Как определяют происхождение метеоритных кратеров. Астроблемы и метеоритные кратеры

С тех пор, как начались телескопические наблюдения Луны, одной из наиболее характерных особенностей нашего естественного спутника считалось обилие кольцевых гор — кратеров. Эти кольцевые образования покрывают значительную часть видимой стороны лунного шара, некоторые из них достигают в поперечнике двухсот и даже трехсот километров.

По поводу происхождения лунных кратеров долгое время боролись две точки зрения — метеоритная и вулканическая. Однако для того, чтобы ответить на вопрос, что же в действительности представляют собой кольцевые горы на Луне — кратеры потухших вулканов или воронки, образовавшиеся в результате падения космических тел—метеоритов, в распоряжении исследователей Луны не было достаточного количества необходимых данных. Такие данные появились лишь в результате изучения нашего естественного спутника космическими аппаратами. И эти данные убедительно свидетельствуют в пользу ударного происхождения подавляющего большинства лунных кратеров (хотя и не всех).

В частности, оказалось, что согласно современным оценкам, количество метеоритных тел, бороздивших пространство Солнечной системы в разные эпохи, как раз таково, чтобы объяснить именно то число кратеров, которое фактически существует на различных участках лунной поверхности. Так, например, подсчеты количества кратеров показали, что Луна подвергалась наиболее интенсивной метеоритной бомбардировке на протяжении первого миллиарда лет своего существования. В дальнейшем, по мере исчерпания метеоритного материала в пространстве Солнечной системы, число метеоритных ударов по лунной поверхности резко снизилось. Этим объясняется тот факт, что в лунных морях, которые образовались несколько позже континентальных районов, количество кратеров примерно в тридцать раз меньше.

Любопытно отметить, что в настоящее время интенсивность метеоритной бомбардировки Луны весьма невелика. Согласно имеющимся в распоряжении ученых данным, на площади радиусом около двухсот километров метеорит с массой около одного килограмма падает, в среднем, приблизительно один раз в месяц.

Сравнительно мало в современную эпоху выпадает на лунную поверхность и микрометеоритов. Однако воздействие микрометеоритных тел на поверхность нашего естественного спутника в масштабах всей Луны за астрономические промежутки времени ощутимо и в современную эпоху. Об этом свидетельствуют микрократеры — микроскопические воронки от ударов мельчайших частиц космического вещества, обнаруженные на зернах лунного грунта в образцах, доставленных на Землю. Примесь метеоритного вещества обнаружена в поверхностном слое лунного грунта везде, где были взяты соответствующие пробы.

Убедительный аргумент в пользу метеоритного происхождения лунных кольцевых гор дает, как ни странно, изучение уже известного нам спутника Марса Фобоса.

Выяснилось любопытное обстоятельство. Как уже говорилось, поверхность Фобоса сплошь усеяна кратерами. И они заведомо ударного происхождения: ведь спутник Марса невелик по размерам — всего около 27 км в длину, и ясно, что ни о каких вулканических процессах в его недрах не может быть и речи. А это, в свою очередь, означает, что и аналогичные кратеры на Луне, скорее всего, также должны иметь метеоритное происхождение, тем более, что кратеры, подобные лунным, в последние годы были обнаружены не только на Фобосе, но и на других телах Солнечной системы, в частности, и на самом Марсе. Как показало космическое фотографирование, многие участки поверхности этой планеты усеяны кратерами, напоминающими лунные. Большинство этих кратеров образовалось примерно в ту же эпоху, что и кратеры лунных материков, то есть 3,5—4 миллиарда лет назад. Часть из них довольно хорошо сохранилась, некоторые сильно разрушены, а есть и такие, от которых остались лишь едва заметные следы.

Многочисленные метеоритные кратеры были с помощью космических аппаратов обнаружены также и на самой близкой к Солнцу планете Солнечной системы Меркурии. Они покрывают практически всю поверхность этого небесного тела. Наиболее крупные из них имеют в поперечнике несколько десятков километров, наиболее мелкие (которые удалось разглядеть на телевизионных снимках, переданных из космоса) — около пятидесяти метров. В среднем, таким образом, кратеры Меркурия обладают меньшими размерами, чем лунные.

На многих крупных меркурианских кратерах можно обнаружить мелкие кольцевые образования, видимо, более позднего происхождения. Это говорит о том, что на ранней стадии существования Меркурия на его поверхность падали космические глыбы разных размеров, в том числе и весьма крупные, а с течением времени метеоритный материал в космическом пространстве становился все мельче. Справедливость подобного вывода подтверждается и тем, что более поздние по своему происхождению кратеры лунных морей значительно меньше по размерам, чем более древние континентальные кратеры. При этом нелишне отметить, что поверхность Меркурия формировалась приблизительно в ту же эпоху, что и лунные материки, то есть около 4—4,5 млрд. лет назад.

С помощью радиолокационных измерений были обнаружены кратерные образования и на планете Венера. Как известно, поверхность этой планеты в телескопы увидеть нельзя из-за сплошного непрозрачного слоя облачности. Но радиоволны проходят сквозь облачный слой и, отразившись от поверхности планеты, приносят информацию о характере ее рельефа. В результате радионаблюдений в одном из участков экваториальной области Венеры было зарегистрировано свыше десяти кольцевых кратеров диаметром от 35 до 150 км. Был также обнаружен кратер с поперечником около 300 км и глубиной в 1 км. Ему присвоено имя известного физика, одного из пионеров исследования радиоактивности, Лизы Мейтнер.

