Коэффициент сопротивления. Как найти силы сопротивления воздуха

Величина силы сопротивления воздуха зависит от формы снаряда, состояния поверхности его корпуса, площади его наибольшего поперечного сечения, плотности воздуха, скорости снаряда относительно воздуха, скорости распространения звука и положения продольной оси снаряда относительно вектора скорости снаряда.

Рассмотрим кратко, как перечисленные выше факторы влияют на величину силы сопротивления воздуха.

Форма и состояние поверхности снаряда. О влиянии формы снаряда и состояния его поверхности на величину силы сопротивления воздуха указывалось при рассмотрении факторов, обусловливающих возникновение силы сопротивления воздуха.

Рис. 12. Влияние формы снаряда на ооразование головной и хвостовой

волн и завихрений позади снаряда:

а - цилиндрический снаряд; б -шаровой снаряд (ядро); в - продолговатый снаряд с цилиндрической запоясковой частью (старая фугасная граната);

г -продолговатый снаряд с конической запоясковой частью

Зависимость величины волнового и вихревого сопротивлений от формы снаряда наглядно видна на рис. 12, на котором приведены моментальные фотографии снарядов, выпущенных с примерно одинаковой начальной скоростью.

Наименьшие волны и завихрения получаются у снаряда, имеющего наиболее заостренную головную часть и скошенную донную часть, наибольшие волны и завихрения - у цилиндрического снаряда.

Но следует иметь в виду, что при выборе оптимальной формы снаряда необходимо наряду с уменьшением сопротивления воздуха обеспечить устойчивость полета снаряда, рациональное использование металла, снаряжения и эффективное действие снаряда у цели; поэтому снаряды различных типов имеют неодинаковую форму.

Зависимость величины силы сопротивления воздуха от формы снаряда выражается коэффициентом формы i.

Для снаряда данного типа, форма которого принята за эталон, коэффициент формы принимают равным единице. При изменении формы снаряда относительно эталонной коэффициент формы определяется опытным путем.

Площадь наибольшего поперечного сечения. Если угол нутации δ = 0, то количество элементарных частиц воздуха, которые снаряд будет встречать на своем пути, при прочих равных условиях будет зависеть от площади его наибольшего поперечного сечения. Чем больше площадь поперечного сечения снаряда, тем больше элементарных частиц воздуха будет воздействовать на снаряд, тем больше будет и сила сопротивления воздуха. Экспериментальные данные показывают, что сила сопротивления воздуха изменяется пропорционально изменению площади поперечного сечения снаряда.

Плотность воздуха. Под плотностью воздуха понимают массу воздуха, приходящуюся на единицу его объема. Изменение массы воздуха в единице объема может произойти за счет изменения количества элементарных частиц (молекул), приходящихся на единицу объема, или за счет изменения массы каждой частицы. Если, например, плотность воздуха увеличилась, то это значит, что или увеличилось количество элементарных частиц в каждой единице объема воздуха, или увеличилась масса частиц (или то и другое вместе), а раз так, то и сила воздействия воздуха на каждую единицу поверхностной площади снаряда возрастет, следовательно, возрастет и полное сопротивление воздуха.



Установлено, что сила сопротивления воздуха изменяется пропорционально изменению плотности воздуха.

Скорость снаряда. Исследования показывают, что сила сопротивления воздуха прямо пропорциональна квадрату скорости снаряда относительно воздуха. Если, например, скорость снаряда относительно воздуха увеличится в два раза, то сила сопротивления воздуха возрастет в четыре раза.

Это объясняется тем, что, во-первых, с увеличением скорости снаряда он будет в каждую единицу времени встречать на своем пути больше элементарных частиц воздуха и, во-вторых, инерция частиц воздуха при большей скорости "должна быть преодолена снарядом в более короткий момент времени, что вызовет большее противодействие со стороны частиц воздуха.

