Какая скорость звука в воздухе. Определение скорости звука в воздухе методом стоячих волн

Наверное, многие из Вас слышали о таком понятии как скорость звука. Надеюсь большинство из Вас понимает, что это такое. А если даже и нет, то сейчас разберемся.

Что такое скорость?

Во-первых, нужно понимать, что скорость – это физическая величина, показывающая какое расстояние может преодолеть тело за единицу времени. Из этого определения следует, что автомобиль, движущийся со скоростью 70 км/ч, в 99% случаев может проехать 70 километров за один оборот часовой стрелки (то есть за час). 1% случаев скинем на то, что он может поломаться по дороге или дорога закончится. С машиной понятно. Вместо машины можно взять и другие объекты: человек бежит, камень летит, тушканчик прыгает и т д. Все эти тела являются реальными объектами, которые можно увидеть и даже потрогать. Но звук это ведь не камень или самолет, откуда у него скорость?

Понятие состоит из двух слов. С первым мы уже разобрались. Теперь перейдем ко второму. Что такое звук?

Звук – это то, что мы можем слышать, то есть это физическое явление. Это явление возникает в результате распространения звуковой волны в твердой, жидкой или газообразной среде. Звуковая волна очень похожа на обычную морскую волну, которую все видели вживую или по телевизору (не зря же их назвали одинаково – волна ). Но более точно можно представить звуковую волну как круги на воде, которые появляются после бросания камешка. Ведь звук распространяется во все стороны одинаково! Если Вы покричите на стакан с водой, то Вас заберут в дурку Вы сможете увидеть звук!!! В виде кругов на поверхности воды.

То есть звуковая волна – это по сути колебание атомов той среды, в которой распространяется звук. Именно поэтому от громкой музыки трясутся окна.

Теперь мы знаем, что такое скорость и что такое звук, так давайте же соединим эти понятия вместе!

Скорость звука – величина, показывающая на какое расстояние может распространиться звуковая волна за единицу времени.

Как мы уже разобрались, для движения звуковой волны необходимо (воздух, вода, твердое тело), которые будут колебаться. Именно поэтому в космосе нет звука! Так как там нет атомов (практически нет, немножко есть, но очень мало)! И самое интересное, что звук распространяется в воздухе со скоростью 340 м/с, в воде – со скоростью 1500 м/с, а в твердых телах – со скоростями 3000-6000 м/с. В этом нет ничего удивительного, так как чем меньше расстояние между атомами, тем быстрее пробежит звук.

Чем теплее вода, тем больше в ней скорость звука. При погружении на большую глубину скорость звука в воде также увеличивается. Километры в час (км/ч) - внесистемная единица измерения скорости.

А в 1996г была запущена первая версия сайта с мгновенными вычислениями. Уже у античных авторов встречается указание на то, что звук обусловлен колебательным движением тела (Птолемей, Евклид). Аристотель отмечает, что скорость звука имеет конечную величину, и правильно представляет себе природу звука.

Скорость звука в газах и парах

В многофазных средах из-за явлений неупругого поглощения энергии скорость звука, вообще говоря, зависит от частоты колебаний (то есть наблюдается дисперсия скорости). Например, оценка скорости упругих волн в двухфазной пористой среде может быть выполнена с применением уравнений теории Био-Николаевского. При достаточно высоких частотах (выше частоты Био) в такой среде возникают не только продольные и поперечные волны, но также и продольная волна II-рода.

В чистой воде скорость звука составляет около 1500 м/с (см. опыт Колладона-Штурма) и увеличивается с ростом температуры. Объект, движущийся со скоростью 1 км/ч, преодолевает за один час один километр. Если Вы не обнаружили себя в списке поставщиков, заметили ошибку, или у Вас есть дополнительные численные данные для коллег по теме, сообщите, пожалуйста.

Информация, представленная на сайте, не является официальной и предоставлена только в целях ознакомления. На земле прохождение ударной волны воспринимается как хлопок, похожий на звук выстрела. Превысив скорость звука, самолёт проходит сквозь эту область повышенной плотности воздуха, как бы прокалывает её – преодолевает звуковой барьер. Долгое время преодоление звукового барьера представлялось серьёзной проблемой в развитии авиации.

Маха числах полёта M(∞), несколько превышающих критическое число M*. Причина состоит в том, что при числах M(∞) > M* наступает волновой кризис, сопровождающийся появлением волнового сопротивления. 1) ворота в крепостях.

Почему в космосе темно? Правда ли, что звезды падают? Скорость, число Маха которой превышает 5, называется гиперзвуковой. Сверхзвуковая скорость - скорость перемещения тела (газового потока), превышающая скорость распространения звука в идентичных условиях.