В отличие от лунных кратеров, а также кратеров Меркурия, венерианские кратеры довольно сильно сглажены.

Кроме того, на Венере была обнаружена похожая на кратер кольцевая структура довольно правильной формы, окруженная сильно разрушенным двойным валом с поперечником около 2600 км. Однако относительно природы этого образования существуют различные точки зрения.

Как известно, Юпитер и Сатурн — это водородно-гелиевые планеты. Однако их многочисленные спутники являются телами земного типа. И как показали космические исследования последних лет, они тоже в свое время подвергались интенсивной метеоритной бомбардировке. Например, следы многочисленных метеоритных ударов видны на поверхности так называемых галилеевых спутников Юпитера Ганимеда и особенно Каллисто. Оба эти спутника покрыты толстыми ледяными панцирями, поэтому кратерные образования на них имеют значительно более светлую окраску, чем кольцевые структуры на Луне. На снимке Ганимеда хорошо виден также большой темный бассейн диаметром свыше 3000 км. Не исключено, что это «след» столкновения Ганимеда с очень крупным телом типа астероида.

Отчетливые метеоритные кратеры просматриваются и на поверхности некоторых спутников планеты Сатурн.

Так, например, на Мимасе, на стороне, постоянно обращенной к Сатурну, хорошо виден огромный метеоритный кратер, поперечник которого — 130 км — равен одной третьей части поперечника самого Мимаса. Как показывают расчеты, будь удар, вызвавший образование этого кратера, чуть сильнее, и Мимас развалился бы на части. Кратеры покрывают и всю остальную поверхность Мимаса, делая его похожим на Луну. Они меньше по размерам, но зато довольно глубокие.

Есть крупные метеоритные кратеры и на поверхности другого спутника Сатурна — Дионы. Поперечник самого большого — около 100 км. От некоторых из них расходятся светлые лучи, видимо, образовавшиеся в результате выброса материала при ударах крупных метеоритных тел. Не исключено, правда, что лучи, о которых идет речь, представляют собой отложения инея на поверхности Дионы.

Наиболее крупные кратеры обнаружены на спутнике Сатурна Рее. Они достигают 300 км в поперечнике. Многие из.них имеют центральные пики. Вообще, своим внешним видом Рея также весьм-а напоминает Луну или Меркурий.

С помощью автоматической межпланетной станции «Вояджер-2», побывавшей в районе Сатурна в конце августа 1981 г., на спутнике этой планеты Тефии был зарегистрирован кратер поперечником около 400—500 км. Специалисты считают, что этот кратер скорее всего образовался в результате столкновения Тефии с массивным телом.

Кратер поперечником около 100 км обнаружен и на поверхности спутника Сатурна Гиперйона. Оказалось также, что этот спутник обладает неправильной формой, похожей на картофелину. По мнению ученых, столь необычную форму Гиперион мог приобрести в результате космического столкновения.

Таким образом, образование кратеров в результате падения метеоритных тел — явление, характерное как для планет земной группы, так и для спутников планет-гигантов. Но в таком случае возникает вполне естественный вопрос: почему подобных кольцевых образований нет на нашей планете Земля?

Правда, кольцеобразные воронки, возникшие на месте падения метеоритов на Земле, существуют. Один из таких кратеров находится в США в штате Аризона. Его поперечник около 1200 м, а глубина достигает 174 м. Целая группа метеоритных кратеров обнаружена и на острове Сааремаа в Эстонии. Наибольший из них имеет около ПО метров в поперечнике и заполнен водой.

Однако все эти и подобные им кратеры по своим размерам не идут ни в какое сравнение с наиболее крупными аналогичными кольцевыми образованиями, например, на Луне. И до недавнего времени считалось, что на Земле кратеров таких масштабов не существует вообще.
Это обстоятельство представлялось по меньшей мере странным, поскольку Земля формировалась в ту же эпоху, что и соседние с ней небесные тела. Следовательно в отдаленном прошлом на ее поверхность также должны были падать крупные метеориты. Возможное объяснение состояло в том, что за миллионы и миллиарды лет гигантские воронки, образовавшиеся в местах их падения, подвергались воздействию целого ряда природных факторов, совокупность которых характерна именно для Земли: дождя, ветра, сезонных колебаний температуры, различных подвижек земной коры... Кроме того, на Земле существует биосфера, оказывающая весьма существенное преобразующее воздействие на строение поверхностных слоев нашей планеты.

В то же время, геологические структуры, подобные гигантским кольцевым метеоритным кратергам, могли возникать чисто земными путями, не имеющими никакого отношения к падениям космических тел. К числу таких явлений, способных вызвать образование больших круговых впадин, относятся, например, проседания поверхностных слоев в карстовых районах, всплывания ледяных масс в областях вечной мерзлоты, и, в особенности, вулканические процессы.

Можно ли отличить древние гигантские метеоритные кратеры — их называют астроблемами — скажем, от вулканических образований? Такая возможность, в принципе, существует. Дело в том, что вулканические процессы тесно связаны с определенным характером строения земной коры в данном районе, они подготовлены всей предшествующей историей развития того или иного ее участка. Расположение же метеоритных кратеров совершенно случайное, поскольку метеориты с равной степенью вероятности могли падать в любой точке нашей планеты. Иными словами, метеоритные кратеры располагаются вне всякой зависимости от геологических структур.