Скорость распространения звука в воздухе. Образование волнового сопротивления, как показано выше, происходит в момент, когда скорость снаряда становится равной скорости звука, т. е. в момент, когда ,

где v - скорость снаряда и а - скорость звука в воздухе.

Скорость звука в воздухе непостоянна (зависит от температуры и влажности воздуха). Следовательно, при одной и той же скорости снаряда из-за изменения скорости звука в воздухе величина волнового сопротивления и силы сопротивления воздуха в целом могут быть различными. Зависимость величины силы сопротивления воздуха от скорости распространения звука учитывается специальным коэффициентом . Величина , зависит от величины и от формы снаряда. График этой зависимости приводится на рис. 13.

Рис. 13 . График функции :

а. - снаряд с цилиндрической запоясковой частью (старая фугасная граната);

б - продолговатый снаряд с конической запоясковой частью

Положение продольной оси снаряда относительно касательной к траектории (вектора скорости). Полет снаряда в воздухе сопровождается сложными колебательными движениями вокруг центра тяжести, в результате чего продольная ось снаряда оказывается не совмещенной с направлением полета (с вектором скорости), т. е. появляются углы нутации.

При возникновении угла нутации снаряд летит уже не головной частью вперед, а подставляет встречному потоку воздуха и часть боковой поверхности. Условия обтекания снаряда воздухом из-за этого также резко ухудшаются.

Все это резко увеличивает силу сопротивления воздуха. Для уменьшения влияния этого фактора принимают меры к стабилизации полета снаряда, т. е. к уменьшению углов нутации.

Итак, влияние различных факторов на величину силы сопротивления воздуха сложно и многогранно. Поэтому обычно силу сопротивления воздуха определяют опытным путем для условий, что сила сопротивления воздуха во все время дви жения приложена к его центру тяжести и направлена по касательной к траектории, т. е, углы нутации отсутствуют.

Величину силы сопротивления воздуха выражают различными эмпирическими формулами. Одна из наиболее распро страненных имеет вид

(1.7)

где R - величина силы сопротивления воздуха, кг;

i- коэффициент формы;

S -площадь поперечного сечения снаряда, м 2 ;

ρ - плотность воздуха (масса 1 м 3 данного воздуха она равна ,

где П - вес 1 м 3 воздуха, или весовая плотность воздуха);

v - скорость снаряда относительно воздуха, м/с;

Эмпирический коэффициент, учитывающий влияние величины

отношения скорости снаряда к скорости звука в зависимости от формы снаряда.

В формуле 1.7 величина имеет самостоятельный смысл, ибо это есть ни что иное, как кинетическая энергия, или живая сила 1 м 3 воздуха. Эту величину называют скоростным напором.

Лекція 10

Тема 4. Заняття 2. Рух снаряда в повітрі

1. Прискорення сили опору повітря. Поперечн навантаження і балістичний коефіцієнт.

2. Необхідність прийняття мір для забезпечення стійкості снаряда в польоті.

3. Рух швидко обертаючогося снаряда в польоті. Деривація.

1. Движение АТС связано с перемещением частиц воздуха, на которое расходуется часть мощности двигателя. эти затраты складываются из следующих составляющих:

2. Лобового сопротивления, появляющееся из-за разности давлений спереди и сзади движущегося автомобиля (55-60% сопротивления воздуха).

3. Сопротивление, создаваемое выступающими частями – зеркало заднего вида и т.д. (12-18%).

4. Сопротивление, возникающее при прохождении воздуха через радиатор и подкапотное пространство.

5. Сопротивление из-за трения близлежащих поверхностей о слои воздуха (до 10%).

6. Сопротивление, вызваное разностью давлений сверху и снизу автомобиля (5-8%).

Для упрощения расчетов сопротивления воздуха, распределенное по всей поверхности автомобиля сопротивление заменяем силой сопротивления воздуха приложеной в одной точке, называемой центром парусности автомобиля.

