Изучение свойств дисперсных систем лабораторная работа. Дисперсные системы

Лабораторная работа №1

Моделирование построения Периодической системы (таблицы) элементов.

Цель: научиться выявлять законы по таблице элементов.

Оборудование: карточки размером 6х10 см

Ход работы:

Заготовьте 20 карточек размером 6 х 10 см для элементов с порядковыми номерами с 1-го по 20 –й в Периодической системе Менделеева. На каждую карточку запишите следующие сведения об элементе:

Химический символ

Название

Значение относительной атомной массы

Формулу высшего оксида (в скобках укажите характер оксида- основный, кислотный или амфотерный)

Формулу высшего гидроксида (для гидроксидов металлов также укажите в скобках характер - основный или амфотерный)

Формулу летучего водородного соединения (для неметаллов).

Расположите карточки по возрастанию значений относительных атомных масс.

Расположите сходные элементы, начиная с 3-го по 18-й друг под другом. Водород и калий над литием и под натрием соответственно, кальций под магнием, а гелий над неоном. Сформулируйте выявленную вами закономерность в виде закона.

Поменяйте в полученном ряду местами аргон и калий. Объясните почему.

Еще раз сформулируйте выявленную вами закономерность в виде закона.

Лабораторная работа №2

Приготовление дисперсных систем.

Цель: получить дисперсные системы и исследовать их свойства

Оборудование и реактивы: - дистиллированная вода;

Раствор желатина;

Кусочки мела;

Раствор серы;

Пробирки, штатив.

1. Приготовление суспензии карбоната кальция в воде.

Налить в 2 пробирки по 5мл дистиллированной воды. В пробирку №1 добавить 1мл 0,5%-ного раствора желатина. Затем в обе пробирки внести небольшое количество мела и сильно взболтать.

Поставить обе пробирки в штатив и наблюдать расслаивание суспензии.

Ответьте на вопросы:

Одинаково ли время расслаивания в обеих пробирках? Какую роль играет желатин? Что является в данной суспензии дисперсной фазой и дисперсионной средой?

2. Исследование свойств дисперсных систем

К 2-3мл дистиллированной воды добавьте по каплям 0,5-1мл насыщенного раствора серы. Получается опалесцирующий коллоидный раствор серы. Какую окраску имеет гидрозоль?

Форма отчёта

Лабораторная работа №3.

Ознакомление со свойствами дисперсных систем.

Классификация дисперсных систем.

Система называется дисперсной, если в каком-либо веществе (дисперсионной среде) распределено другое вещество (дисперсная фаза) в виде мельчайших частиц. Дисперсные системы являются гетерогенными. Обязательным условием получения дисперсных систем является взаимная нерастворимость диспергируемого вещества и дисперсионной среды. Например, нельзя получить дисперсную систему сахара или поваренной соли в воде, но они могут быть получены в керосине или в бензоле, в которых эти вещества практически нерастворимы.

Дисперсные системы классифицируют по размеру частиц, по агрегатному состоянию дисперсной фазы и дисперсионной среды, по характеру взаимодействия между дисперсной фазой и дисперсионной средой. Наиболее распространена классификация по агрегатному состоянию, предложенная Освальдом (табл. 1). Возможны восемь типов дисперсных систем в зависимости от агрегатного состояния распределенного вещества и среды: Г- газообразное вещество, Ж - жидкое, Т - твердое; первая буква относится к распределяемому веществу, вторая - к среде. Все системы, отвечающие коллоидной степени дисперсности, принято называть золями.

Таблица 1.Классификация дисперсных систем по агрегатному состоянию дисперсной фазы и дисперсионной среды

Дисперсионная

среда

Дисперсная фаза

Примеры дисперсных систем

Твердая

Твердая

Рубиновое стекло; пигментированные волокна; сплавы; рисунок на ткани, нанесенный методом пигментной печати

Твердая

Жидкая

Жемчуг, вода в граните, вода в бетоне, остаточный мономер в полимерно-мономерных частицах

Твердая

Газообразная

Газовые включения в различных твердых телах: пенобетоны, замороженные пены, пемза, вулканическая лава, полимерные пены, пенополиуретан

Жидкая

Твердая

Суспензии, краски, пасты, золи, латексы

Жидкая

Жидкая

Эмульсии: молоко, нефть, сливочное масло, маргарин, замасливатели волокон

Жидкая

Газообразная

Пены, в том числе для пожаротушения и пенных технологий замасливания волокон, беления и колорирования текстильных материалов

Газообразная

Твердая

Дымы, космическая пыль, аэрозоли

Газообразная

Жидкая

Туманы, газы в момент сжижения

Газообразная

Газообразная

Коллоидная система не образуется

По величине частиц веществ, составляющих дисперсную фазу, дисперсные системы делят на грубодисперсные (взвеси) с размерами частиц более 100нм и тонкодисперсные (коллоидные растворы или коллоидные системы) с размерами частиц от 100 до 1 нм. Если же вещество раздроблено до молекул или ионов размером менее 1 нм, образуется гомогенная система- раствор. Она однородна (гомогенна), поверхности раздела между частицами и средой нет.