Так как падения крупных метеоритных тел сопровождаются выделением значительного количества энергии при ударе о земную поверхность, то в метеоритных кратерах, как правило, можно обнаружить сдвиги пород в радиальных направлениях. Кроме того, в результате дробления пород в районе крупных метеоритных кратеров нарушается характерное для данного района расположение магнитных силовых линий.

Наконец, в местах падения гигантских метеоритов обнаруживаются специфические конусовидные образования размером от нескольких сантиметров до нескольких метров, для возникновения которых необходимы сверхвысокие давления. При ударах большой силы происходит также образование особых модификаций кварца, обладающих необычными физическими свойствами.

Чтобы оценить грандиозный характер явлений, возникающих при падении гигантских метеоритов, достаточно сравнить их с таким могучим природным процессом, как извержения вулканов. Во время гигантского взрыва, которым сопровождалось происходившее несколько лет назад извержение вулкана Безымянный на Камчатке, давление в ударной волне составило около 3—5 килобар. Это максимальное давление, которое может вообще развиваться в ходе геологических процессов. А при падении гигантских метеоритов развивается давление до 250 и более килобар.

Таким образом, в принципе имеется возможность отличить древние астроблемы от сходных по форме геологических образований. А это очень важно: выявление метеоритной природы гигантских кольцевых структур представляет не только теоретический, но и большой практический интерес. Если та или иная структура имеет не вулканическое, а метеоритное происхождение, то по-иному будут оцениваться возможности существования в данном районе полезных ископаемых.

В 1970 г. на севере Красноярского края была открыта одна из самых интересных в мире астроблем — Попигайская. Ее поперечник достигает 100 км, а глубина — 200—250 м. Расчеты показывают, что метеорит, породивший такую астроблему, должен был иметь несколько километров в поперечнике. Падение этого космического тела произошло около 40 млн. лет назад. Интересно, что в Попигайской астроблеме характер растительности соответствует зоне лесотундры, в частности, обильно произрастает лиственница. В окрестностях же астроблемы растительность практически отсутствует, даже еще значительно южнее простирается тундра. Возможно, подобное явление объясняется тем, что астроблема образует котловину, лежащую значительно ниже уровня окружающей местности. А может быть, в астроблеме существует интенсивный тепловой поток из земных недр. Окончательный ответ на этот интригующий вопрос могут дать только специальные исследования.

Таким образом и Земля, и другие небесные тела планетного типа, входящие в состав Солнечной системы, на определенном этапе своего существования подвергались интенсивной метеоритной бомбардировке. Это еще одно свидетельство в пользу того, что планеты формировались в едином процессе. И еще один вывод, имеющий немаловажное значение для выяснения закономерностей образования и эволюции Солнечной системы: в ее истории был период, когда в околосолнечном пространстве двигалось большое число крупных метеоритных тел.

Дальнейшее изучение метеоритных кратеров позволит глубже заглянуть в историю Земли и Солнечной системы.

Которая вся усыпана кратерами разного диаметра. Однако на Земле также достаточно метеоритных кратеров, так как наша планета имеет давнюю историю и с нею сталкивались тысячи метеоритов, в том числе и весьма крупных. Правда, обнаружить метеоритные кратеры не так легко, потому что со временем большинство из них оказываются скрытыми растительностью и подвергаются эрозии, не говоря уже о кратерах, находящихся под водой. Тем не менее, на земной поверхности уже обнаружено немало примечательных метеоритных кратеров.

Метеорит или вулкан - вот в чём вопрос

Между тем вопрос о том, существуют ли на поверхности Земли метеоритные кратеры, или импактные кратеры (то есть кратеры от столкновения объектов космического происхождения с земной поверхностью), был дискуссионным до относительно недавнего времени, вплоть до 1960-х годов. Уже с начала XX века идеи о том, что Земля сталкивалась с космическими телами, начали высказываться: например, активным сторонником и одним из первых защитников данного тезиса был американец Дэниэл Бэрринджер, почти тридцать лет изучавший знаменитый Аризонский кратер в попытках доказать его импактное происхождение. Постепенно у него появлялись сторонники, однако конкретных доказательств у них не было.

Кроме того, зачастую метеоритные кратеры по своему внешнему виду и строению поразительно похожи на плоды вулканической деятельности. Кальдеры вулканов, что так же давало аргументы скептикам. С развитием космонавтики и выходом человечества в космос такие доказательства появились: во-первых, были выявлены остаточные явления, доказывающие метеоритный характер многих кратеров; во-вторых, возможность получать космические фотоснимки Земли позволили выявлять прежде необнаруженные метеоритные кратеры и сравнить их с подобными кратерами на других планетах. Так как в земных условиях метеоритные кратеры сохраняются довольно плохо, примерно в сто тысяч раз хуже, чем на той же Луне - на спутнике Земли нет воздушной эрозии, воздействия влаги, растительности и живых организмов.