Опытом устанавлено, что сила сопротивления воздуха зависит от следующих факторов:

От скорости движения автомобиля, причем данная зависимость носит квадратических характер;

От лобовой площади автомобиля F ;

От коэффициента обтекаемости К в , который числено равен силе сопротивления воздуха, созхдаваемой одним квадратным метром лобовой площади АТС при движении его со скоростью 1 м/с.

Тогда сила сопротивления воздушной среды .

При определении F используют эмпирические формулы, определяющие приблизительную площадь сопротивления. Для грузовых автомобилей F обычно: F=H×B (произведение высоты и ширины), аналогично для автобусов. Для легковых автомобилей принимают F=0,8H×B . Существуют иные формулы, где учитывают колею автомобиля, вероятность изменения высоты АТС и др. Произведение К в ×F называют фактором обтекаемости и обозначают W .

Для определения коэффициента обтекаемости используют специальные устройства либо метод выбега, заключающийся в определении изменения пути свободнокатящегося авотмобиля при движении с различной начальной скоростью. При движении автомобиля в воздушном потоке силу сопротивления воздуха Р в возможно разложить на составляющие по осям АТС. При этом формулы для определения проекций сил отличаются лишь коэфициентами, учитывающими распределение силы по осям. Коэффициент обтекаемости возможно определить из выражения:

где С Х – коэффициент, определяемый опытным путем и учитывающий распределение силы сопротивления воздуха по оси "х". Этот коэффициент получают путем продувки в аэродинамической трубе, ;

r - плотность воздуха, согласно ГОСТ r=1,225 кг/м 3 на нулевой отметке.

Получаем .

Произведение представляет собой скоростной напор, равный кинетической энергии кубического метра воздуха, движущегося со скоростью движения автомобиля относительно воздушной среды.

Коэффициент К в имеет размерность .

Между К в и С Х существует зависимость: К в =0,61С Х .

Прицеп на АТС увеличивает силу сопротивления в среднем на 25%.

В результате многочисленных опытов, исследований и теоретических обобщений установлена формула для подсчёта силы сопротивления воздуха

где S - площадь поперечного сечения пули,

с - масса воздуха при данных атмосферных условиях;

Скорость пули;

- опытный коэффициент, зависящий от формулы пули и числа который берётся из заранее составленных таблиц.

Величина силы сопротивления зависит от следующих факторов:

Площади поперечного сечения пули. Следовательно, сила сопротивления воздуха прямо пропорциональна площади поперечного сечения пули;

- плотности воздуха. Из формулы видно, что сила сопротивления воздуха прямо пропорциональна плотности воздуха. Таблицы стрельбы составлены для нормальных атмосферных условий. В случае отклонения фактической температуры и давления от нормальных значений необходимо вносить поправки при пользовании таблицами стрельбы;

- скорости пули. Зависимость силы сопротивления воздуха от скорости пули выражается сложным законом. В формулу входят члены V 2 и, устанавливающие зависимость силы сопротивления воздуха от скорости. Для изучения этой зависимости рассмотрим график, показывающий, как влияет скорость пули на силу сопротивления воздуха (рис. 8).

График 1 - Зависимость силы сопротивления от скорости пули

Похожие по виду графики получаются и для артиллерийских снарядов. Из графика следует, что сила сопротивления воздуха возрастает с увеличением скорости пули. Возрастание силы сопротивления до скорости 240 м/сек идёт сравнительно медленно. При скорости, близкой к скорости звука, сила сопротивления воздуха резко растет. Это объясняется образованием баллистической волны и увеличением в связи с этим разности давлений воздуха на головную и дольную части пули;

- формы пули. Форма пули существенно сказывается на функции входящей в формулу. Вопрос о наивыгоднейшей форме пули чрезвычайно сложен и не может решаться на базе одной только внешней баллистики. Очень важным фактором при выборе формы пули является: назначение пули, способ её ведения по нарезам, калибр и вес пули, устройство оружия, для которого она предназначена и др.

