели серию экспериментов, проделали примерно такие же опыты, как и ученые, и получили примерно такие же результаты. Получилось, что экспериментально мы подтвердили все утверждения, высказанные нами. Нами была создан ряд экспериментов, помогающих понять и объяснить некоторые «трудные» наблюдения. Но, наверное, самое главное – мы поняли, как здорово добывать знания самим, а потом делиться ими с другими.

Одна из проблем современной школы – снижение интереса к физике. Я задала себе вопрос: Какими средствами может воспользоваться учитель, чтобы сформировать у учащихся положительное отношение к предмету, вызвать у них познавательный интерес к знаниям? Можно предложить такую схему воспитания у школьников увлечения учебным предметом: от любопытства к удивлению, от него к активной любознательности и стремлению узнать, от них к прочному знанию и научному поиску.

Остановлюсь подробнее на первой стадии - удивления и любопытства: у школьников возникает ситуативный интерес, проявляющийся при демонстрации эффектного опыта, прослушивании рассказа об интересном случае из истории физики, причем его объектом является не содержание предмета, а чисто внешние моменты урока - оборудование, мастерство учителя, формы работы на уроке.

Новизна, непосредственный интерес и эмоциональная привлекательность вызывают прежде всего непроизвольное внимание. В свою очередь, непроизвольное внимание вызывает непроизвольное запоминание. Каждый учитель хорошо знает, что при проверке домашнего задания ученик, отвечая на поставленный вопрос, начинает с описания опыта, который он видел на предыдущем уроке. Зрительные образы демонстрационных опытов сохраняются в памяти и выполняют функцию ориентиров, опор, на основании которых восстанавливается остальная часть изученного учебного материала.

Я полностью согласна с психологами, которые отмечают, что сложный зрительный материал запоминается лучше, чем его описание. Поэтому демонстрация опытов запечатлевается памятью учащихся значительно лучше, чем рассказ учителя о физических опытах.

Однако ученики, вспоминая демонстрационные опыты, вносят в свое описание изменения, которые обусловлены не только забыванием некоторых деталей, но и преобразованием описания в форму, более, легкую для понимания. Вспоминая, ученики выделяют детали опытов, которые представляются им наиболее значимыми и интересными. Все это свидетельствует о том, что припоминание является не простым воспроизведением, а конструктивным процессом.

Таким образом, я считаю, что демонстрация опытов развивает внимание и память учащихся на стадии эмпирического познания изучаемых явлений и закономерностей.

В этой связи предлагается использовать эффектные опыты, поскольку у учащихся возникает не только живой интерес к демонстрации явления, но и бурное обсуждение разгадки явления (проблемная ситуация). Таким образом, при показе эффектного опыта, мы убиваем сразу двух зайцев: демонстрируем физическое явление и создаем проблемную ситуацию. А в качестве "побочного эффекта" пробуждаем интерес к предмету. Поэтому, характер и форма организации учебно-познавательной деятельности учащихся: проблемно – поисковый, исследовательский и репродуктивный характер деятельности позволяет осуществить комплексное применение знаний учащихся.

Я как учитель совместно с учащимися ставила цели:

Образовательная:систематизация знаний по теме “Сила трения”: знать природу силы трения, формировать умение различать виды трения; сравнивать их в разных практических ситуациях; обосновывать необходимость увеличения и уменьшения силы трения; формировать у ребят умение осуществлять самоконтроль с помощью конкретных вопросов и использования дидактического материала.

Развивающая:совершенствовать навыки самостоятельной работы, активизировать мышление школьников, умение самостоятельно формулировать выводы, развивать речь. Развитие творческих способностей на основе практической работы. Отработка практических навыков в работе с физическим оборудованием.

Воспитательная: развитие чувства взаимопонимания и взаимопомощи в процессе совместного выполнения экспериментального задания; развитие мотивации изучения физики, используя разнообразные приёмы деятельности, сообщая интересные сведения.

В ходе такого вида деятельности у учащихся формируются способности к структурированию и систематизации изучаемого предметного содержания. Освещение темы сопровождается демонстрацией презентации с последующим обсуждением и объяснением явлений, происходящих из-за наличия силы трения. Демонстрируются способы изменения силы трения на практике. Учащиеся имеют возможность анализировать происходящее и делать выводы.

Наряду с этим, происходит развитие метапредметных УУД: коммуникативные – выражать с достаточной полнотой полнотой и точностью свои мысли, добывать недостающую информацию с помощью вопросов; регулятивные – осознавать самого себя как движущую силу своего научения, свою способность к преодолению препятствий и самокоррекции, составлять план решения задачи, самостоятельно исправлять ошибки; познавательные – уметь создавать модели для решения учебных и познавательных задач, выделять и классифицировать существенные характеристики объекта. А так же планируются результаты личностные: формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики.

Цель:

  • познакомить с видами силы трения;
  • выяснить от чего зависит сила трения

Задача:

  • определить значение силы трения в повседневной жизни, природе.