Такие разные кратеры

Также метеоритные кратеры, то есть углубления на земной поверхности в результате падения космического объекта , называются астроблемами (в переводе с древнегреческого - «звёздные раны»). На сегодняшний день в мире обнаружено около 150 крупных метеоритных кратеров. При этом различные кратеры обладают оригинальными особенностями своего строения, обусловленные различными факторами, начиная от характера горных пород в данной области поверхности, плотностью самого метеорита и заканчивая скоростью движения метеорита. Однако наиболее важным и определяющим для строения кратеров является траектория движения метеорита.

Наименее долговечны те метеоритные кратеры, которые образовались при касательном ударе, когда метеорит столкнулся с поверхностью под углом, значительно отклонившимся от прямого. В этом случае кратеры представляют собой борозды относительно небольшой глубины, которые к тому же из-за своей формы подвергаются повышенной эрозии и быстро разрушаются. Дольше «живут» кратеры, которые образовались при падении метеоритов, чья траектория была максимально близка к вертикальной - именно в таких случаях и возникают классические метеоритные кратеры округлой формы. Небольшие кратеры, диметром до четырех километров, обладают простой чашеобразной формой, их воронка окружена так называемым цокольным валом. При больших диаметрах в кратерах возникает центральная горка над точкой удара, то есть в месте максимального сжатия горных пород. Когда речь идёт об очень больших кратерах, диаметр которых превышает 15 километров, внутри них образуются кольцевые поднятия, связанные с волновыми эффектами.

От Сибири до Австралии

Вот лишь некоторые из известных крупных метеоритных кратеров, обнаруженных на Земле:

  • кратер Попигай - расположенный в Сибири, в Якутии; крупнейший метеоритный кратер в России (делит четвёртое место в мире), имеет диаметр 100 километров, был открыт в 1946 году;
  • Пичеж-Катунский кратер - расположен в одновременно в Нижегородской и Ивановской областях, второй по размерам кратер России, имеет диаметр 80 километров, импактное событие произошло примерно 167 миллионов лет назад;
  • Болтышский кратер - расположен на территории Украины, диаметр 25 километров; относительно времени возникновения имеются различные версии - от 55 до 170 миллионов лет назад;
  • кратер Махунка - подводный кратер на континентальном шельфе Новой Зеландии; имеет диаметр около 20 километров и является одним из самых молодых метеоритных кратеров - по расчётам, столкновение метеорита с Землёй произошло в 1443 году;
  • кратер Акраман - расположен в Австралии, имеет диаметр 90 километров, образовался примерно 590 миллионов лет назад;
  • кратер Чиксулуб - один из самых известных кратеров, так как по распространённой теории считается, что именно столкновение Земли с метеоритом, образовавшим данный кратер, привело к вымиранию динозавров; расположен на полуострове Юкатан, имеет диаметр 180 километров и образовался предположительно 65 миллионов лет назад.

Александр Бабицкий


Крупные тела, размером более 100 м, легко пронзают атмосферу и достигают поверхности нашей планеты. При скорости в несколько десятков километров в секунду энергия, выделяющаяся при столкновении, значительно превосходит энергию взрыва равного по массе заряда тротила и сравнима скорее с ядерными боеприпасами. При таких столкновениях (ученые называют их импактными событиями) образуется ударный кратер, или астроблема.

Боевые шрамы

В настоящее время на Земле найдено более полутора сотен крупных астроблем. Однако практически до середины XX века столь очевидная причина появления кратеров, как удары метеоритов, считалась весьма сомнительной гипотезой. Сознательно искать крупные кратеры метеоритного происхождения стали начиная с 1970-х годов, их продолжают находить и сейчас — один-три ежегодно. Более того, такие кратеры образуются и в наше время, хотя вероятность их появления зависит от размера (обратно пропорциональна квадрату диаметра кратера). Астероиды диаметром около километра, образующие при ударе 15-километровые кратеры, падают довольно часто (по геологическим меркам) — примерно раз в четверть миллиона лет. А вот действительно серьезные импактные события, способные образовать кратер диаметром 200−300 км, происходят гораздо реже — примерно раз в 150 млн лет.

Самый большой — кратер Вредефорт (ЮАР). d = 300 км, возраст — 2023 ± 4 млн лет. Крупнейший в мире ударный кратер Вредефорт расположен в ЮАР, в 120 км от Йоханнесбурга. Его диаметр достигает 300 км, и потому наблюдать кратер можно только на спутниковых снимках (в отличие от небольших кратеров, которые можно «охватить» взглядом). Вредефорт возник в результате столкновения Земли с метеоритом диаметром примерно 10 километров, а произошло это 2023 ± 4 млн лет назад — таким образом, это второй по возрасту известный кратер. Интересно, что на звание «самого большого» претендует целый ряд неподтверждённых «конкурентов». В частности, это кратер Земли Уилкса — 500-километровое геологическое образование в Антарктиде, а также 600-км кратер Шива у побережья Индии. В последние годы учёные склоняются к тому, что это ударные кратеры, хотя прямых доказательств (например, геологических) нет. Ещё один «претендент» — это Мексиканский залив. Существует спекулятивная версия, что это гигантский кратер диаметром 2500 км.