Для уменьшения влияния избыточного давления воздуха приходится заострять и удлинять головную часть пули. Это вызывает некоторый поворот фронта головной волны, благодаря чему уменьшается избыточное давление воздуха на головную часть пули. Такое явление можно объяснить тем, что по мере заострения головной части уменьшается скорость, с которой частицы воздуха отталкиваются в стороны от поверхности пули.

Опыт показывает, что форма головной части пули играет второстепенную роль в сопротивлении воздуха. Основным фактором является высота головной части и способ её сопряжения с ведущей частью. Обычно за образующею головной части пули принимают дугу окружности, центр которой находится либо на основании головной части, либо несколько ниже его (рис. 9). Хвостовую часть чаще всего выполняют в виде усечённого конуса с углом наклона образующей (рис. 10).

Рисунок 8 - Форма оживальной части пули

Рисунок 9 - Форма донной части пули

Обтекание воздуха при конусной хвостовой части происходит значительно лучше. Область низкого давления почти отсутствует и вихреобразование значительно менее интенсивно. Ведущею часть пули с точки зрения внешней баллистики выгодно делать, возможно, более короткой. Но при короткой ведущей части затрудняется правильное влияние пули по нарезам ствола: возможен демонтаж оболочки пули. Необходимо заметить, что о наивыгоднейшей форме пули можно говорить лишь для определённой скорости, так как для каждой скорости существует своя наивыгоднейшая форма.

На рис. 9 изображены наивыгоднейшие формы снарядов для различных скоростей. По горизонтальной оси отложены скорости снарядов, по вертикальной - высоты снарядов в калибрах.


Рисунок 9 - Зависимость относительной длины снаряда от скорости

Как видно, с ростом скорости длина головной части, и общая длина снаряда увеличиваются, а хвостовая часть уменьшается. Такая зависимость объясняется тем, что при больших скоростях основная доля силы сопротивления воздуха приходится на головную часть. Поэтому основное внимание уделяется уменьшению сопротивления головной части, что достигается её заострением и удлинением. Хвостовая часть снаряда в этом случае делается короткой, чтобы снаряд не был слишком длинным.

При малых скоростях снаряда давление воздуха на головную часть невелико и разряжение за данной частью хотя и меньше, чем при больших скоростях, но составляет значительную долю всей силы сопротивления воздуха. Поэтому необходимо делать сравнительно длинную коническую хвостовую часть снаряда для уменьшения действия разряженного пространства. Головная часть может быть более короткой, так как её длинна, имеет в этом случае меньшее значение. Заострение хвостовой части особенно велико для снарядов, скорость которых меньше скорости звука. В этом случае наиболее выгодной является каплеобразная форма. Такая форма придаётся минам и авиабомбам.

Опыты по определению

Начиная с 1860 г. В разных странах производились опыты со снарядами различных калибров и форм с целью определения.

График 2 - Кривые для различных форм снарядов: 1, 2, 3 - близкие по форме; 4 - легкая пуля

Рассматривая кривые для снарядов сходной формы, можно убедится, что они имеют также сходный вид. Это даёт возможность приближенно выразить для некоторого снаряда через другого снаряда, принятого как бы за эталон, при помощи постоянного множителя i:

Этот множитель, или отношение данного снаряда к другого снаряда, принятого за эталон, называется коэффициентом формы снаряда. Для определения коэффициента формы какого-либо снаряда надо опытным путём найти для него силу сопротивления воздуха для какой-либо скорости. Тогда по формуле можно найти

Деля полученное выражение на получаем коэффициент формы

Разные учёные дали различные математические выражения для подсчёта Например, Сиачи (график 3) выразил закон сопротивления следующей формулой


где F(V) - функция сопротивления.