Трение – явление, сопровождающее нас с детства, на каждом шагу, а потом ставшее таким привычным и таким незаметным.

Сила трения в сказках: “Колобок” (сила трения качения), “Репка” (сила трения покоя), “Медвежья горка” (сила трения скольжения), “Царевна лягушка” (сила трения качения).

Трение – один из видов взаимодействия тел. Оно возникает при соприкосновении двух тел. Трение, как и все другие виды взаимодействия, подчиняется третьему закону Ньютона: если на одно из тел действует сила трения, то такая же по модулю, но направленная в противоположную сторону сила действует и на второе тело.

Виды силы трения: Fтр.качения, Fтр.скольжения, Fтр.покоя, но возможна замена одного вида трения другим (Fтр.скольжения на Fтр.качения). При помощи бруска, динамометра и двух карандашей можно продемонстрировать, что Fтр.скольжения больше, чем Fтр.качения.

Зависимость силы трения от некоторых показателей демонстрируют следующие опыты:

С помощью динамометра, бруска и набора грузов показываем, что сила трения зависит от силы нормального давления;

На место гладкой поверхности кладем шероховатый лист бумаги (сила трения зависит от материала);

Устраняем пластилин с поверхности, измеряем при этом силу трения до и после;

Используем смазку, что ведет к уменьшению силы трения;

Сила трения почти не зависит от площади опоры.

У силы трения есть свои плюсы и, к сожалению, минусы. В том случае, когда оно полезно – стараются увеличить. Если вредно – пытаются уменьшить (использование смазки, подшипников, которые уменьшают силу трения в 20-30 раз).

Вот несколько примеров. Мелодия, исходящая от скрипки существует за счет того, что смычок приводит в колебание струны. Струна под смычком всегда движется медленнее, чем смычок. Когда струна движется навстречу смычку, то сила трения скольжения тормозит струну, замедляя ее движение. А когда смычок движется по направлению струны, то сила трения скольжения наоборот “тащит” струну за собой, не давая ей отставать. Когда зимой на дорогах образовывается лед, то велика вероятность аварий, также пешеходы могут получить травмы на заледеневших тропинках. Чтобы этого избежать, можно насыпать песок на дорогу, тем самым увеличили силу трения. Польза силы трения качения в том, что катящееся колесо немного вдавливается в дорогу, и перед ним образуется небольшой бугорок, который приходится преодолевать. Так происходит движение. В 1779 году французский физик Кулон установил, от чего зависит максимальная сила трения покоя. Чем тяжелее книга, лежащая на столе, чем сильнее она прижимается к столу, тем труднее ее сдвинуть. Именно за счет трения покоя все остается на своих местах: шнурки не развязываются, гвоздь держится в стене, шкаф стоит на своем месте. Можно сделать выводы о плюсах силы трения. Благодаря этой силе мы можем стоять или двигаться вперед, замедлять или ускорять движение отдельных тел.

Но, наряду с плюсами, есть еще и минусы. Человек никогда не сможет изобрести вечный двигатель, т.к. со временем любое движение прекратится из-за силы трения и приходится время от времени это движение сохранять – воздействовать на него. Трение не только тормоз для движения, это еще и главная причина изнашивания технических устройств - проблема, с которой человек столкнулся на заре цивилизации.

Леонардо де Винчи занимался многими вопросами деталей машин, трения и износа. Сила трения направленна в противоположную от приложенной силы сторону, и это приводит к совершению большой работы.

Основной характеристикой трения является коэффициент трения “мю”, который определяется материалами, из которых изготавливают поверхности взаимодействующих тел.

В жизни многих растений трение играет положительную роль. Например, лианы, хмель, горох, бобы и др. вьющиеся растения благодаря трению могут цепляться за опоры, удерживаются на них и тянутся к свету. Между опорой и стеблем возникает большая сила трения, т.к. стебли плотно прилегают к опоре. У растений, имеющие корнеплоды, такие, как морковь, свекла, сила трения о грунт способствует удержанию их в почве. С ростом корнеплода, давление окружающей земли на него увеличивается, и сила трения тоже возрастает. Поэтому так трудно вытащить из земли большую репу, свеклу. Таким растениям, как репейник, трение помогает распространять семена, имеющие колючки с небольшими крючками на концах. Эти колючки зацепляются за шерсть животных и вместе с ними перемещаются. Семена же гороха, ореха, благодаря своей шарообразной форме и малому трению качения, перемещаются легко сами.

Организмы многих живых существ приспособились к трению, научились его уменьшать или увеличивать. Тело рыб имеют обтекаемую форму и покрыто слизью, что позволяет им развивать при плавании большую скорость. Щетинистый покров моржей, тюленей, морских львов помогает им передвигаться по суше и льдинам. Чтобы увеличить сцепление с грунтом, стволами деревьев, на конечностях животных имеется целый ряд приспособлений: когти, острые края копыт, подковные шипы, тело пресмыкающихся покрыто бугорками и чешуйками. Действие органов хватания (хватательные органы жуков, клешни рака; передние конечности и хвост некоторых пород обезьян; хобот слона) тоже связано с трением. У многих живых организмов существуют приспособления, благодаря которым трение получается небольшим при движении в одном направлении и резко увеличивается при движении в обратном направлении. Это, например, шерсть и чешуйки, растущие наклонно к поверхности кожи. На этом принципе основано движение дождевого червя. Водяной жук-вертячка быстро носится на поверхности воды. Быстроте передвижения он обязан покрывающей тело жировой смазке, которая значительно уменьшает трение о воду.