Популярная геохимия

Как отличить ударный кратер от других особенностей рельефа? «Самый главный признак метеоритного происхождения — это то, что кратер наложен на геологический рельеф случайным образом, — объясняет «ПМ» заведующий лабораторией метеоритики Института геохимии и аналитической химии им. В.И. Вернадского (ГЕОХИ) РАН Михаил Назаров. — Вулканическому происхождению кратера должны соответствовать определенные геологические структуры, а если их нет, а кратер имеется — это уже серьезный повод рассмотреть вариант ударного происхождения».


Самый обжитый — кратер Рис (Германия). d = 24 км, возраст — 14,5 млн лет. Нёрдлингенским Рисом называют регион в Западной Баварии, образованный падением метеорита более 14 миллионов лет назад. Удивительно, но кратер отлично сохранился и наблюдается из космоса — при этом хорошо видно, что чуть в стороне от его центра в ударном углублении стоит… город. Это Нёрдлинген, исторический городок, окружённый крепостной стеной в форме идеальной окружности — это как раз связано с формой ударного кратера. Нёрдлинген интересно изучать на спутниковых фотографиях. Кстати, по «обжитости» с Нёрдлингеном может поспорить Калуга, также расположенная в ударном кратере, образованном 380 миллионов лет назад. Его центр расположен под мостом через Оку в центре города.

Еще одним подтверждением метеоритного происхождения может быть наличие в кратере собственно фрагментов метеорита (ударника). Этот признак работает для небольших кратеров (диаметром сотни метров — километры), образованных при ударах железоникелевых метеоритов (небольшие каменные метеориты обычно рассыпаются при прохождении атмосферы). Ударники, образующие крупные (десятки километров и более) кратеры, как правило, полностью испаряются при ударе, так что найти их фрагменты проблематично. Но следы тем не менее остаются: скажем, химический анализ может обнаружить в породах на дне кратера повышенное содержание металлов платиновой группы. Сами породы тоже изменяются под действием высоких температур и прохождения ударной волны взрыва: минералы плавятся, вступают в химические реакции, перестраивают кристаллическую решетку — в общем, происходит явление, которое называется ударным метаморфизмом. Наличие образующихся в результате горных пород — импактитов- также служит свидетельством ударного происхождения кратера. Типичные импактиты — это диаплектовые стекла, образующиеся при высоких давлениях из кварца и полевого шпата. Бывает и экзотика — например, в Попигайском кратере не так давно обнаружили алмазы, которые образовались из содержащегося в породах графита при высоком давлении, созданном ударной волной.


Самый наглядный — кратер Бэрринджера (США). d = 1,2 км, возраст — 50000 лет. Кратер Бэрринджера неподалёку от города Уинслоу (Аризона) — видимо, самый эффектный кратер, поскольку он образовался в пустынной местности и практически не был искажён рельефом, растительностью, водой, геологическими процессами. Диаметр кратера невелик (1,2 км), да и само образование относительно молодое, всего 50 тысяч лет — поэтому сохранность его великолепна. Кратер назван в честь Дэниэла Бэрринджера, геолога, который в 1902 году впервые высказал мысль о том, что это именно ударный кратер, и последующие 27 лет своей жизни занимался бурением и поисками самого метеорита. Он ничего не нашёл, разорился и умер в бедности, зато земля с кратером осталась за его семьёй, которая и сегодня получает прибыль от многочисленных туристов.


Самый древний — кратер Суавъярви (Россия). d = 16 км, возраст — 2,4 миллиарда лет. Древнейший в мире кратер Суавъярви находится в Карелии, неподалёку от Медвежьегорска. Диаметр кратера — 16 км, но обнаружение его даже на спутниковых картах крайне затруднено из-за геологических деформаций. Шутка ли — метеорит, создавший Суавъярви, обрушился на Землю 2,4 миллиарда лет тому назад! Впрочем, некоторые не согласны с версией о Суавъярви. Существует мнение, что найденные там импактные породы образовались в результате череды мелких столкновений значительно позже. Кроме того, на «древность» претендует австралийский кратер Йаррабубба, который мог образоваться 2,65 млрд лет тому назад. А мог и позже.


Самый красивый — кратер Каали (Эстония). d = 110 м, возраст — 4000 лет. Красота — понятие относительное, но одним из самых привлекательных для туристов и романтических кратеров является эстонский Каали на острове Сааремаа. Как и большинство ударных кратеров средних и малых размеров, Каали представляет собой озеро, а благодаря относительной молодости (всего 4000 лет) оно сохранило идеально правильную округлую форму. Озеро окружено 16-метровым, опять же правильной формы земляным валом, неподалёку расположено несколько кратеров поменьше, «выбитых» сателлитными осколками основного метеорита (его масса составляла от 20 до 80 тонн).

Ландшафтный дизайн

При столкновении крупного метеорита с Землей в окружающих место взрыва породах неизбежно остаются следы ударных нагрузок — конусы сотрясения, следы плавления, трещины. Взрыв обычно образует брекчии (осколки породы) — аутигенные (просто раздробленные) или аллогенные (раздробленные, перемещенные и перемешанные), — которые тоже служат одним из признаков импактного происхождения. Правда, признаком не слишком точным, поскольку брекчии могут иметь различное происхождение. Скажем, брекчии Карской структуры долгое время считали отложениями ледников, хотя потом от этой идеи пришлось отказаться — для ледниковых они имели слишком острые углы.