Смотреть что такое «СВЕРХЗВУКОВАЯ СКОРОСТЬ» в других словарях:

В твёрдых телах звук распространяется гораздо быстрее, чем в воде или воздухе. Волна в каком-то смысле движение нечто, распространяющееся в пространстве. Волна – это процесс перемещения в пространстве изменения состояния. Давайте представим себе, каким образом происходит распространение звуковых волн в пространстве. Эти слои сжимаются, что в свою очередь снова создает избыточное давление, влияющее на соседние слои воздуха.

Это явление использовано в ултразвуковой дефектоскопии металлов. Из таблицы видно, что с уменьшением длины волны уменьшаются размеры пороков в металле (раковин, иногородных вкраплений), которые могут быть обнаруженыпучком ультразвука.

Дело в том, что при движении на скоростях полета свыше 450 км/ч к обычному сопротивлению воздуха, которое пропорционально квадрату скорости, начинает добавляться и волновое сопротивление. Волновое сопротивление резко увеличивается при приближении скорости самолета к скорости звука, в несколько раз превышая сопротивление, связанное с трением и образованием вихрей.

Чему равна скорость звука?

Помимо скорости, волновое сопротивление напрямую зависит от формы тела. Так вот, стреловидное крыло заметно уменьшает именно волновое сопротивление. Дальнейшее увеличение угла атаки при маневрировании ведет к распространению срыва потока по всему крылу, потери управляемости и сваливании самолета в штопор. Крыло с обратной стреловидностью частично лишено этого недостатка.

При создании крыла обратной стреловидности возникли сложные проблемы, связанные в первую очередь с упругой положительной дивергенцией (а попросту - со скручиванием и последующим разрушением крыла). Продуваемые в сверхзвуковых трубах крылья из алюминиевых и даже стальных сплавов разрушались. Лишь в 1980-х годах появились композитные материалы, позволяющие бороться со скручиванием с помощью специально ориентированной намотки углепластиковых волокон.

Для распространения звука необходима упругая среда. В вакууме звуковые волны распро­страняться не могут, так как там нечему колебаться. При температуре 20 °С она равна 343 м/с, т. е. 1235 км/ч. Заметим, что именно до такого значения уменьшается на расстоянии 800 м скорость пули, вылетевшей из автомата Калашни­кова.

В разных газах звук распространяется с разной скоростью. Введите значение единицы (скорость звука в воздухе), которое вы хотите пересчитать. В областях современных технологий и бизнеса выигрывает тот, кто успевает делать все быстро.

Скорость звука

К основным характеристикам звуковых волн относят скорость звука, его интенсивность - это объективные характеристики звуковых волн, высоту тона, громкость относят к субъективным характеристикам. Субъективные характеристики зависят в большой мере от восприятия звука конкретным человеком, а не от физических характеристик звука.

Измерение скорости звука в твердых телах, жидкостях и газах указывают на то, что скорость не зависит от частоты колебаний или длины звуковой волны, т. е., для звуковых волн не характерна дисперсия. В твердых телах могут распространяться продольные и поперечные волны, скорость распространения которых находят с помощью формул:

где Е - модуль Юнга, G - модуль сдвига в твердых телах. В твердых телах скорость распространения продольных волн почти в два раза больше чем скорость распространения поперечных волн.

В жидкостях и газах могут распространяться лишь продольные волны. Скорость звука в воде находят за формулой:

K - модуль объемного сжатия вещества.

В жидкостях при возрастании температуры скорость звука возрастает, что связано с уменьшением коэффициента объемного сжатия жидкости.

Для газов выведена формула, которая связывает их давление с плотностью:

Впервые эту формулу для нахождения скорости звука в газах использовал И. Ньютон. Из формулы видно, что скорость распространения звука в газах не зависит от температуры, она также не зависит от давления, поскольку при возрастании давления возрастает и плотность газа. Формуле можно придать и более рациональный вид: на основе уравнения Менделеева-Клапейрона:

Тогда скорость звука будет равна:

Формула носит название формулы Ньютона. Рассчитанная с ее помощью скорость звука в воздухе составляет при 273К 280 м/с. Реальная же экспериментальная скорость составляет 330 м/с.

Этот результат значительно отличается от теоретического и причину этого установил Лаплас.

Он показал, что распространение звука в воздухе происходит адиабатно. Звуковые волны в газах распространяются так быстро, что, что созданные локальные изменения объема и давления в газовой среде происходят без теплообмена с окружающей средой. Лаплас вывел уравнение для нахождения скорости звука в газах:

Распространение звуковых волн

В процессе распространения звуковых волн в среде происходит их затухание. Амплитуда колебаний частиц среды постепенно уменьшается при возрастании расстояния от источника звука.

