Когда международная космическая станция стала обитаемой. Международная Космическая Станция ISS

Была запущена в космическое пространство в 1998 году. На текущий момент вот уже почти семь тысяч суток денно и нощно лучшие умы человечества трудятся над решением сложнейших загадок в условиях невесомости.

Космическое пространство

Каждый человек, хотя бы раз увидевший этот уникальный объект, задавался логичным вопросом: какая высота орбиты международной космической станции? Вот только ответить на него односложно нельзя. Высота орбиты международной космической станции МКС зависит от многих факторов. Рассмотрим их подробнее.

Орбита МКС вокруг Земли снижается из-за воздействия разреженной атмосферы. Скорость уменьшается, соответственно, уменьшается и высота. Как снова устремиться вверх? Высота орбиты может меняться при помощи двигателей кораблей, которые пристыковываются к ней.

Различные высоты

За весь срок космической миссии было зарегистрировано несколько основных значений. Еще в феврале 2011 году высота орбиты МКС составляла 353 км. Все расчеты производятся по отношению к уровню моря. Высота орбиты МКС в июне того же года увеличилась до трехсот семидесяти пяти километров. Но и это был далеко не предел. Всего через две недели работники НАСА с удовольствием отвечали журналистам на вопрос «Какая высота орбиты МКС на текущий момент?» - триста восемьдесят пять километров!

И это не предел

Высота орбиты МКС все равно была недостаточна для сопротивления природному трению. Инженеры пошли на ответственный и очень рискованный шаг. Высота орбиты МКС должна была быть повышена до четырехсот километров. Но это событие случилось несколько позже. Проблема состояла в том, что только корабли поднимали МКС. Высота орбиты была ограничена для шаттлов. Лишь со временем ограничение было упразднено для экипажа и МКС. Высота орбиты с 2014 года превышала 400 километров над уровнем моря. Максимальное среднее значение было зафиксировано в июле и составило 417 км. В целом корректировки высоты проводятся постоянно для фиксации самого оптимального маршрута.

История создания

Еще в далеком 1984 г. правительство США вынашивало планы о необходимости запуска в ближайшем космосе масштабного научного проекта. В одиночку осуществить такое грандиозное строительство даже американцам было достаточно затруднительно и к разработке были подключены Канада и Япония.

В 1992 г. в кампанию была включена Россия. В начале девяностых в Москве планировали масштабный проект «Мир-2». Но экономические проблемы не дали осуществиться грандиозным планам. Постепенно количество стран-участников выросло до четырнадцати.

Бюрократические проволочки заняли более трех лет. Лишь в 1995 г. был принят эскиз станции, а еще через год - конфигурация.

Двадцатое ноября 1998 года стало выдающимся днем в истории всемирной космонавтики - первый блок был успешно доставлен на орбиту нашей планеты.

Сборка

МКС гениальна по своей простоте и функциональности. Станция состоит из независимых блоков, которые соединяются между собой как большой конструктор. Невозможно посчитать и точную стоимость объекта. Каждый новый блок изготавливается в отдельной стране и, конечно же, различается по цене. Всего таких частей можно присоединить огромное количество, таким образом, станция может постоянно обновляться.

Срок действия

В связи с тем, что блоки станции и их наполнение могут быть изменены и модернизированы неограниченное количество раз, МКС может долго бороздить просторы околоземной орбиты.

Первый тревожный звоночек прозвенел в 2011 году, когда из-за своей дороговизны была свернута программа «космический челнок».

Но страшного ничего не произошло. Грузы исправно доставлялись в космос другими кораблями. В 2012 к МКС даже успешно пристыковался частный челнок коммерческого назначения. Впоследствии аналогичное событие происходило неоднократно.

Угрозы для станции могут быть лишь политическими. Периодически официальные лица разных стран грозятся прекратить поддержку МКС. Сначала планы поддержния были расписаны до 2015 г., потом до 2020-го. На сегодняшний день ориентировочно существует договоренность поддерживать станцию до 2027 года.

А пока политики спорят между собой, МКС в 2016 году сделала стотысячный виток вокруг планеты, который оригинально назвали «Юбилейный».

Электричество

Сидеть в темноте, конечно, интересно, но иногда надоедает. На МКС каждая минута на вес золота, поэтому инженеры были крепко озадачены необходимостью обеспечения экипажа бесперебойной электрикой.

Было предложено множество различных идей, и в конце концов сошлись на том, что лучше солнечных батарей в космосе ничего быть не может.