График 3 - Закон сопротивления

Функция сопротивления Н.В. Маиевского и Н.А. Забудского меньше, чем функция сопротивления Сиаччи. Переводной множитель от закона сопротивления Сиаччи к закону сопротивления Н.В. Майевского и Н.А. Забудского в среднем равен 0,896.

В Военно-инженерной артиллерийской академии им. Ф.Э. Дзержинского выведен закон сопротивления воздуха для дальнобойных снарядов. Этот закон получен на основании обработки результатов специальных стрельб дальнобойными снарядами и пулями. Функции сопротивления в этом законе выбраны такими, чтобы при баллистических расчётах для дальнобойных снарядов, а также для пуль и оперённых снарядов (мин), коэффициент формы получился по возможности близким к единице. Функция для скоростей, меньших 256 м/сек или больших 1410 м/сек может быть выражена одночленом Определим коэффициент

Для V < 256 м/ сек

Для V > 1410 м/ сек

При задании коэффициента формы всегда следует указывать, по отношению, к какому закону сопротивления он дан. В формуле для определения силы сопротивления воздуха, заменяя получаем на, получаем

Среднее значение коэффициента формы для закона сопротивления Сиаччи приведены в табл. 3.

Таблица 3 - значения i для различных снарядов и пуль

Как найти силу сопротивления воздуха? Подскажите пожалуйста, заранее спасибо.

  1. Но у ВАС нет задачи!! ? Если при падении в воздухе, то по формуле: Fc=m*g-m*a; m- масса тела g=9,8 мс a-ускорение, с которым тело падает.
  2. Сила сопротивления определяеться по формуле Ньютона
    F=B*v^2,
    где В - некоторый коэфициент, для каждого тела (зависит от формы, материала, качества поверхности - гладкаяч, шероховатая) , погодных условий (давления и влажности) и т. п. Она применима только при скоростях до 60-100 м/с - и то с большими оговорками (опять же от условий сильно зависит) .
    Более точно можно определить по формуле
    F=Bn*v^n
    , где Bn - в принципе тот же коэффициент B, но он зависит от скорости, как и показатель степени n (n=2(приближенно) при скорости тела в атмосфере меньше М/2 и и больше 2..3М, при этих параметрах Bn практически постоянная величина) .
    Здесь М - число Маха - если просто - равное скорости звука в воздухе - 315 м/с.
    Ну а вообще - самый эффективный метод - эксперимент.

    Было бы дольше информации - сказал бы больше.

  3. При движении электромобиля (автомобиля) на скоростях, превышающих скорость пешехода, заметное влияние оказывает сила сопротивления воздуха. Для расчета силы сопротивления воздуха используют следующую эмпирическую формулу:

    Fвозд. = Cx*S*#961;*#957;2/2

    Fвозд. сила сопротивления воздуха, Н
    Cx коэффициент сопротивления воздуха (коэффициент обтекаемости) , Н*с2/(м*кг) . Cx определяется эксперементально для каждого кузова.
    #961; плотность воздуха (1,29кг/м3 при нормальных условиях)
    S лобовая площадь электромобиля (автомобиля) , м2. S является площадью проекции кузова на плоскость, перпендикулярную продольной оси.
    #957; скорость электромобиля (автомобиля) , км/ч

    Для расчета разгонных характеристик электромобиля (автомобиля) следует учитывать силу сопротивления разгону (силу инерции) . Причем, нужно учитывать не только инерцию самого электромобиля, но и влияние момента инерции вращающихся масс внутри электромобиля (ротор, коробка передач, кардан, колеса) . Далее приведена формула расчета силы сопротивления разгону:

    Fин. = m*a*#963;вр

    Fин. сила сопротивления разгону, Н
    m масса электромобиля, кг
    a ускорение электромобиля, м/с2
    #963;вр коэффициент учета вращающихся масс

    Приблизительно коэффициент учета вращающихся масс #963;вр можно рассчитать по формуле:

    #963;вр=1,05 + 0,05*u2кп

    Где uкп передаточное число коробки передач

    Осталось описать силу сцепления колес с дорогой. Однако, данная сила в дальнейших расчетах малоприменима, поэтому пока оставим ее на-потом.