Способы получения дисперсных систем

Дисперсные системы занимают промежуточное положение между грубодисперсными и молекулярными системами. Поэтому их получают двумя способами: дроблением крупных кусков вещества до требуемой дисперсности (диспергирование) или объединением молекул (ионов) в агрегаты коллоидных размеров (конденсация).

Дисперсионные методы получения дисперсных систем

1. Механический

Твердые тела дробятся в специальных дробилках, жерновах, мельницах различной конструкции. Тонко измельченные вещества приобретают множество полезных свойств. Например, красители - лучшую красящую способность, большую устойчивость, более красивые оттенки. Методом механического измельчения получают краски, смазочные материалы, фармацевтические препараты, пищевые продукты.

2. Ультразвуковой

Твердые тела дробят под действием ультразвука. Этим способом получают гидрозоли различных полимеров, серы, графита, органозоли металлов и сплавов.

Конденсационные методы получения дисперсных систем

1. Физические

К ним относится замена растворителя. Например, в раствор серы в этиловом спирте добавляют воду.

2. Химические

В основе лежат химические реакции окисления, восстановления, обмена, гидролиза. Например, FeCl3 + 3H2O = Fe(OH)3 ¯ + 3HCl.

Коллоидные растворы

Раздробленное (диспергированное) состояние вещества с размером частиц от 10-9 до 10-7 м называют коллоидным состоянием вещества. Коллоидные растворы изучает раздел науки - коллоидная химия.

Коллоидная химия - это наука о свойствах гетерогенных высокодисперсных систем и протекающих в них процессах.

Основоположником коллоидной химии является англичанин Т. Грэм (1805-1869). Он впервые дал общие представления о коллоидных растворах и разработал некоторые методы их исследования.

Коллоидные растворы проявляют специфические свойства : коагуляции и адсорбции.

Коагуляция - процесс слипания коллоидных частиц, т.е. образования при определенных условиях осадка. Коагуляция происходит в результате лишения коллоидных частиц адсорбционной оболочки, нейтрализации заряда или химических превращений.

Причины коагуляции:

1) нагревание . При нагревании уменьшается адсорбционная способность коллоидных частиц, поэтому крупные частицы, ставшие нейтральными, притягиваются друг к другу, образуя осадок;

2) действие электрического тока . Под действием электрического тока крупные заряженные коллоиды притягиваются к соответствующему (противоположно заряженному) электроду и там разряжаются, образовавшиеся нейтральные частицы притягиваются друг к другу и дают осадок. Явление разряда мицелл под действием электрического тока называется электрофорезом;

3) прибавление сильного электролита приводит к нейтрализации коллоидных частиц;

4) замораживание . При замораживании образуются кристаллики воды, в результате в оставшейся части системы происходит концентрирование золя, и частицы могут приходить друг с другом в контакт и слипаться.

Адсорбция - самопроизвольный процесс увеличения концентрации одного вещества (адсорбата) на поверхности другого (адсорбента).

Адсорбция происходит на любых межфазовых поверхностях, адсорбироваться могут любые вещества.

Вывод: свойства дисперсных систем_________________________

ЛПЗ №4 СВОЙСТВА КИСЛОТ, ОСНОВАНИЙ, ОКСИДОВ И СОЛЕЙ.

Цель работы: на основании проведенных опытов сделать вывод о взаимодействии металлов с кислотами, кислот с основаниями, кислот с солями, щелочей с солями, разложении нерастворимых оснований, а также исследовать, как действуют кислоты на индикаторы.

Оборудование: индикаторы, пробирки, кислоты(), основания(), оксиды(), соли(), металлы().

Ход работы:

Задание №1. Испытание растворов кислот и щелочей индикаторами.

Согласуется ли вывод с таблицей «Изменение цвета индикаторов».

Изменение цвета индикаторов

Задание №2. Пользуясь предложенными реактивами, проведите реакции, характеризующие свойства кислот.

Сделайте общий вывод об отношении кислот к металлам. Для этого воспользуйтесь схемой:

Отношение металлов к воде и к некоторым кислотам

Задание №3. Пользуясь предложенными реактивами, проведите реакции, характеризующие свойства щелочей.

Задание №4. Разложение нерастворимых оснований.

Вывод данной работы.

Цель работы:

Друг с другом.

Оборудование:

Ход работы:

Задание №2. Взаимодействие солей друг с другом .

ЛПЗ №5. ВЗАИМОДЕЙСТВИЕ СОЛЕЙ С МЕТАЛЛАМИ.

Цель работы: на основании проведенных опытов сделать

Вывод о взаимодействии металлов с солями, а также солей

Друг с другом.

Оборудование: пробирки, соли(), металлы().

Ход работы:

Задание №1. Взаимодействие металлов с солями .

Задание №3.