При реализации проекта российская и американская сторона пошли разными путями. Так, генерация электроэнергии первой страны производится для системы в 28 вольт. Напряжение в американском блоке - 124 В.

За день МКС делает множество витков вокруг Земли. Один оборот - примерно полтора часа, сорок пять минут из которых проходят в тени. Конечно же, в это время генерация от солнечных панелей невозможна. Станцию питают никель-водородные аккумуляторные батареи. Срок работы такого устройства около семи лет. Последний раз их меняли в далеком 2009-м, так что очень скоро инженерами будет осуществлена долгожданная замена.

Устройство

Как ранее было написано, МКС представляет собой огромный конструктор, части которого легко соединяются между собой.

По состоянию на март 2017 года станция имеет четырнадцать элементов. Россия поставила пять блоков, названных «Заря», «Поиск», «Звезда», «Рассвет» и «Пирс». Американцы своим семи частям дали такие имена: «Юнити», «Дестини», «Транквилити», «Квест», «Леонардо», «Купола» и «Гармония». Страны Европейского Союза и Япония пока имеют в своем активе по одному блоку: «Коламбус» и «Кибо».

Части постоянно меняются в зависимости от поставленных перед экипажем задач. На подходе еще несколько блоков, которые значительно усилят исследовательские возможности членов экипажа. Наиболее интересны, конечно же, лабораторные модули. Часть из них имеют полную герметичность. Таким образом, в них можно исследовать абсолютно все, вплоть до инопланетных живых существ, без риска заражения для экипажа.

Другие блоки предназначены для генерации необходимых сред для нормальной жизнедеятельности человека. Третьи позволяют беспрепятственно выходить в космос и совершать исследования, наблюдения или ремонты.

Часть блоков не несут исследовательской нагрузки и используются в качестве хранилищ.

Проводимые исследования

Многочисленные исследования - собственно то, ради чего в далеких девяностых политики решили отправить в космос конструктор, стоимость которого на сегодняшний день оценивается более чем в двести миллиардов долларов. За эти деньги можно купить десяток стран и получить небольшое море в подарок.

Так вот, МКС имеет такие уникальные возможности, которых нет ни у одной земной лаборатории. Первое - наличие безграничного вакуума. Второе - фактическое отсутствие гравитации. Третье - опаснейшие не испорченные преломлением в земной атмосфере.

Исследователей хлебом не корми, а дай что-то поизучать! Они с радостью выполняют возложенные не них обязанности, даже невзирая на смертельный риск.

Больше всего ученых интересует биология. В эту сферу входит биотехнологии и медицинские исследования.

Другие ученые частенько забывают про сон, исследуя физические силы внеземного пространства. Материалы, квантовая физика - лишь часть исследований. Любимое занятие по откровениям многих - тестировать различные жидкости в условиях невесомости.

Опыты с вакуумом, вообще, могут проводиться вне блоков, прямо в открытом космосе. Земные ученые могут лишь по-хорошему завидовать, наблюдая за экспериментами по видеосвязи.

Любой человек на Земле отдал бы все за один выход в космос. Для работников станции это практически рутинное занятие.

Выводы

Несмотря на недовольные возгласы многих скептиков о бесперспективности проекта, ученые МКС сделали множество интереснейших открытий, которые позволили иначе посмотреть и на космос в целом, и на нашу планету.

Ежедневно эти смелые люди получают огромную дозу радиации, и все ради научных исследований, которые дадут человечеству невиданные ранее возможности. Можно лишь восхищаться их работоспособностью, смелостью и целеустремленностью.

МКС достаточно крупный объект, который можно увидеть и с поверхности Земли. Существует даже целый сайт, на котором можно ввести координаты своего города и система точно подскажет, в какое время можно будет попробовать лицезреть станцию, находясь в шезлонге прямо на своем балконе.

Конечно, у космической станции множество противников, но поклонников гораздо больше. А это значит, что МКС будет уверенно держаться на своей орбите в четыреста километров над уровнем моря и еще не раз покажет заядлым скептикам, как они ошибались в своих прогнозах и предсказаниях.

Наблюдение с веб-камер МКС за поверхностью Земли и самой Станцией онлайн. Атмосферные явления, стыковки кораблей, выходы в открытый космос, работа внутри американского сегмента - все в режиме реального времени. Параметры МКС, траектория полета и местоположение на карте мира.