Еще одним внешним признаком метеоритного кратера являются выдавленные взрывом пласты подстилающих пород (цокольный вал) или выброшенные раздробленные породы (насыпной вал). Причем в последнем случае порядок залегания пород не соответствует «натуральному». При падении крупных метеоритов в центре кратера за счет гидродинамических процессов образуется горка или даже кольцевое поднятие — примерно так же, как на воде, если кто-то бросит туда камень.

Пески времени

Далеко не все метеоритные кратеры находятся на поверхности Земли. Эрозия делает свое разрушительное дело, и кратеры заносит песком и почвой. «Иногда их находят в процессе бурения, как это произошло с захороненным Калужским кратером — 15-км структурой возрастом примерно 380 млн лет, — говорит Михаил Назаров.- А иногда даже из их отсутствия можно сделать интересные выводы. Если с поверхностью ничего не происходит, то число импактных структур там должно примерно соответствовать оценкам средней плотности кратеров. А если мы видим отклонения от среднего значения, это свидетельствует, что местность подвергалась каким-либо геологическим процессам. Причем это верно не только для Земли, но и для других тел Солнечной системы. Например, лунные моря несут на себе значительно меньше следов кратеров, чем остальные области Луны. Это может свидетельствовать об омоложении поверхности — скажем, с помощью вулканизма».

Земная поверхность находится под метеоритной бомбардировкой, когда при попадании метеоритов небольших размеров возникают кратеры-лунки ударного типа, а при более редких попаданиях крупных метеоритов и астероидов (поперечником в сотни метров - первые километры) образуются взрывные кратеры диаметром в километры, даже в первые сотни километров. В процессе последующих преобразований земной поверхности эти космогенные кольцевые структуры теряют форму кратеров. В большинстве случаев, в недавнем прошлом, геологи принимали их за вулкано-тектонические структуры, однако сейчас для большинства из них установлены четкие признаки образования в результате удара и взрыва небесного тела. Для подобных структур был предложен термин «астроблемы» (в переводе с греческого «звездные раны»), который прочно вошел в научную литературу.

Сейчас на Земле насчитывается около двухсот астроблем, примерно1/10 часть выявлена на территории России. Большая часть их обнаружена в районах с высокой степенью геологической изученности, так что на больших пространствах России возможны еще многие новые открытия. Астроблемы получают свои названия по местности, где они обнаружены.

Интерес к ним особенно возрос после установления метеоритной природы лунных кратеров и подобных образований на других планетах и их спутниках. Предполагается, что в развитии Земли на начальном этапе была проявлена «лунная стадия», когда вся поверхность была мишенью для интенсивной метеоритной бомбардировки и имела вид современной Луны с ее кратерами. Некоторые исследователи считают крупные образования округлой формы на Земле (поперечником в тысячи километров) реликтами этой стадии, называя их нуклеарами.

По своим размерам астроблемы разделены на три группы.

Самой крупной в России является Попигайская астроблема на севере Анабарского массива: ее диаметр составляет 100 км. Немногим ей уступают Карская астроблема на Полярном Урале и Пучеж-Катункская на Средней Волге. Размеры остальных астроблем составляют километры — первые десятки километров.

По возрасту астроблемы распределяются в широком интервале от докембрия (астроблема Янисъярви - 725 млн лет) до плиоцена (астроблема Эльгыгытгын - 3,5 млн лет).
Выделяют поверхностные астроблемы, экспонированные непосредственно на земной поверхности, как со времени образования, так и вскрытые благодаря эрозионным процессам. К ним относится большинство астроблем, выявленных на территории России.

Другую группу составляют глубинные астроблемы, перекрытые после возникновения более молодыми осадочными отложениями. Например, Калужская астроблема возникла в девоне и была перекрыта каменноугольными отложениями.
Выявление астроблем, залегающих на глубине, возможно только на основе геофизических методов с последующим бурением скважин. В кратере молодых астроблем нередко сохраняется озеро округлой формы (озеро Эльгыгытгын, или Ямозеро в предполагаемой астроблеме на Тимане).

При взрыве астероида образуется кратер, часто с центральной горкой на дне, с валом и выбросами из кратера, иногда с полями рассеяния небольших кусочков расплавленного материала - тектитов. За счет взрыва возникают особые породы, названные импактитами; это - брекчии разного вида, тагамиты, возникшие из расплава, напоминающие лавы, и зювиты с обломочным материалом, близкие по облику к туфам.

Проявляются, также особые структуры, получившие название «конусов сотрясения». За счет высоких давлений при взрыве появляются высокобарические модификации кремнезёма - коэсит и стишовит, особые планарные структуры в минералах.

Небольшие по размерам метеоритные кратеры ударного происхождения имеют форму лунок с диаметром в десятки метров, глубиной в несколько метров. На территории России выявлено небольшое число таких кратеров, в том числе в результате падений метеоритов, наблюдавшихся человеком. Со временем такие кратеры теряют свою форму под действием экзогенных геологических процессов, что делает их выявление невозможным.

Из-за малых размеров и нечеткости ударные кратеры не различаются в строении геологических формаций. На территории России наиболее известна группа Сихотэ-Алиньских кратеров в , возникшая в результате своего рода «метеоритного дождя». При их изучении было собрано большое число осколков метеоритов.