Задание №3. 1) Запишите уравнения практически осуществимых реакций:

а) фосфат натрия с нитратом серебра; б) карбонат кальция с хлоридом калия; в) нитрат меди (II) с цинком;

2) Сделайте вывод о проделанной работе.

ЛПЗ №6.

Цель работы:

Ход работы:

ЛПЗ №6. Зависимость скорости взаимодействия соляной кислоты с металлами от их природы. Зависимость скорости взаимодействия цинка с соляной кислотой от ее концентрации. Зависимость скорости взаимодействия оксида меди с серной кислотой от температуры.

Цель работы: практическим путем подтвердить зависимость скорости химической реакции от природы реагирующего вещества, от её концентрации и от температуры.

Ход работы:

1.Зависимость скорости взаимодействия цинка с соляной кислотой от ее концентрации.

В две пробирки поместите по одной грануле цинка. В одну прилейте 1 мл соляной кислоты (1:3), в другую – столько же этой кислоты другой концентрации (1:10). В какой пробирке более интенсивно протекает реакция? Что влияет на скорость реакции?

2.Зависимость скорости взаимодействия соляной кислоты с металлами от их природы.

В три пробирки (подписанные, под номерами) прилить по 3 мл раствора НCl и внести в каждую из пробирок навески опилок одинаковой массы: в первую - Mg, во вторую - Zn, в третью – Fe.

2 SO 4

Что наблюдаете? В какой пробирке реакция протекает быстрее? (или вообще не протекает). Напишите уравнения реакций. Какой фактор влияет на скорость реакции? Сделайте выводы.

3.Зависимость скорости взаимодействия оксида меди с серной кислотой от температуры.

В три пробирки (под номерами) налить по 3 мл раствора Н 2 SO 4 (одинаковой концентрации). В каждую поместить навеску CuO (II) (порошок). Первую пробирку оставить в штативе; вторую - опустить в стакан с горячей водой; третью - нагреть в пламени спиртовки.

В какой пробирке цвет раствора меняется быстрее (голубой цвет)? Что влияет на интенсивность реакции? Напишите уравнение реакции. Сделайте вывод.

Урок по химии в 11 классе: «Дисперсные системы и растворы»

Цель - дать понятие о дисперсных системах, их классификация. Раскрыть значение коллоидных систем в жизни природы и общества. Показать относительность деления растворов на истинные и коллоидные.

Оборудование и материалы:

Технологические карты: схема-таблица, лабораторная работа, инструкции.

Оборудование для лабораторных работ:

Реактивы: раствор сахара, раствор хлорида железа (III), смесь воды и речного песка, желатин, клейстер, нефть, раствор хлорида алюминия, раствор поваренной соли, смесь воды и растительного масла.

Химические стаканы

Бумажные фильтры.

Черная бумага.

Фонарики

Ход урока по химии в 11 классе:

Этап урока Особенности этапа Действия учителя Действия учеников
Организационный (2 мин.) Подготовка к уроку Приветствует учеников.

Готовятся к уроку.

Здороваются с учителем.

Введение (5 мин.) Введение в новую тему.

Подводит к теме урока, задачам и «вопросам для себя»

Знакомит с темой урока.

Выводит на экран задачи сегодняшнего урока.

Принимают участие в обсуждении темы. Знакомятся с темой урока и задачами (ПРИЛОЖЕНИЕ №1)

Записывают три вопроса по теме, на которые хотели бы получить ответы.

Теоретическая часть

(15 мин.)

Объяснение новой темы. Дает задания для работы в группах по поиску нового материала (ПРИЛОЖЕНИЕ №3,4) Объединившись в группы, выполняют задания сообразуясь с технологической картой, предоставленной схемой (ПРИЛОЖЕНИЕ №4) и требованиями учителя.
Подведение итогов по теоретической части (8 мин.) Выводы на основе полученных теоретических знаний.

Заранее вывешивает на доске пустые схемы (формат А3) для наглядного заполнения учениками. (ПРИЛОЖЕНИЕ №4)

Совместно с учениками формулирует основные теоретические выводы.

Маркером заполняют схемы, соответствующие той, по которой работали, отчитываются по проведенной работе в группах

Записывают в технологических картах основные выводы.

Практическая часть (10 мин.) Выполнение лабораторной работы, закрепление полученного опыта. Предлагает выполнить лабораторную работу по теме «Дисперсные системы» (ПРИЛОЖЕНИЕ №2) Выполняют лабораторную работу (ПРИЛОЖЕНИЕ №2), заполняют бланки, сообразуясь с инструкцией к лабораторной работе и требованиями учителя.

Обобщение и выводы (5 мин.)

Подведение итогов урока.

Домашнее задание.

Вместе с учениками делает вывод относительно темы.

Предлагает соотнести вопросы, которые были написаны в начале урока с тем, что получили в конце урока.

Подводят итоги, записывают домашнее задание.

Формы и методы контроля:

Технологические схемы для заполнения (ПРИЛОЖЕНИЕ №4).