Трансляция с веб-камер МКС

Видеоплеер Роскосмоса предназначен для показа интересных видеороликов оффлайн, а также значимых событий, связанных с МКС, иногда транслируемых Роскосмосом онлайн. Видеоплееры NASA ведут трансляцию изображений с веб-камер МКС онлайн с непродолжительными перерывами.

Видеоплеер Роскосмоса

Видеоплеер NASA №1

Видеоплеер NASA №2

Карта с орбитой МКС

Особенности трансляции с веб-камер МКС

Трансляция с Международной Космической Станции онлайн ведется с нескольких веб-камер, установленных внутри американского сегмента и снаружи Станции. Звуковой канал в обычные дни подключается редко, но всегда сопровождает такие важные события, как стыковки с транспортными кораблями и кораблями со сменным экипажем, выходы в открытый космос, проведение научных экспериментов.

Периодически направление веб-камер на МКС меняется, как и качество передаваемого изображения, которое может меняться в течение времени даже при трансляции с одной и той же веб-камеры. Во время работ в открытом космосе изображение чаще передается с камер, установленных на скафандрах астронавтов.

Стандартная или серая заставка на экране Видеоплеера NASA №1 и стандартная или синяя заставка на экране Видеоплеера NASA №2 говорят о временном прекращении видеосвязи Станции c Землей, аудиосвязь может продолжаться. Черный экран - пролет МКС над ночной зоной.

Звуковое сопровождение подключается редко, обычно, на Видеоплеере NASA №2. Иногда включают запись - это видно по несоответствию передаваемой картинки с положением Станции на карте и отображению текущего и полного времени транслируемого видеоролика на полосе прогресса. Полоса прогресса появляется справа от значка динамика при наведении курсора на экран видеоплеера.

Нет полосы прогресса - значит видео с текущей веб-камеры МКС транслируется онлайн . Видите Черный экран ? - сверьтесь с !

При зависании видеоплееров NASA обычно помогает простое обновление страницы .

Местоположение, траектория и параметры МКС

Текущее положение Международной Космической Станции (International Space Station) на карте обозначает условный значок МКС.

В левом верхнем углу карты отображаются текущие параметры Станции - координаты, высота орбиты, скорость движения, время до восхода или заката.

Условные обозначения параметров МКС (единицы измерения по умолчанию):

  • Lat: широта в градусах;
  • Lng: долгота в градусах;
  • Alt: высота в километрах;
  • V: скорость в км/час;
  • Время до восхода или заката солнца на Станции (на Земле смотрите границу светотени по карте).

Скорость в км/ч, конечно, впечатляет, но более наглядна ее величина в км/с. Чтобы изменить единицу измерения скорости МКС, нажмите на шестеренки в левом верхнем углу карты. В открывшемся окне на панели сверху нажмите на значок с одной шестеренкой и в списке параметров вместо km/h выберите km/s . Здесь же можно изменить и другие параметры карты.

Всего на карте мы видим три условных линии, на одной из которых расположен значок текущего положения МКС - это текущая траектория перемещения Станции. Две другие линии обозначают две следующие орбиты МКС, над точками которых, расположенных на одной долготе с текущем положением Станции, МКС пролетит, соответственно, через 90 и 180 минут.

Масштаб карты изменяется кнопками «+» и «-» в левом верхнем углу или обычной прокруткой, когда курсор расположен на поверхности карты.

Что можно увидеть через веб-камеры МКС

Американское космическое агентство NASA ведет трансляцию с веб-камер МКС онлайн. Часто изображение передается с камер, направленных на Землю, и во время пролета МКС над дневной зоной можно наблюдать облака, циклоны, антициклоны, в ясную погоду земную поверхность, поверхность морей и океанов. Подробности ландшафта можно хорошо рассмотреть, когда транслирующая веб-камера направлена вертикально на Землю, но иногда бывает хорошо видно и когда она направлена на горизонт.

При пролете МКС над материками в ясную погоду хорошо видны русла рек, озера, снежные шапки на горных хребтах, песчаная поверхность пустынь. Острова в морях и океанах проще наблюдать только в самую безоблачную погоду, так как с высоты МКС они внешне мало отличаются от облаков. Гораздо проще на поверхности мирового океана обнаружить и наблюдать кольца атоллов , которые при небольшой облачности видны хорошо.

Когда один из видеоплееров транслирует изображение с веб-камеры NASA, направленной вертикально на Землю, обратите внимание, как по отношению к спутнику по карте перемещается транслируемая картинка. Так будет проще поймать отдельные объекты для наблюдения: острова, озера, русла рек, горные массивы, проливы.