Кости животных и человека в местах их подвижного сочленения имеют очень гладкую поверхность, а внутренняя оболочка полости сустава выделяет специальную жидкость, которая служит суставной “смазкой”. При глотании пищи и ее движении по пищеводу трение уменьшается за счет предварительного дробления и пережевывания пищи, а также смачивания ее слюной. При действии же органов движения у животных и человека трение проявляется как полезная сила.

Пословицы и поговорки о силе трения, сказанные людьми и взятые из жизненного опыта:

  • Скрипит, как несмазанная телега.
  • От того телега запела, что давно дегтя не ела.
  • Против шерсти не гладят.
  • Прошло дело как по маслу.
  • Хорошо смазал – хорошо поехал.
  • Живет как сыр в масле.
  • Где скрипит, там и мажут
  • Не тертая стрела в бок идет.
  • Плуг от работы блестит.
  • Три, три – будет дырка.

Опыты, демонстрирующие силу трения:

Опыт №1 . Вращение сырого и вареного яйца. Вареное яйцо вращается быстрее. В сыром яйце его желток и белок стараются сохранить неподвижное состояние (в этом проявляется их инерция) и своим трением о скорлупу тормозят его вращение.

Опыт №2. Развести в маленькой баночке марганцовку до темно-фиолетового цвета. Налить в другую банку простую воду. Затем, набрать пипеткой раствор марганцовки и капнуть в банку с высоты 1-2 сантиметра от поверхности воды. Кончик пипетки не должен колебаться. Руки должны опираться н локти. Капля, упав в воду, превращается в кольцо правильной формы, которое будет опускаться на дно банки, увеличиваясь в размере. Это объясняется тем, что когда капля упала в воду, она, встретив сопротивление, расплющилась. При движении ее вниз вследствие трения о воду, ее края завернулись. Получилось вихревое кольцо в виде баранки, вращающейся вокруг своей кольцевой оси.

Опыт №3. Положить на книгу шестигранный карандаш параллельно ее корешку. Медленно поднимать верхний край книги до тех пор, пока карандаш не начнет скользить вниз. Чуть уменьшить наклон книги и закрепить ее в теком положении, подложив под нее что-нибудь. Теперь карандаш, если его снова положить на книгу, съезжать не будет. Его удерживает на месте сила трения покоя. Достаточно щелкнуть пальцем по книге, сила трения покоя ослабнет, и карандаш поползет вниз.

Французский физик Гильом о роли силы трения: “Всем нам случалось выходить в гололедицу; сколько усилий стоило нам удерживаться от падения, сколько смешных движений приходилось нам проделать, чтобы устоять! Это заставляет нас признать, что обычно земля, по которой мы ходим, обладает драгоценным свойством, благодаря которому мы сохраняем равновесие без особых усилий. Та же мысль возникает у нас, когда мы едем на велосипеде по скользкой мостовой, или когда лошадь скользит по асфальту и падает. Изучая подобные явления, мы приходим к открытию тех следствий, к которым приводит трение. Инженеры стремятся его устранить в машинах – и хорошо делают. Однако, это правильно лишь в узкой специальной области. Во всех прочих случаях мы должны быть благодарны трению: оно дает нам возможность ходить, сидеть и работать без опасения, что книги и чернильница упадут на пол, что стол будет скользить, пока не упрется в угол, а перо выскользнет из пальцев”.


Актуальность: Работа предназначена для формирования мировоззрения о реальной действительности. Ответы на многие важные вопросы, связанные с движением тел, дают законы трения. Актуальность темы в том, что она связывает теорию с практикой, раскрывает возможность объяснения природы, применение и использование изученного материала. Данная работа позволяет развивать творческое мышление, умение приобретать знания из различных источников, анализировать факты, проводит эксперименты, делать обобщения, высказывать собственные суждения, задумываться над загадками природы и искать тропинку к истине.




Проследить исторический опыт человечества по использованию и применению этого явления; выяснить природу явления трения, закономерности трения; провести эксперименты, подтверждающие закономерности и зависимости силы трения; проделать демонстрационные эксперименты, доказывающие зависимость силы трения от силы нормального давления, от свойств соприкасающихся поверхностей.Задачи:






Коси, коса, пока роса, роса долой – и ты домой. Не подмажешь, не поедешь. Пошло дело, как по маслу. Без мыла в душу влезет. Кататься, как сыр в масле. От того телега запела, что давно дёгтя не ела.Пословицы объясняются существованием трения и использованием смазки для его уменьшения.