Лабораторная работа (ПРИЛОЖЕНИЕ №2)

Контроль осуществляется фронтально в устной и письменной форме. По итогам выполнения лабораторной работы карты с лабораторными работами сдаются учителю на проверку.

1. Введение:

Ответьте, чем отличаются мрамор и гранит? А минеральная и дистиллированная вода?

(ответ: мрамор - чистое вещество, гранит - смесь веществ, дистиллированная вода - чистое вещество, минеральная вода - смесь веществ).

Хорошо. А молоко? Это чистое вещество или смесь? А воздух?

Состояние любого чистого вещества описывается очень просто - твердое, жидкое, газообразное.

Но ведь абсолютно чистых веществ в природе не существует. Даже незначительное количество примесей может существенно влиять на свойство веществ: температуру кипения, электро- и теплопроводимость, реакционную способность и т.д.

Получение абсолютно чистых веществ - одна из важнейших задач современной химии, ведь именно чистота вещества определяет возможность проявления им своих индивидуальных средств (демонстрация реактивов с маркировкой).

Следовательно, в природе и практической жизни человека встречаются не отдельные вещества, а их системы.

Смеси разных веществ в различных агрегатных состояниях могут образовывать гетерогенные и гомогенные системы. Гомогенными системами являются растворы, с которыми мы ознакомились на прошлом уроке.

Сегодня мы познакомимся с гетерогенными системами.

2. Тема сегодняшнего урока - ДИСПЕРСНЫЕ СИСТЕМЫ.

Изучив тему урока, вы узнаете:

значение дисперсных систем.

Это, как вы понимаете, наши основные задачи. Они прописаны в ваших технологических картах. Но чтобы наша работа была более продуктивной и мотивированной, я предлагаю вам рядом с основными задачами написать не менее трех вопросов, на которые вы бы хотели найти ответ в процессе данного урока.

3. Теоретическая часть.

Дисперсные системы - что это?

Попробуем вместе вывести определение, исходя из построения слов.

1) Систе́ма (от др.-греч. «система» — целое, составленное из частей; соединение) — множество элементов, находящихся в отношениях и связях друг с другом, которое образует определённую целостность, единство.

2) Дисперсия - (от лат. dispersio — рассеяние) разброс чего-либо, дробление.

Дисперсные системы - гетерогенные (неоднородные) системы, в которых одно вещество в виде очень мелких частиц равномерно распределено в объёме другого.


Если мы опять обратимся к повторению и предыдущему уроку, мы сможем вспомнить, что: растворы состоят из двух компонентов: растворимое вещество и растворитель.

Дисперсные системы, как смеси веществ, имеют аналогичное строение: состоят из мелких частиц, которые равномерно распределены в объеме другого вещества.

Взгляните в свои технологические карты, и попробуйте из разрозненных частей составить две аналогичные схемы: для раствора и для дисперсной системы.

Проверим получившиеся результаты, сверив их с изображением на экране.

Итак, дисперсионная среда в дисперсной системе выполняет роль растворителя, и является т.н. непрерывной фазой, а дисперсная фаза - роль растворенного вещества.

Так как дисперсионная система - гетерогенная смесь, то между дисперсной средой и дисперсионной фазой есть поверхность раздела.

Классификация дисперсных систем.

Можно изучать каждую дисперсную систему по отдельности, но лучше их классифицировать, выделить общее, типичное и это запомнить. Для этого нужно определить, по каким признакам это сделать. Вы объединены в группы, каждой из которых дано задание и прилагающаяся к нему блок-схема.

Руководствуясь предложенной вам литературой, найдите в тексте, предложенный Вам для изучения признак классификации, изучите его.

Создайте кластер (блок-схема), указав признаки и свойства дисперсных систем, приведите к нему примеры. Для помощи в этом вам уже предоставлена пустая блок-схема, которую вам предстоит заполнить.

4. Вывод по теоретическому заданию.

Давайте подведем итоги.

От каждой команды прошу выйти по одному человеку и заполнить схемы, вывешенные на доске.

(ученики подходят и маркером заполняют каждую из схем, после чего отчитыватся по проведенной работе)

Молодцы, теперь давайте закрепим:

Что является основой для классификации дисперсных систем?

На какие виды делятся дисперсные системы?

Какие особенности коллоидных растворов вы знаете?

Как иначе называются гели? Какое значение они имеют? В чем их особенность?

5. Практическая часть.

Теперь, когда вы знакомы с особенностями дисперсных систем и их классификацией, а также определили по какому принципу классифицируются дисперсные системы, предлагаю вам закрепить это знание на практике, выполнив соответствующую лабораторную работу, предложенную вам на отдельном бланке.

Вы объединены в группы по 2 человека. На каждую группу у вас приложен соответствующий бланк с лабораторной работой, а также определенный набор реактивов, которые вам нужно изучить.

Вам выдан образец дисперсной системы.

Ваша задача: пользуясь инструкцией, определить, какая дисперсная система вам выдана, заполнить таблицу и сделать вывод об особенностях дисперсионной системы.