Одной из основных причин затухания волн есть действие сил внутреннего трения на частицы среды. На преодоление этих сил непрерывно используется механическая энергия колебательного движения, что переносится волной. Эта энергия превращается в энергию хаотического теплового движения молекул и атомов среды. Поскольку энергия волны пропорциональна квадрату амплитуды колебаний, то прираспространении волн от источника звука вместе с уменьшением запаса энергии колебательного движения уменьшается и амплитуда колебаний.

На распространение звуков в атмосфере влияет много факторов: температура на разных высотам, потоки воздуха. Эхо - это отраженный от поверхности звук. Звуковые волны могут отражаться от твердых поверхностей, от слоев воздуха в которых температура отличается от температуры соседних слоев.

Цель работы : определение длины стоячей волны и скорости звука в воздухе.

Приборы и принадлежности: резонатор с телефоном и микрофоном, звуковой генератор, осциллограф, отсчетная линейка.

Теоретическое введение

Звук представляет собой упругие волны, распространяющиеся в газах, жидкостях и твердых телах и воспринимаемые ухом человека и животных. Человеческое ухо способно воспринимать звук с частотами от 16 Гц до 20 кГц. Звук с частотами ниже 16 Гц называется инфразвуком, а выше 20 кГц – ультразвуком. Наука о звуке называется акустикой.

Если в упругую среду поместить источник колебаний, то соприкасающиеся с ним частицы будут выведены из положения равновесия и придут в колебательное движение. Колебания этих частиц передаются силами упругости соседним частицам среды, а от них – к другим, более удаленным от источника колебаний. Через некоторое время колебательный процесс охватит всю среду. Распространение колебаний в упругой среде называется волной или волновым процессом.

Различают продольные волны (частицы колеблются вдоль направления распространения волны) и поперечные волны (частицы колеблются перпендикулярно этому направлению). Продольные волны представляют собой чередующиеся сгущения и разрежения. Такие волны распространяются в средах, в которых возникают силы упругости при деформациях сжатия и растяжения, но не обладающих напряжением сдвига (т.е. в твердых телах, жидкостях и газах). Примером продольных волн являются звуковые волны. Поперечные волны распространяются в средах, в которых возникают упругие силы при деформации сдвига (т.е. в твердых телах или в некоторых особых случаях, например, волны на границе раздела жидкость-газ). Скорость распространения продольных и поперечных волн зависит от упругих свойств среды. Так, при 20 ºС скорость звука в воздухе равна 343 м/c, в воде – 1480 м/c, в стали – около 6000 м/c.

Скорость звука в газах теоретически можно рассчитать по формуле:

где  – показатель адиабаты (отношение теплоемкости при постоянном давлении к теплоемкости при постоянном объеме), R – молярная газовая постоянная, Т – термодинамическая температура, М – молярная масса газа. Таким образом, скорость звука в газах оказывается такого же порядка, что и средняя скорость теплового движения молекул.

Уравнение бегущей волны, распространяющейся вдоль координаты x , имеет вид:

 = A cos(t kx ), (2)

где  – смещение частиц среды от положения равновесия; А – амплитуда волны;  – циклическая частота колебаний; t – время; k – волновое число,
( – длина волны).

Стоячей волной называется особое колебательное состояние среды, возникающее при наложении двух встречных бегущих волн (например, прямой и отраженной) одинаковой амплитуды и частоты. Стоячая волна – это частный случай интерференции волн.

Рассмотрим сложение двух встречных волн с одинаковой амплитудой и частотой. Прямая волна описывается уравнением

 1 = A cos(t kx ), (3)

в уравнении отраженной волны координата x меняет знак на противоположный:

 2 = A cos(t + kx ). (4)

Сложим уравнения (3) и (4):

 =  1 +  2 = A cos(t kx ) + A cos(t + kx )

и, воспользовавшись формулой для суммы косинусов двух углов, получим уравнение стоячей волны:

 = 2A cosx cost . (5)

Выражение, стоящее перед cost , представляет собой амплитуду стоячей волны:

А ст. в. =  2A cosx . (6)

Амплитуда колебаний частиц среды в стоячей волне зависит от координаты частиц x и, следовательно, меняется от точки к точке. Амплитуда стоячей волны максимальна (такие геометрические места называются пучностями) при условии

cosx =  1,

x =  n , (7)

откуда координаты пучностей

x пучн =  . (8)

Амплитуда стоячей волны принимает нулевые значения (такие точки называются узлами) при условии

cosx = 0,

x =  (2n + 1), (9)

откуда координаты узлов

x узл = 
. (10)

В формулах (7) – (10) n = 0, 1, 2, 3 … . Расстояние между соседними узлами или соседними пучностями равно/2, а соседние узлы и пучности сдвинуты на/4. Точки, находящиеся в узлах, не совершают колебаний.