Тихая вода подмывает берега.Между отдельными слоями воды, текущей в реке, действует трение, которое называется внутренним. В связи с этим, скорость течения воды на разных участках поперечного сечения русла реки неодинакова: самая большая - в середине русла, самая маленькая - у берегов. Сила трения не только тормозит воду, но и действует на берег, вырывая частицы грунта и, тем самым, подмывая его.








































3. История изучения трения Леонардо да Винчи Эйлер Леонард Амонт Кулон Шарль Огюстен де


Год Имя ученого ЗАВИСИМОСТЬ модуля силы трения скольжения от площади соприкасающихся тел от материала от нагрузки от относительной скорости движения трущихся поверхностей от степени шероховатости поверхностей 1500 Леонардо да Винчи Нет Да НетДа 1699Амонтон Нет Да Нет 1748 Леонард Эйлер Нет Да 1779Кулон Да 1883Н.П.Петров НетДа




Вывод: Сила трения скольжения зависит от нагрузки, чем больше нагрузка, тем больше сила трения. Результаты экспериментов: 1. Зависимость силы трения скольжения от нагрузки. m (г) F тp (Н)0,50,81,0





Когда завязываем пояс Без трения все нитки выскальзывали бы из ткани. Без трения все узлы бы развязались. Без трения нельзя бы было ступить и шагу, да и, вообще, стоять. Трение принимает участие там, где мы о нем даже и не подозреваем Заключение Когда шьем Когда ходим



Мы выяснили,что человек издавна использует знания о явлении трения,полученные опытным путем. Нами была создана серия экспериментов, помогающих понять и объяснить некоторые трудные наблюдения. Сила трения возникает между соприкасающимися поверхностями. Сила трения зависит от рода соприкасающихся поверхностей. Сила трения не зависит от площади трущихся поверхностей. Сила трения уменьшается при замене трения скольжения трением качения, при смазывании трущихся поверхностей. Выводы по результатам работы:


1. Введение

Цель данной работы – изучить вопросы, связанные с возникновением трения. Эта тема, казалось бы, давно известная, остаётся по-прежнему актуальной , так как вопрос о силе трения полностью не решен ни физиками, ни математиками, тогда как трение - одна из важнейших проблем, например, для машиностроения. Задача работы – провести эксперименты, позволяющие исследовать от чего зависит сила трения. Таким образом, объектом исследования является трение.

Гипотеза : мир без трения был бы не узнаваем и ужасен. Не было бы развития цивилизации, ведь наши предки с помощью него добывали огонь . Технический прогресс при отсутствии колеса должен был стать каким-то другим. Кроме того, возможно, что трение - один из источников внутреннего тепла Земли.

Практическая значимость работы состоит в том, что она посвящена теории трения, которая до сих пор не является завершенной. Но для того, чтобы привлечь новых будущих исследователей их нужно заинтересовать проблемой. А для этого можно использовать материал данной работы.

Новизной в работе будет гипотеза об уменьшении молекулярного трения под большими горными массивами из-за большого давления. А это должно приводить к увеличению их подвижности. То есть повышать возможность землетрясений.

2. Основные вопросы теории трения

2.1. Мир без трения

Давайте вначале немного пофантазируем и представим, что было бы, если бы трение исчезло? Движущийся автомобиль не сможет остановиться, а неподвижный тронуться с места. Пешеходы упадут на асфальт и не смогут подняться. Кроме того, где пол ниже. они неожиданно окажутся голыми, так как нитки в тканях удерживаются трением. Вся мебель в комнате соскользнёт в один угол. Тарелки и стаканы также будут соскальзывать со стола. Гвозди и шурупы выскочат из стен. Ни одну вещь нельзя будет удержать в руках. Взять и перевернуть страницу книги тоже станет проблемой .

Интересно придумано и рассказано о мгновенном сильном уменьшении трения в книге для детей «Остров неопытных физиков» . «Все части автомобиля, основанные на использовании трения – тормоза, сцепление, приводной ремень, - перестали работать, а те части, для которых трение было помехой стали двигаться ещё быстрее. Поэтому двигатель продолжал работать и даже увеличил число оборотов – трение в цилиндрах и подшипниках уже не тормозило его…». Но автомобиль не мог двигаться, так как исчезло трение между шинами и асфальтом. Таким образом, колёса вертелись, а машина стояла месте. Описание такого же мира дано в стихотворении:

В вот, что пишет известный швейцарский физик, лауреат Нобелевской премии Шарль Гийом: «Вообразим, что трение может быть устранено совершенно. Тогда никакие тела, будь они величиной с каменную глыбу или малы, как песчинка, никогда не удержится одно на другом: всё будет скользить и катиться, пока не окажется на одном уровне. Не будь трения, Земля представляла бы шар без неровностей, подобно жидкому».

2.2. Две причины возникновения трения

Два самых главных изобретения – колесо (рис.1) и добывание огня (рис.2) - связаны именно со стремлением уменьшить или увеличить эффект трения.