6. Обобщение и выводы.

Итак, на данном уроке мы с вами изучили более углубленно классификацию дисперсных систем, важность их в природе и жизни человека.

Однако следует отметить, что резкой границы между видами дисперсных систем нет. Классификацию следует считать относительной.

А теперь вернемся к поставленным на сегодняшний урок задачам:

что такое дисперсные системы?

какими бывают дисперсные системы?

какими свойствами обладают дисперсные системы?

значение дисперсных систем.

Обратите внимание на вопросы, которые вы записали для себя. В рамке рефлексии отметьте полезность данного урока.

7. Домашнее задание.

Мы постоянно сталкиваемся с дисперсными системами в природе и быту, даже в нашем организме существуют дисперсные системы. Для того, чтобы закрепить знания о значимости дисперсных систем, вам предлагается выполнить домашнее задание в форме эссе/

Выберите дисперсную систему, с которой вы постоянно сталкиваетесь в своей жизни. Напишите эссе на 1-2 страницы: «Какое значение имеет данная дисперсная система в жизни человека? Какие похожие дисперсные системы с похожими функциями еще известны?»

Спасибо за урок.

2.Цель: Научиться получать коллоидные растворы и знать свойства золей. Научиться определять электрокинетический потенциал частиц золя методом электрофореза.

3.Задачи обучения:

Коллоидная химия изучает физико-химические свойства гетерогенных высокомолекулярных соединений в твердом состоянии и в растворах. Многие лекарственные препараты выпускают в форме эмульсии, суспензии, коллоидных растворов. Умение приготовить эти препараты, знать сроки годности и условия хранения их невозможно без знания теоретических основ коллоидной химии. Знание электрофореза, гельфильтрации и электродиализа, ультрафильтрации будет нужно непосредственно в практической работе фармацевта.

4.Основные вопросы темы:

1. Предмет коллоидной химии, ее значение в фармации.

2. Дисперсные системы. Дисперсная фаза и дисперсионная среда.

3. Классификация коллоидных систем.

4. Методы получения коллоидных систем.

5. Методы очистки коллоидных систем.

6. Оптические свойства коллоидных систем.

7. Что называется электрокинетическим потенциалом.

8. От каких факторов зависит величина потенциала.

9. Какие существуют методы определения потенциала.

10. Что такое электрофорез.

11. Как связаны электрофоретическая скорость и потенциал.

5. Методы обучения и преподавания: семинар, лабораторная работа, работа в малых группах, обучающее тестирование по теме занятия.

ЛАБОРАТОРНАЯ РАБОТА

Лабораторная работа: «Получение коллоидных растворов».

Применяемые реактивы и растворы:

Исходные реактивы для получения коллоидных систем:

FeCl 3 , AgNO 3 , KI – 0,1н.

K 4 – 0,1 н;

K 4 – насыщенный раствор;

Насыщенный раствор серы в спирте:

Na 2 S 2 O 3 – 1%

H 2 C 2 O 4 – 1%

Применяемые приборы и оборудование:

1. Конические колбы

2. Штатив с пробирками

3. Цилиндры мерные на 50 и 100 мл.

Последовательность выполнения работы:

Опыт № 1: Получение гидрозоли серы и канифоли методом замены растворителя.

Канифоль и сера растворяются в этиловом спирте с образованием истинных растворов. Т.к. в воде сера и канифоль практически нерастворимы, то при добавлении их спиртовых растворов к воде происходит конденсация их молекул в более крупные агрегаты.



Описание опыта.

Насыщенный раствор серы в абсолютном спирте приливают по каплям в дистиллированную воду. При взбалтывании получается молочно-белый опалесцирующий золь.

Получение золя гидрата окиси железа методом гидролиза.

В пробирку с кипящей водой добавляют по каплям 2%-ный раствор хлорида железа до образования прозрачного красно-бурого золя гидрата окиси железа.

Сущность реакции.

Под действием высокой температуры реакция гидролиза хлорного железа сдвигается в сторону образования гидроокиси железа:

FeCl 3 + 3H 2 O Fe(OH) 3 + 3HCl

Молекулы нерастворимого в воде гидрата окиси железа образуют агрегаты коллоидных размеров. Устойчивость эти агрегатам придает хлорное железо, имеющееся в растворе, причем ионы железа адсорбируются на поверхности частиц, а ионы хлора являются противоионами.

Строение получившихся мицелл схематически выражается следующей формулой:

Опыт № 2. Получение золя двуокиси марганца.

Получение золя двуокиси марганца основано на восстановлении перманганата калия тиосульфатом натрия:

8KMnO 4 + 3Na 2 S 2 O 3 + H 2 O 8MnO 2 + 3Na 2 SO 4 + 3K 2 SO 4 + 2KOH

В присутствии избытка перманганата образуется золь марганца с отрицательно заряженными частицами:

Описание опыта:

В коническую колбу с помощью пипетки вносят 5 мл. 1,5% раствора перманганата калия и разбавляют водой до 50 мл. Затем в колбу по каплям вводят 1,5 – 2 мл раствора тиосульфата натрия. Получается вишнево-красный золь двуокиси марганца.