    И вот, мы уже имеем представление об основных силах, действующих на электромобиль (автомобиль) . Знание этого теоретического вопроса вскоре сподвигнет нас на изучение следующего вопроса вопроса расчета характеристик электромобиля, необходимых для обоснованного выбора двигателя, аккумуляторной батареи и контроллера.

Мы настолько привыкли к тому, что окружены воздухом, что зачастую не обращаем на это внимания. Речь здесь идет, прежде всего, о прикладных технических задачах, при решении которых на первых порах забывается, что существует сила сопротивления воздуха.

Она напоминает о себе практически при любом действии. Хоть мы поедем на автомобиле, хоть полетим на самолете, даже если будем просто кидать камень. Вот и попробуем понять, что собой представляет сила сопротивления воздуха на примере простых случаев.

Вы не задумывались, почему автомобили имеют такую обтекаемую форму и ровную поверхность? А ведь все на самом деле очень понятно. Сила сопротивления воздуха складывается из двух величин - из сопротивления трения поверхности тела и сопротивления формы тела. С целью уменьшения и добиваются уменьшения неровностей и шероховатостей на внешних деталях при изготовлении автомобилей и любых иных транспортных средств.

Для этого их грунтуют, окрашивают, полируют и лакируют. Подобная обработка деталей приводит к тому, что сопротивление воздуха, воздействующее на автомобиль, уменьшается, повышается скорость автомобиля и уменьшается расход топлива при движении. Наличие силы сопротивления объясняется тем, что при движении автомобиля воздух сжимается и перед ним создается область местного повышенного давления, а за ним, соответственно, область разрежения.

Надо отметить, что при повышенных скоростях движения машины основной вклад в сопротивление вносит форма авто. Сила сопротивления, формула расчета которой приведена ниже, определяет факторы, от которых она зависит.

Сила сопротивления = Сх*S*V2*r/2

где S - площадь передней проекции машины;

Cx - коэффициент, учитывающий ;

Как нетрудно заметить из приведенной сопротивления не зависит от массы автомобиля. Основной вклад вносят два компонента - квадрат скорости и форма автомобиля. Т.е. при повышении скорости движения в два раза в четыре раза увеличится сопротивление. Ну и поперечное сечение автомобиля оказывает значительное влияние. Чем более обтекаемым будет автомобиль, тем меньше сопротивление воздуха.

И в формуле есть еще параметр, который просто требует обратить на него пристальное внимание - плотность воздуха. Но его влияние уже более заметно при полетах самолетов. Как известно, с повышением высоты уменьшается плотность воздуха. Значит, соответственно будет уменьшаться сила его сопротивления. Однако и для самолета на величину оказываемого сопротивления будут по-прежнему влиять те же факторы - скорость движения и форма.

Не менее любопытной является история изучения влияния воздуха на точность стрельбы. Работы подобного характера велись давно, первые их описания относятся к 1742 году. Эксперименты проводились в разных странах, с различной формой пуль и снарядов. В итоге проведения исследований была определена оптимальная форма пули и соотношение ее головной и хвостовой части, разработаны баллистические таблицы поведения пули в полете.

В дальнейшем проводились исследования зависимости полета пули от ее скорости, продолжала отрабатываться форма пули, а также совершенствовалась Были разработаны и создан специальный математический инструмент - баллистический коэффициент. Он показывает соотношение сил аэродинамического сопротивления и действующих на пулю.

В статье рассмотрено, что собой представляет сила сопротивления воздуха, дана формула, позволяющая определить величину и степень влияния различных факторов на величину сопротивления, рассмотрено его воздействие в разных областях техники.