Трение - следствие многих причин. Главные из них - две. Во-первых, зазубрины одной поверхности цепляются за шероховатости другой. Это так называемое геометрическое трение (рис.3). Во-вторых, молекулярное трение , когда поверхности обоих тел достаточно гладкие. В этом случае начинает сказываться притяжение между их молекулами (рис.4). Наука, изучающая трение называется трибологией (от греч."трибос"- трение). Трение - механическое сопротивление движению, возникающее в месте касания двух прижатых друг к другу тел при их перемещении одного относительно другого. Сила сопротивления F , направленная противоположно перемещению тела, называется силой трения. Законы сухого трения сформулировал в 1781 году Ш. О. Кулон (1736 - 1806). Они были определены опытным путём. Но ещё задолго до этого, среди бесчисленных научных и творческих достижений Леонардо да Винчи была и формулировка законов трения. Амонтон и Кулон ввели понятие коэффициента трения как отношения силы трения к нагрузке. Этот коэффициент определяет силу трения для любой пары контактирующих материалов. Обозначается греческой буквой μ [мю]. До сих пор формула:

F тр =µР,

где Р - сила прижатия или вес тела , a F тр - сила трения , является главной формулой. Её вариант:

F тр =μ N ,

где N – сила реакции опоры . . N =Р. Чертёжи, на которых изображены все силы, действующие на брусок, см. на рис. 5.

Коэффициент трения зависит не только от того, какие материалы контактируют, но и от того, насколько гладко обработаны контактирующие поверхности. Более точно формулу можно записать, учитывая молекулярное трение:

F = μ (N + S p 0 ),

где р 0 – добавочное давление , вызванное силами молекулярного притяжения.

2.3. Виды трения

Существует трения покоя, скольжения и качения. Выяснилось, что обычно сила трения скольжения при медленном движении меньше силы трения покоя (то есть страгивания с места). Кулон изучал именно силу трения при медленном движении тел и установил, что эта сила не зависит от величины скорости, а только от направления движения. Самым маленьким является трение качения. Поэтому при перемещении тяжелых предметов (корабли по суше, каменные блоки для строительства) люди подкладывали под них катки (обычные брёвна). Круглый предмет (например, бочку) легче катить, чем волочить. На этом же основано применение в технике подшипников: шариковых и роликовых (рис. 6).

Другой пример из практики, о различиях в применении видов трения: если автомобиль тормозит скольжением (юзом), то тормозной путь длиннее, чем при торможении качением, когда колесо вращается и своей поверхностью хорошо цепляется за дорожное покрытие. Это должен помнить и водитель, и пешеходы, переходящие улицу!

3. Современная картина трения

Как образно выразился один из основателей науки о трении, Ф. Боуден, «наложение двух твердых тел одного на другое подобно наложению перевернутых швейцарских Альп на австрийские Альпы – площадь контакта оказывается очень малой» (рис.7). Фотографии различных поверхностей, полученные с помощью микроскопов, подтверждают сравнение с горами (рис. 8,9). При попытке движения остроконечные «горные пики» цепляются друг за друга и сминают свои вершины. При попытке сдвига в горизонтальном направлении один пик начинает прогибать другой, то есть сначала попытается сгладить дорогу (рис. 10 а), а потом уже скользить по ней (рис. 10 б). Если тянуть тело динамометром с постоянной скоростью, то окажется, что само тело при этом движется рывками. Д вижение оказывается колебательным: залипание и скольжение поочерёдно сменяют друг друга.

4. Вибрационное сглаживание

Иногда бывает важно исключить движение рывками. Например, робот- сварщик должен плавно вести сварочный аппарат вдоль сварочного шва. Если он будет дёргаться, то в одном месте будет перегрев и свариваемые пластины искорёжатся, а в другом - сварка не произойдёт совсем, так как аппарат слишком быстро проскочит вперёд. Одним из путей борьбы с этими рывками может служить вибрационное сглаживание. Под действием быстрых вибраций сухое трение начинает напоминать жидкое, так как частицы из-за тряски хуже дотрагиваются друг до друга и сыпучий материал из твердых частиц начинает себя вести как жидкий. И в частности может легко перемещаться. И здесь тоже могут быть негативные примеры. Пересекая Ладожское озеро в осенние бурные дни, некоторые корабли, перевозившие зерно, начинали сильно раскачиваться с борта на борт и опрокидывались. Выяснилось, что проектировщики считали, будто зерно в трюме будет лежать неподвижно за счёт сухого трения, сцепляющего отдельные зерна между собой. Но вибрации делали сыпучий материал подобным жидкому. Зерно начинало вести себя как жидкость, наваливаясь при перевозке на наклонный борт корабля, вызывая его опрокидывание. Как только эффект был понят, трюмы поделили на отсеки, как в тех кораблях, что перевозят настоящие жидкости .