Опыт № 3. Получение золя иодистого серебра по реакции двойного обмена.

По реакции двойного обмена можно получить золь путем смешивания разбавленных растворов AgNO 3 и KI. При этом необходимо соблюдать условия, чтобы одно из исходных веществ было в избытке, так как при смешивании в эквивалентных количествах реагентов образуется осадок AgI.

AgNO 3 + KI AgI + KNO 3

Описание опыта:

В колбу наливают 2 мл. 0,1н раствора KI и разбавляют его водой до 25 мл. В другую колбу наливают 1 мл. 0,1н раствора AgNO 3 и также разбавляют водой до 25 мл. Полученные растворы делят пополам и проводят два опыта:

a) постепенно приливают при взбалтывании раствор AgNO 3 в раствор KI, получая золь следующего строения:

b) постепенно приливают при взбалтывании раствор AgNO 3 в раствор KI, получая золь такого строения:

Опыт № 4. Получение золя берлинской лазури по реакции двойного обмена.

Соблюдая условия получения растворов по реакции двойного обмена, описанных в предыдущих опытах, получают золь берлинской лазури сначала в избытке FeCl 3 , затем в избытке K 4 .

Описание опыта:

Опыт проводят следующим образом: к 20 мл. 0,1% K 4 прибавляют при перемешивании 5-6 капель 2% раствора FeCl 3 . Получают золь темно-синего цвета, мицелла которого имеет строение:

Опыт № 5. Получение золя берлинской лазури методом пептизации.

Получение коллоидного раствора берлинской лазури методом пептизации сводится к переводу в коллоидное состояние осадка K Fe, полученного при сливании концентрированных растворов K 4 и FeCl 3 .

Описание опыта:

В пробирку с 5 мл. 2%-ного раствора K 4 . Полученный осадок отфильтровывают, промывают дистиллированной водой и обрабатывают осадок на фильтре 3 мл. 0,1н раствором щавелевой кислоты. В пробирку фильтруется золь берлинской лазури синего цвета.

Строение мицеллы написать самостоятельно.

6. Литература:

Евстратова К.И. и др. Физическая и коллоидная химия. М., ВШ, 1990, с. 365 – 396.

Воюцкий С.С. Курс коллоидной химии. 1980, с. 300 – 309.

Д.А.Фридрихсберг, Курс коллоидной химии, Санкт-Петербург, Химия, 1995, с.7-47,196-62

Патсаев А.К., Шитыбаев С.А., Нарманов М.М. Руководство к лабораторно-практическим занятиям по физколлоидной химии 1-часть. Шымкент, 2002г., с.24-31

Тесты по теме занятия.

7. Контроль:

1. Коллоиды как мыла, являются диполем, хорошо адсорбируются с частицами грязи, сообщают им заряд, способствуют их:

А) коагуляции; В) пептизации; С) коацервации;

2. Способность золя сохранять данную степень дисперсности называют:

А) седиментационной устойчивостью;

В) агрессивной устойчивостью;

С) диссолюционной устойчивостью.

3. По наличию и отсутствию взаимодействия между частицами фазы системы классифицируют на:

A) лиофильные и лиофобные;

B) молекулярнодисперсные и коллоидодисперсные;

C) свободнодисперсные и связнодисперсные.

4. Пептизация свежеприготовленного осадка гидроксида железа действием на него раствором относится FeCl 3 к:

A) химической; B) адсорбционной; C) физической;

5. Способность частиц фазы не оседать под действием силы тяжести называют:

А) химической устойчивостью;

В) диссолюционной устойчивостью;

C) седиментационной устойчивостью.

6. Мицелла гидрозоля железа полученного из осадка Fe(OH) 3 пептизацией раствором FeCl 3 имеет форму:

A) {mFe(OH) 3 nFeO + (n-х)Cl - } + х хCl - ;

B) {mFe(OH) 3 nFe +3 3(n-х)Cl - } +3 х 3хCl - ;

C) {mFe(OH) 3 3nCl - (n-х)Fe +3 } - х х Fe +3 .

Методические указания по проведению

Дисциплина: Химия

Тема:

Продолжительность: 2 часа

Для специальностей: технического профиля

Тема: Приготовление суспензии карбоната кальция в воде. Получение эмульсии

моторного масла. Ознакомление со свойствами дисперсных систем.

Цели работы: 1.Закрепляем и углубляем знания о приготовлении суспензии карбоната кальция в

воде, получении эмульсии моторного масла. Знакомимся со свойствами дисперсных

2. Вырабатываем умение логически последовательного изложе­ния материала.

3. Формируем навык оформления лабораторной работы по стандарту.