Особое внимание привлекают следы Тунгусской катастрофы - взрыва небесного тела в , скорее всего ядра кометы, приведшего к радиальному повалу деревьев. Это примечательное место было объектом исследований многих экспедиций. Были высказаны различные гипотезы, порой фантастические, написано множество научных работ и научно-популярных сочинений. Единственное аналогичное событие произошло в , почти два десятилетия спустя, которое можно назвать, продолжая традицию, Амазонской катастрофой.

Изучение астроблем, следов Тунгусской и Амазонской катастроф позволяют говорить о кометно-астероидной опасности, связанной с возможными ударами крупных небесных тел в населенной местности. Трудно даже представить последствия грандиозного взрыва, когда в радиусе десятков километров будут расплавлены горные породы, и выбросы из кратера загромоздят его окрестности. Поэтому предлагается заблаговременно наладить международный мониторинг за движением астероидов и комет, подготовить ракетно-ядерные средства защиты.

Предполагается, что космические катастрофы в геологическом прошлом привели даже к смене животного мира и . Установлено, что 65 млн лет назад при образовании астроблемы Чиксулуб, на полуострове Юкатан в , возникла так называемая «иридиевая аномалия», четко выделяемая в отложениях по развитию иридия и других космогенных минералов, обогащению углеродом, включая молекулы в форме фуллеренов с космогенными изотопами гелия-3, местами с микротектитами.

Практически одновременно с кратером Чиксулуб образовались астроблема Силверпит в Северном море, Каменская и Гусевская астроблемы в России, в низовьях Дона, а несколько позднее - Карская астроблема на Полярном Урале. Вероятно, еще больше астероидов могло оказаться в пределах акваторий. В этом случае можно говорить об «астероидном дожде».

В результате исчезли динозавры и другие группы живых организмов мезозоя, уступив место кайнозойской жизни, с господством и появлением человека.
Помимо научного значения, изучение астроблем представляет практический интерес. В Попигайской астроблеме заключено уникальное месторождение технических алмазов, в виде мельчайших кристаллов особой формы, названных лонсдейлитами. На месторождении проводились геологоразведочные работы, но вопросы извлечения алмазов и технологии их применения как шлифовочного материала пока до конца не решены.

Тектиты-молдавиты, попавшие на территорию из кратера Рис в , применяются для изготовления ювелирных украшений. Небольшие антиклинальные складки над ископаемым валом Калужской астроблемы изучались с целью создания подземных хранилищ газа. В астроблеме Сильян в , напротив, проводилось бурение с целью найти газовое месторождение.
В целом, астроблемы и метеоритные кратеры как уникальные природные объекты, заслуживают образования заповедников, национальных парков или памятников природы, как это уже сделано в районе Тунгусской катастрофы.

В 50-х годах прошлого столетия внимание некоторых геологов привлекли структуры, возникшие при ударах метеоритов – метеоритные кратеры . В окрестностях явно выраженного в рельефе кратера Аризона был обнаружен коэсит (разновидность кварца, образовавшаяся при высоком давлении) и накоплена информации об образовании трещин и метаморфических явлениях в породах, которые, как считалось, могли образоваться только при метеоритных ударах. После этого, не только явно выраженные в рельефе метеоритные кратеры, но и структуры, которые считались возникшими при метеоритных ударах в древние времена, стали обнаруживаться одна за другой. Р.Диц (Dietz, 1960) назвал такие древние шрамы от ударов метеоритов «астроблемами » (astroblemes) – звёздными ранами (от греческих слов, обозначающих «звезда» и «рана»). И в настоящее время принято называть астроблемами такие структурные формы, которые утратили морфологические признаки кратеров

Распространение современных или ископаемых импактных кратеров, установленных на Земле, очень неравномерно. Это обусловлено тем, что сохранность кратеров в значительной степени зависит от интенсивности последующих движений земной коры. В молодых метеоритных кратерах, которые до сих пор хорошо выражены в рельефе, сохранилось намного больше доказательств их импактного происхождения, чем в древних.

В настоящее время метеоритные кратеры и астроблемы известны на всех континентах. Всего их насчитывается более 150 (по данным на 1990 год). Более 40 структур расположены на территории Канады и около 20 – на территории бывшего СССР. Размеры метеоритных кратеров варьируют от 15 м до 100 км и более. Известно около 20 крупных структур с диаметром более 20 км (из них 7 находится на территории бывшего СССР, в том числе самые большие из известных – Лабынкарский, Пучеж-Катунский и Попигайский (рис. 7.3) кратеры, с поперечниками от 60 до 70 км).

Возраст метеоритных кратеров от позднего протерозоя до кайнозоя. Например, Аризонский кратер (рис. 7.4) образовался в плиоцене около 9 млн. лет назад, Янисъварская астроблема имеет возраст около 700 млн. лет, а астроблема Садбери (?) в Канаде – около 1700 млн. лет. (В лунных метеоритных кратерах есть признаки излияний лавы и Р.Диц попытался доказать, что, так называемый, «лополит Садбери» в Канаде является древним импактным кратером, а слагающие его интрузивные породы, по сути, есть продукты постимпактного магматизма и вулканизма, спровоцированного падением огромного метеорита.)

Не менее загадочна и другая кольцевая структура – Фредефортский купол в Южной Африке с возрастом пород около 3.54 млрд. лет.