5. Жидкое трение

При движении твёрдого тела в жидкости или газе на него действует сила сопротивления среды, которую можно считать особым видом силы трения. Эта сила направлена против движения тела и тормозит его. Главная особенность силы сопротивления состоит в том, что она возникает только при движении тела. Она зависит от его скорости тела, а также от формы и размеров. Поэтому, например, автомобилям придают обтекаемую форму, особенно гоночным. Кроме того сила сопротивления зависит от состояния поверхности тела и вязкости среды, в которой оно движется. В жидкостях и газах силы трения покоя нет .

Жидкое трение намного меньше сухого, так как молекулы жидкости могут легко перемещаться относительно друг друга. Поэтому для уменьшения трения успешно применяют смазку.

5.1. Износ. Смазка

В результате трения детали механизмов истираются и поверхности разрушаются. Одним из методов борьбы с износом является смазка. При этом обе трущиеся поверхности покрываются защитными пленками из молекул смазки. Коэффициент трения снижается. Это происходит потому, что м олекулы жидкости притягиваются друг к другу слабее, по сравнению с молекулами твёрдого тела. Следовательно, при наличии смазки между трущимися поверхностями они легко скользят относительно друг друга. В настоящее время разрабатываются препараты, позволяющие в процессе эксплуатации, не производя полной разборки узлов и агрегатов, частично восстанавливать изношенные поверхности трения с одновременным повышением их износостойкости .

5.2. Аквапланирование

Аквапланирование выглядит так: на мокрой дороге шина скользит по воде, как глиссер, то есть контакт колеса с дорогой исчезает. Автомобиль теряет управляемость. Исследования выявили, что по мере роста скорости перед колесом появляется водяной валик, а снизу появляется водяной клин. С ростом скорости эффект нарастает. При этом машина движется не по асфальту, а как бы «плывёт» по воде (рис. 11).

Помимо изучения теоретического материала авторы работы провели ряд экспериментов, позволяющих самостоятельно определять F тр и зависимость коэффициента трения от тех или иных физических величин или условий . Результаты см. в приложении.

    Сравнение силы трения покоя, скольжения и качения (табл.1). Фото.1,2.

    Исследование зависимости силы трения от площади контакта. Для этой цели брусок во втором опыте положили на другой бок (табл.2). Фото. 3.

    Зависимость силы трения от нагрузки (веса бруска и грузов) или иначе от силы реакции опоры N (табл. 3).

    Зависимость от рода вещества и условий обработки двух поверхностей (табл. 4-7).

    Сида трения F тр (или коэффициент трения  ) практически не зависит от скорости при малых относительных скоростях движения соприкасающихся поверхностей. Но согласно изученным теоретическим материалам с ростом скорости сила трения слегка уменьшается.

Общие выводы:

    Сила трения F тр практически не зависит от площади контакта и от скорости (при малых скоростях).

    Сила трения F тр зависит от нагрузки (N =Р), от рода вещества и условий обработки поверхностей. Обычно значения коэффициентов трения лежат в пределах от 0,1 до 1,05 (0,1 1,05).

    Значение силы трения в порядке уменьшения: трение покоя, скольжения, качения. F тр покоя  F тр ск.  F тр кач.

7. Региональный компонент

В сентябре 2002 в Северной Осетии сошёл ледник Колка. Ледово-грязе-каменный поток продвинулся почти на 20 км по долине реки Геналдон со скоростью порядка 150-200 км/ч, разрушив строения, базы отдыха, линии электропередач. Основные предположения о причинах этой катастрофы заключаются в том, что произошла внезапная подвижка, обусловленная комплексом причин сейсмического, вулканического и метеорологического характера. Данный ледник относится к категории пульсирующих. На момент катастрофы он ещё не «созрел» для падения. Это подтверждалось данными съёмок из космоса. Таким образом, силы трения покоя удерживали всю массу ледника, Но в результате внешнего воздействия типа удара или взрыва на всю массу снега произошёл процесс, аналогичный вибрационному сглаживанию. Схема процесса: удар, частицы приподнялись вверх, нагрузка Р уменьшилась и, следовательно, трение тоже стало меньше.

При движении одних тел по поверхности других возникает трение. Это происходит, когда шероховатости одной поверхности цепляются за шероховатости другой или когда гладкие поверхности начинают прилипать друг к другу за счет межмолекулярного притяжения. Но, как известно, между молекулами существует не только взаимное притяжение. Если молекулы окажутся слишком близко друг к другу, то они будут отталкиваться. Гипотеза состоит в следующем: очень тяжелые литосферные плиты с материками и горными системами оказывают на нижележащие слои настолько огромное давление, что начинает сказываться отталкивание молекул. Это приводит к дополнительной подвижности нагруженных областей плиты, по сравнению с менее нагруженными и, следовательно, менее подвижными окраинами. Результатом это будет невозможность движения всего комплекса, как единого целого. В таком случае появятся дополнительные нагрузки отдельных областей, что может приводить к землетрясениям, снимающим возникающие механические напряжения.