Теоретические основы :

Среди всего многообразия смесей особое место занимают гетерогенные, т. е. такие, частицы компонентов которых заметны не вооруженным глазом или с помощью оптических приборов (лупы, увеличительного стекла, микроскопа).

Гетерогенные смеси могут состоять как из равномерно, так и из неравномерно распределенных компонентов. В первом случае гетерогенные смеси называют дисперсными системами.

Дисперсными системами называют гетерогенные смеси, в которых одно вещество в виде очень мелких частиц равномерно распределено в другом.

То вещество, которое распределено в другом, называют дисперсной фазой . Вещество, в котором распределена дисперсная фаза, носит название дисперсионной среды .

В зависимости от агрегатного состояния дисперсной фазы и дисперсионной среды различают восемь типов дисперсных систем.

Классификация дисперсных систем

По размеру частиц дисперсной фазы различают:

Грубодисперсные системы (нанеси) - размер частиц более 100 пм;

Тонкодисперсные (коллоидные) системы (или коллоиды) - размер частиц от 1 до 100 пм.

Взаимодействием раствора гидроксида кальция с углекислым газом можно получить грубодисперсную систему:

Са(ОН) 2 + СО 2 = СаСО 3 ↓+ Н 2 0

Малорастворимый карбонат кальция в виде мельчайших крупинок находится в воде во взвешенном состоянии. Полученная мутная жидкость - это дисперсная система, называемая суспензией .

Однако пройдет немного времени, и частицы карбоната кальция под действием силы тяжести осядут на дно стакана, жидкость станет прозрачной. Это доказательство того, что наша система получилась грубодисперсной.

Грубодисперсные системы с твердой дисперсной фазой и жидкой дисперсионной средой называют суспензиями .



Суспензиями являются многие краски, побелка, строительные растворы (цементный раствор, бетон), пасты (в том числе зубная), кремы, мази.

Грубодисперсную систему можно получить из двух не смешивающихся друг с другом жидкостей, например взбалтывая растительное масло с водой. Такая смесь называется эмульсией. Со временем она расслаивается, так как тоже представляет собой грубодисперсную систему. Примерами эмульсий могут служить молоко (капельки жира в водной основе), майонез, млечный сок каучуконосных деревьев (латекс), пестицидные препараты для обработки посевов.

Аэрозоли - это грубодисперсные системы, в которых дисперсионной средой является воздух, а дисперсной фазой могут быть капельки жидкости (облака, радуга, выпущенный из баллончика лак для волос или дезодорант) или частицы твердого вещества (пылевое облако, смог).

Если частицы дисперсной фазы достаточно малы, коллоидная система называется тонкодисперсной и напоминает истинный раствор, отсюда и происходит название - коллоидный раствор. Такая система образуется, например, при растворении небольшого количества яичного белка в воде.

По внешнему виду коллоидный раствор трудно отличить от истинного для этого можно воспользоваться специфическим оптическим свойством коллоидных растворов. Оно заключается в появлении в коллоидном растворе светящейся дорожки при пропускании через него луча света. Это явление называют эффектом Тиндаля . Такой эффект можно наблюдать, пропуская луч лазерной указки через раствор белка.

Эффект Тиндаля. Пропускание ла света через растворы:

1 - истинный раствор; 2 - коллоидный раствор



Объясняется эффект Тиндаля тем, что размер частиц дисперсной фазы (от 1 до 100 нм) в коллоидной системе составляет примерно 1/10 длины волны видимого излучения. Частицы такого размера вызывают рассеивание света, приводящее к характерному визуальному эффекту.

Существует несколько основных способов получения коллоидных систем. Один из них - дробление вещества на мелкие частицы, которое можно осуществлять механически с помощью специальных машин - коллоидных мельниц. Так получают, например, тушь, жидкие акварельные, водоэмульсионные и вододисперсионные краски.

Классификация дисперсных систем может быть представлена следующим образом:

Важнейшими типами коллоидных систем являются золи и гели (студни).

Золи - это коллоидные системы, в которых дисперсионной средой является жидкость, а дисперсной фазой - твердое вещество.

С течением времени при нагревании или под действием электролитов частицы золя могут укрупняться и оседать. Такой процесс называют коагуляцией.

Гели - особое студнеобразное коллоидное состояние. При этом отдельные частицы золя связываются друг с другом, образуя сплошную пространственную сетку. Внутрь ячеек сетки попадают частицы растворителя. Дисперсная система теряет свою текучесть, превращаясь в желеобразное состояние. При нагревании гель может превратиться в золь.

Получить гель можно химическим путем, если, например, к раствору сульфата меди(II) добавить несколько капель раствора гидроксида натрия, образуется гель осадка гидроксида меди(II):

СuSО 4 + 2NаОН = Cu(ОН) 2 ↓ + Nа 2 SО 4

Осадки гидроксидов металлов, кремниевой кислоты принято называть студневидными.

Гели широко распространены в нашей повседневной жизни. Любому известны пищевые гели (зефир, мармелад, холодец), косметические (гель для душа), медицинские.