Структура и состав пород метеоритных кратеров и астроблем

Обычно метеоритные кратеры образуют округлую структуру, окружённую приподнятым валом, а иногда и внешней опрокинутой от центра «синклиналью». Кратеры заполнены ударной брекчией, лежащей на расколотых и трещиноватых породах. В середине кратеров часто присутствует центральное поднятие, сложенное хаотической брекчией, состоящей из вынесенных наверх пород дна кратера. Из-за позднейших разрушений, оползней и эрозии некоторые элементы строения кратеров могут быть слабо выражены либо вообще отсутствовать.

При ударе метеорита о Землю в месте удара (в метеоритном кратере) возникают огромные давления (до 100 МПа) и температуры (до 2000°), которые могут приводить к образованию:

● горных пород особого сложения (автохтонной и аллохтонной брекчий, импактитов) и структур.

● высокобарических фаз кремнезёма (коэсита, стишовита), высокобарических минералов группы пироксена (жадеита) и группы шпинели (рингвудита), лешательерита (кварцевое стекло), мескелинита (переплавленный в стекло битовнит), алмаза и др. минералов;

Кроме того, в породах, слагающих метеоритный кратер, присутствует вновь образованное стекло, железо-никелевые и железные шарики, а также могут быть повышенные содержания платины, никеля, иридия и др. элементов.

Автохтонная (аутигенная) брекчия – импактная брекчия, расположенная в раздробленном, но не выброшенном основании кратера. Характеризуется развитием интенсивной трещиноватости и другими проявлениями ударного воздействия, редко обнажена и почти всегда перекрыта плащом других образований ударного происхождения.

Аллохтонная (аллогенная) брекчия состоит из упавших назад в кратер обломков, образующих различного рода нагромождения из осколков и глыб, сцементированных рыхлым обломочным материалом, к которому примешивается различное количество стекла. Она распространена очень широко по всей территории кратеров и нередко за их пределами. Мощность аллохтонной брекчии может составлять 100 м и более.

Импактиты представляют собой ударные брекчии, одним из основных компонентов которых являются стекло или продукты его изменения, образующиеся при расплавлении претерпевших удар пород, и цементирующее обломки. Различают две основные разновидности импактитов:зювиты (стекловато-обломочные) итагамиты (массивные).

Зювиты представляют собой туфообразную массу «спекшихся» обломков стекла и пород либо рыхлый песок. Они находятся в аллохтонной брекчии, вместе с другими породами выполняют внутренние части воронок кратеров и в виде отдельных языков распространяются за их пределы.

Тагамиты представлены однообразными пятнистыми породами с пористой, иногда пемзовидной текстурой, состоящими из обломков темно-серого или цветного стекла, которое имеет афанитовое строение и насыщено обломками пород и минералов. Тагамиты расположены внутри воронок, нередко образуя скальные обнажения со столбчатой отдельностью. Они слагают неправильные пластообразные и рукавообразные тела, залегающие на поверхности автохтонной брекчии в основании кратеров или над аллохтонной брекчией и зювитами, а также дайки, жерловины в автохтонной брекчии и псевдопокровы.

В метеоритных кратерах встречаются также специфические образования, получившие название конусов разрушения . Они представляют собой обломки или блоки горных пород с бороздчатой поверхностью в виде острых конусов, ориентированных вверх, размером от 1 см до 10 м. Кроме того, под воздействием ударной волны возникают изменения в минералах пород: понижаются показатели преломления и двупреломления, возникает ударное двойникование и ударный кливаж.

Признаки импактных структур

Для идентификации метеоритного кратера необходимо выявить следующие ключевые признаки.

1. Кольцевая структура на поверхности (однако, последующие движения земной коры могли привести к деформации этих структур).

2. В центре кратера куполовидная структура и брекчиевидные отложения.

3. Структура, в которой окружающие кратер пласты опрокинуты.

4. Брекчирование в окружающих породах.

5. Присутствие метеоритного материала (обломков метеорита, муассанита, железо-никелевых и железных шариков, повышенные содержания платины, никеля, иридия и др. элементов). Если только кратер древнего происхождения, метеоритный материал может быть не обнаружен .

6. Изменения в породах, связанные с шок-метаморфизмом, т.е. развитие конусов обрушения, присутствие минералов высокой плотности, развитие планарных структур в минералах, витрификация стекла. Эти признаки могут исчезнуть в результате последующего метаморфизма.

7. Аномалии геофизических свойств в пределах изучаемой территории: силы тяжести, магнитных свойств, скорости сейсмических волн и др.

Первый и второй признаки выявляются при дешифрировании аэрофотоснимков и космоснимков, анализа топокарт и форм рельефа, седьмой – при анализе геофизических карт. Эти три признака выявляются на подготовительном этапе, а все остальные – при проведении полевых работ на выявленных структурах.

Наиболее надёжными признаками являются четвёртый, пятый и шестой. На основании надёжности доступных данных по М.Денс (Dence M.R.) импактные кратеры необходимо подразделять на три категории:

1) точно установленные импактные кратеры, в которых был обнаружен метеоритный материал;

2) вероятные импактные кратеры, в которых можно наблюдать структуры, возникшие при шок-метаморфизме;

3) предполагаемые импактные кратеры, выделяемые по кольцевой форме структуры и т.д.

По данным на 1990 год было выявлено 63 структуры первой группы, 42 – второй, 39 – третьей.