9. Заключение

Только в США над данной темой в настоящее время работают 1000 исследователей, а в мировой науке публикуется более 700 статей ежегодно. Но как остроумно подметил известный физик Р. Фейнман - все наши измерения для определения коэффициентов трения фактически являются рассмотрением случаев трения "грязь по грязи". Микроскопы различных конструкций показывают сложность проблемы. На рис.11 представлен атомно-силовой микроскоп. Даже для него существует проблема, которая состоит в том, что на воздухе поверхность образца покрывается парами воды толщиной до 20-30 молекул. Таким образом, данная тема позволяет работать над ней ещё долгие годы многим исследователям. И авторам этой работы также удалось не только провести стандартные эксперименты и убедиться в точности уже известных сведений о силе трения, но и высказать свою научную гипотезу о роли молекулярного трения.

10. Литература

    Агаян В. Дазен Н. Что произойдет, если исчезнет трение?// Квант. №5. 1990.

    Домбровский К. И. Остров неопытных физиков. – М.: Детская литература, 1973.

    Первозванский А.А. Трение - сила знакомая, но таинственная.//Соросовский Образовательный Журнал. №2.1998.

    Перышкин А.В. Физика – 7. – М..: Дрофа, 2008.

    Матвеев А. Трибоника или капля смазки.// Юный техник, №1.1987.

    Кравчук А.С. Трение."Современное естествознание″,т.З.М.:Магистр -Пресс. 2000.

7. Солодушко А.Д. Эксперимент при изучении силы трения.//Физика в школе. №5.2001

Большинство людей, вспоминая свои школьные годы, уверены, что физика - это весьма скучный предмет. Курс включает множество задач и формул, которые никому в последующей жизни не пригодятся. С одной стороны, эти утверждения правдивы, но, как и любой предмет, физика имеет и другую сторону медали. Только ее не каждый открывает для себя.

Очень многое зависит от учителя

Возможно, в этом виновата наша система образования, а может быть, все дело в учителе, который думает только о том, что нужно отчитать утвержденный свыше материал, и не стремится заинтересовать своих учеников. Чаще всего виноват именно он. Однако если детям повезет, и урок у них будет вести преподаватель, который сам любит свой предмет, то он сможет не только заинтересовать учеников, но и поможет им открыть для себя что-то новое. Что в результате приведет к тому, что дети начнут с удовольствием посещать такие занятия. Конечно, формулы являются неотъемлемой частью этого учебного предмета, от этого никуда не деться. Но есть и положительные моменты. Особый интерес у школьников вызывают опыты. Вот об этом мы и поговорим более детально. Мы рассмотрим некоторые занимательные опыты по физике, которые вы сможете провести вместе со своим ребенком. Это должно быть интересно не только ему, но и вам. Вполне вероятно, что при помощи таких занятий вы привьете своему чаду неподдельный интерес к учебе, а любимым предметом для него станет "скучная" физика. проводить совсем несложно, для этого потребуется совсем немного атрибутов, главное, чтобы было желание. И, возможно, тогда вы сможете заменить своему ребенку школьного учителя.

Рассмотрим некоторые интересные опыты по физике для маленьких, ведь начинать нужно с малого.

Бумажная рыбка

Чтобы провести данный эксперимент, нам необходимо вырезать из плотной бумаги (можно картона) маленькую рыбку, длина которой должна составить 30-50 мм. Делаем в середине круглое отверстие диаметром примерно 10-15 мм. Далее со стороны хвоста прорезаем узкий канал (ширина 3-4 мм) до круглого отверстия. После чего наливаем воду в таз и аккуратно помещаем туда нашу рыбку таким образом, чтобы одна плоскость лежала на воде, а вторая - оставалась сухой. Теперь необходимо в круглое отверстие капнуть масла (можно воспользоваться масленкой от швейной машинки или велосипеда). Масло, стремясь разлиться по поверхности воды, потечет по прорезанному каналу, а рыбка под действием вытекающего назад масла поплывет вперед.

Слон и Моська

Продолжим проводить занимательные опыты по физике со своим ребенком. Предлагаем вам познакомить малыша с понятием рычага и с тем, как он помогает облегчать работу человека. Например, расскажите, что при помощи него легко можно приподнять тяжелый шкаф или диван. А для наглядности показать элементарный опыт по физике с применением рычага. Для этого нам понадобятся линейка, карандаш и пара маленьких игрушек, но обязательно разного веса (вот почему мы и назвали этот опыт «Слон и Моська»). Крепим нашего Слона и Моську на разные концы линейки при помощи пластилина, или обычной нитки (просто привязываем игрушки). Теперь, если положить линейку средней частью на карандаш, то перетянет, конечно же, слон, ведь он тяжелее. А вот если сместить карандаш в сторону слона, то Моська запросто перевесит его. Вот в этом и заключается принцип рычага. Линейка (рычаг) опирается на карандаш - это место является точкой опоры. Далее ребенку следует рассказать, что этот принцип используется повсеместно, он заложен в основу работы крана, качелей и даже ножниц.