Для гелей с жидкой дисперсионной средой характерно явление синерезиса (или расслоения) - самопроизвольного выделения жидкости. При этом частицы дисперсной фазы уплотняются, слипа ются и образуют твердый коллоид а к дисперсионной среде возвращается текучесть.

Чаще всего с явлением синерезиса приходится бороться, поскольку именно оно ограничивает сроки годности пищевых косметических, медицинских гелей.

Например, при длительном хранении мармелада и торта «Птичье молоко» выделяется жидкость, они становятся непригодными к употреблению.

Из твердого коллоида желатина (продукта белкового происхождения) при набухании в теплой воде образуется студнеобразный гель - желе. Но в кулинарных рецептах всегда предупреждают: нельзя доводить желе до кипения, иначе гель превратится в золь и не примет студневидной формы.

Окружающий нас мир представляет собой красочное многообразие различных дисперсных систем. Посмотрим вокруг.

Например, косметика и средства гигиены: зубная паста, мыло, шампунь, лак для ногтей, губная помада, тушь, крем, облачко дезодоранта, выпущенное из баллончика, - все

это дисперсные системы. Теперь заглянем на кухню. Молоко, мясной бульон, пирожное, зефир, майонез, кетчуп - тоже дисперсные системы. Выйдем на улицу, и снова дисперсные системы: облака, дым, смог, туман. Заглянем в аптеку - и опять дисперсные системы: мази, гели, пасты, спреи, суспензии. Наш собственный организм представляет сочетание бесчисленного множества коллоидных систем: содержимое клеток, кровь, лимфа, пищеварительный сок, тканевые жидкости. Недаром биологи сходятся во мнении, что возникновение жизни на нашей планете - это эволюция коллоидных систем.

Входной контроль:

Отвечаем на вопросы:

1. Охарактеризуйте понятие «дисперсная система».

Чем дисперсная система отличается от остальных смесей?

2. Какие типы дисперсных систем в зависимости от агрегатного состояния среды и фазы вы знаете? Приведите примеры. Охарактеризуйте их значение в природе и жизни человека.

Ход выполнения работы:

Опыт №1 Приготовление суспензии карбоната кальция в воде

Оборудование и реактивы : лабораторный штатив с лапкой, штатив с пробирками, гидроксид кальция Са(ОН) 2 (известковая вода).

В пробирку налейте 4-5 мл свежеприготовленного раствора гидроксида кальция (известковой воды) и осторожно через трубочку продувайте через него выдыхаемый воздух.

Известковая вода мутнеет в результате протекания реакции:

Са(ОН) 2 + СО 2 = …

Опыт № 2 Получение эмульсии моторного масла

Оборудование и реактивы : лабораторный штатив с лапкой, штатив с пробирками, моторное масло.

В коническую колбу с водой добавьте немного моторного масла и взболтайте.

Отвечаем на вопрос: Что наблюдаем?

Опыт №3 Ознакомление с дисперсными системами

Приготовьте небольшую коллекцию образцов дисперсных систем из имеющихся дома суспензий, эмульсий, паст и гелей. Каждый образец снабдите фабричной этикеткой. Поменяйтесь с соседом коллекциями и затем распределите образцы коллекции в соответствии с классификацией дисперсных систем.

Ознакомьтесь со сроками годности пищевых, медицинских и косметических гелей.

Отвечаем на вопрос: Каким свойством гелей определяется срок годности?

Выходной контроль:

Отвечаем на вопросы:

1. Какие процессы, происходящие в дисперсных системах, ограничивают срок годности продуктов, лекарственных и косметических препаратов?

Выполняем задание:

Приведите примеры эмульсий, суспензий, золей, аэрозолей, гелей и внесите их в таблицу.

Сделайте общий вывод в соответствии с целями, поставленными перед вами в этой работе.

Список литературы:

1. О.С. Габриелян, И.Г. Остроумова «Химия» [текст]:- учебник для профессий и специальностей Технического профиля. Москва, Издательский дом «Академия», 2012 г.

2. Габриелян О.С. Химия в тестах, задачах, упражнениях: учеб. пособие для студ. сред. проф. учебных заведений / О.С. Габриелян, Г.Г. Лысова – М., 2006.

3. Габриелян О.С. Практикум по общей, неорганической и органической химии: учеб. пособие для студ. сред. проф. учеб. заведений / Габриелян О.С., Остроумов И.Г., Дорофеева Н.М. – М., 2007.

4. Ерохин Ю.М. Химия: учебник для средне профессиональных учебных заведений, 4-е изд. М.: Издательский Центр Академия, 2004-384 с.

5. Рудзитис Г.Е., Фельдман Ф.Г. Химия: органическая химия: учебник для 10 кл. ОУ, 8-е изд. М. Просвещение, 2001, 160 с.

6. www.twirpx.com - Учебные материалы.

7. www.amgpgu.ru - Лекционный курс.

8. www.uchportal.ru – Учительский портал.

9. http://o5-5.ru – 5 и 5 Учебный материал.