Расстояние между двумя смежными узлами или пучностями называется длиной стоячей волны. Следовательно, длина стоячей волны равна половине длины бегущей волны:

 ст = . (11)

Построим график стоячей волны. По уравнению (5) рассчитаем смещения  для фиксированных моментов времени t = 0, T /8, T /4, 3T /8, T /2. В каждое из получившихся уравнений  = f (x ) подставим координаты x = 0, /4, /2, 3/4, , 5/4… . Результаты расчетов приведены ниже.

Полученные зависимости  = f (x ) изображены на рис. 1 и представляют собой своего рода «мгновенные фотографии» стоячей волны.

Стоячая волна имеет следующие особенности:

    амплитуда колебаний частиц различна в разных местах среды;

    в пределах участка среды от одного узла до другого все частицы колеблются в одной фазе, при переходе через узел фаза колебаний меняется на противоположную;

    в отличие от бегущей волны она не переносит энергию.

t = 0,  = 2A cosx

t = , = 2A cosx cos, =
A cosx

A


A

A

t = , = 2A cosx cos,  = 0

Для многих даже спустя годы после окончания школы остается неизвестным, какова же на самом деле скорость звука в воздухе. Кто-то невнимательно слушал преподавателя, а кто-то просто не до конца понял излагаемый материал. Что ж, быть может, настало время восполнить этот пробел в знаниях. Сегодня мы не просто укажем «сухие» цифры, а поясним сам механизм, определяющий скорость звука в воздухе.

Как известно, воздух представляет собой совокупность различных газов. Немногим более 78% приходится на азот, почти 21% занимает кислород, оставшаяся часть представлена углекислым и Следовательно, речь пойдет о скорости распространения звука в газовой среде.

Сначала давайте определимся, Наверняка многие слышали высказывание «звуковые волны» или «звуковые колебания». Действительно, например, диффузор звуковоспроизводящей колонки колеблется с определенной частотой, которая классифицируется слуховым аппаратом человека как звук. Один из законов физики гласит, что давление в газах и жидкостях распространяется без изменения во всех направлениях. Отсюда следует, что в идеальных условиях скорость звука в газах равномерна. Разумеется, в действительности имеет место ее естественное затухание. Нужно запомнить эту особенность, так как именно она объясняет, почему скорость может изменяться. Но это мы немного отвлеклись от главной темы. Итак, если звук - это колебания, то что именно колеблется?

Любой газ - это совокупность атомов определенной конфигурации. В отличие от твердых тел, между атомами в них относительно большое расстояние (по сравнению, например, с кристаллической решеткой металлов). Можно привести аналогию с горошинами, распределенными по емкости с желеобразной массой. колебаний сообщает импульс движения ближайшим атомам газа. Они в свою очередь, подобно шарам на бильярдном столе, «ударяют» по соседним, и процесс повторяется. Скорость звука в воздухе как раз и определяет интенсивность импульса-первопричины. Но это лишь одна составляющая. Чем плотнее расположены атомы вещества, тем выше скорость распространения звука в нем. К примеру, скорость звука в воздухе почти в 10 раз меньше, чем в монолитном граните. Это очень легко понять: чтобы атом в газе мог «долететь» до соседнего и передать ему энергию импульса, ему необходимо преодолеть определенное расстояние.

Следствие: с увеличением температуры скорость распространения волн повышается. Несмотря на собственная скорость атомов выше, они хаотично двигаются и чаще соударяются. Также верно, что сжатый газ проводит звук намного быстрее, но чемпионом все-таки является сжиженное В расчетах скорости звука в газах учитываются начальная плотность, сжимаемость, температура и коэффициент (газовая постоянная). Собственно, все это следует из вышесказанного.

Все-таки какова скорость звука в воздухе? Многие уже догадались, что невозможно дать однозначный ответ. Приведем лишь некоторые основные данные:

При нуле на нулевой точке (уровень моря) скорость звука составляет около 331 м/с;

Снизив температуру до - 20 градусов Цельсия, можно «замедлить» звуковые волны до 319 м/с, так как изначально атомы в пространстве движутся медленнее;

Повышение же ее до 500 градусов ускоряет распространение звука почти в полтора раза - до 550 м/с.

Однако приведенные данные ориентировочны, так как кроме температуры на способность газов проводить звук влияет также давление, конфигурация пространства (помещение с предметами или открытая площадь), собственная подвижность и т.д.

В настоящее время свойство атмосферы проводить звук активно исследуется. К примеру, один из проектов позволяет посредством регистрации отраженного (эха) определять температуру слоев воздуха.