Домашний опыт по физике с инерцией

Нам понадобятся банка с водой и хозяйственная сетка. Ни для кого не будет секретом, что если открытую банку перевернуть, то вода выльется из нее. Давайте попробуем? Конечно, для этого лучше выйти на улицу. Ставим банку в сетку и начинаем плавно раскачивать ее, постепенно наращивая амплитуду, и в результате делаем полный оборот - один, второй, третий и так далее. Вода не выливается. Интересно? А теперь заставим воду выливаться вверх. Для этого возьмем жестяную банку и сделаем в донышке отверстие. Ставим в сетку, наполняем водой и начинаем вращать. Из отверстия бьет струя. Когда банка в нижнем положении, это не удивляет никого, а вот когда она взлетает вверх, то и фонтан продолжает бить в том же направлении, а из горловины - ни капли. Вот так-то. Все это может объяснить принцип инерции. При вращении банка стремится улететь прямо, а сетка не пускает ее и заставляет описывать окружности. Вода также стремится лететь по инерции, а в том случае, когда мы в донышке сделали отверстие, ей уже ничего не мешает вырваться и двигаться прямолинейно.

Коробок с сюрпризом

Теперь рассмотрим опыты по физике со смещением Нужно положить спичечный коробок на край стола и медленно двигать его. В тот момент, когда он пройдет свою среднюю отметку, произойдет падение. То есть масса выдвинутой за край столешницы части превысит вес оставшейся, и коробок опрокинется. Теперь сместим центр массы, например, положим внутрь (как можно ближе к краю) металлическую гайку. Осталось поместить коробок таким образом, чтобы малая ее часть оставалась на столе, а большая висела в воздухе. Падения не произойдет. Суть этого эксперимента заключатся в том, что вся масса находится выше точки опоры. Этот принцип также используется повсюду. Именно благодаря ему в устойчивом положении находятся мебель, памятники, транспорт, и многое другое. Кстати, детская игрушка Ванька-встанька тоже построена на принципе смещения центра массы.

Итак, продолжим рассматривать интересные опыты по физике, но перейдем к следующему этапу - для школьников шестых классов.

Водяная карусель

Нам потребуются пустая консервная банка, молоток, гвоздь, веревка. Пробиваем при помощи гвоздя и молотка в боковой стенке у самого дна отверстие. Далее, не вытягивая гвоздь из дырки, отгибаем его в сторону. Необходимо, чтобы отверстие получилось косое. Повторяем процедуру со второй стороны банки - сделать нужно так, чтобы дырки получились друг напротив друга, однако гвозди были загнуты в разные стороны. В верхней части сосуда пробиваем еще два отверстия, в них продеваем концы каната или толстой нити. Подвешиваем емкость и наполняем ее водой. Из нижних отверстий начнут бить два косых фонтана, а банка начнет вращаться в противоположную сторону. На этом принципе работаю космические ракеты - пламя из сопел двигателя бьет в одну сторону, а ракета летит в другую.

Опыты по физике - 7 класс

Проведем эксперимент с плотностью масс и узнаем, как можно заставить яйцо плавать. Опыты по физике с различными плотностями лучше всего проводить на примере пресной и соленой воды. Возьмем банку, заполненную горячей водой. Опустим в нее яйцо, и оно сразу утонет. Далее насыпаем в воду поваренную соль и размешиваем. Яйцо начинает всплывать, причем, чем больше соли, тем выше оно поднимется. Это объясняется тем, что соленая вода имеет более высокую плотность, чем пресная. Так, всем известно, что в Мертвом море (его вода самая соленая) практически невозможно утонуть. Как видите, опыты по физике могут существенно увеличить кругозор вашего ребенка.

и пластиковая бутылка

Школьники седьмых классов начинают изучать атмосферное давление и его воздействие на окружающие нас предметы. Чтобы раскрыть эту тему глубже, лучше провести соответствующие опыты по физике. Атмосферное давление оказывает влияние на нас, хоть и остается невидимым. Приведем пример с воздушным шаром. Каждый из нас может его надуть. Затем мы поместим его в пластиковую бутылку, края оденем на горлышко и зафиксируем. Таким образом, воздух сможет поступать только в шар, а бутылка станет герметичным сосудом. Теперь попробуем надуть шар. У нас ничего не получится, так как атмосферное давление в бутылке не позволит нам этого сделать. Когда мы дуем, шар начинает вытеснять воздух в сосуде. А так как бутылка у нас герметична, то ему деваться некуда, и он начинает сжиматься, тем самым становится гораздо плотнее воздуха в шаре. Соответственно, система выравнивается, и шар надуть невозможно. Теперь сделаем отверстие в донышке и пробуем надуть шар. В таком случае никакого сопротивления нет, вытесняемый воздух покидает бутылку - атмосферное давление выравнивается.

Заключение

Как видите, опыты по физике совсем не сложные и довольно интересные. Попробуйте заинтересовать своего ребенка - и учеба для него будет проходить совсем по-другому, он начнет с удовольствием посещать занятия, что в конце концов скажется и на его успеваемости.