Иногда изображение онлайн передается с веб-камер, направленных внутрь Станции, тогда мы можем наблюдать за американским сегментом МКС и действиями астронавтов в режиме реального времени.

Когда на Станции происходят какие-то события, например, стыковки с транспортными кораблями или кораблями со сменным экипажем, выход в открытый космос, трансляция с МКС ведется с подключением звука. В это время мы можем слышать переговоры членов экипажа Станции между собой, с Центром Управления Полетом или со сменным экипажем на приближающемся для стыковки корабле.

О приближающихся событиях на МКС можно узнать из сообщений средств массовой информации. Кроме того, с помощью веб-камер могут транслироваться онлайн некоторые научные эксперименты, проводимые на МКС.

К сожалению, веб-камеры установлены только в американском сегменте МКС, и мы можем наблюдать только за американскими астронавтами и проводимыми ими экспериментами. Но при включении звука, часто бывает слышна и русская речь.

Чтобы включить воспроизведение звука, наведите курсор на окно плеера и кликните левой кнопкой мыши по появившемуся изображению динамика с крестиком. Звуковое сопровождение будет подключено с уровнем громкости по умолчанию. Для увеличения или уменьшения силы звука, поднимите или опустите планку громкости до желаемого уровня.

Иногда, звуковое сопровождение кратковременно подключают и без повода. Передача звука может быть включена и при синем экране , во время отключения видеосвязи с Землей.

Если вы много времени проводите за компьютером, оставьте вкладку открытой с включенным звуковым сопровождением на видеоплеерах NASA, иногда заглядывайте на нее, чтобы увидеть восход и закат, когда на земле темно, а части МКС, если они есть в кадре, освещены восходящим или закатывающимся солнцем. Звук же даст о себе знать сам. При подвисании видеотрансляции обновите страницу.

Полный оборот вокруг Земли МКС совершает за 90 минут, однократно пересекая ночную и дневную зоны планеты. Где Станция находится в данный момент, смотрите на карте с орбитой выше.

Что можно увидеть над ночной зоной Земли? Иногда вспышки молний во время грозы. Если веб-камера направлена на горизонт, бывают видны самые яркие звезды и Луна.

Через веб-камеру с МКС невозможно увидеть огни ночных городов, ведь расстояние от Станции до Земли более 400 километров, и без специальной оптики никаких огоньков не видно, кроме самых ярких звезд, но это уже не на Земле.

Наблюдайте за Международной Космической Станции с Земли. Смотрите интересные , сделанные с представленных здесь видеоплееров NASA.

В перерывах между наблюдениями за поверхностью Земли из космоса попробуйте поймать или разложить (достаточно сложный).

Состав MKC (Заря — Колумбус)

Основные модули МКС Усл. обозн. Старт Стыковка
ФГБ 20.11.1998 -
NODE1 04.12.1998 07.12.1998
Служебный модуль «Звезда» СМ 12.07.2000 26.07.2000
LAB 08.02.2001 10.02.2001
Шлюзовая камера «Квест» A/L 12.07.2001 15.07.2001
Стыковочный отсек «Пирс» СО1 15.09.2001 17.09.2001
Соединительный модуль «Гармония» (Node2) NODE2 23.10.2007 26.10.2007
COL 07.02.2008 12.02.2008
Японский грузовой модуль (1-й доставленный элемент модуля «Кибо») ELM-PS 11.03.2008 14.03.2008
Японский научно-исследовательский модуль «Кибо» JEM 01.06.2008 03.06.2008
Малый исследовательский модуль «Поиск» МИМ2 10.11.2009 12.11.2009
Жилой модуль «Транквилити» («Спокойствие») NODE3 08.02.2010 12.02.2010
Обзорный модуль «Купола» cupola 08.02.2010 12.02.2010
Малый исследовательский модуль «Рассвет» МИМ1 14.05.2010 18.05.2010
Корабли (грузовые, пилотируемые)
Грузовой корабль «Прогресс М-07M» ТКГ 10.09.2010 12.09.2010
Пилотируемый корабль «Союз ТМА-М» ТМА-М 08.10.2010 10.10.2010
Пилотируемый корабль «Союз ТМА-20» ТМА 15.12.2010 17.12.2010
Грузовой корабль HTV2 HTV2 22.01.2011 27.01.2011
Грузовой корабль «Прогресс М-09M» ТКГ 28.01.2011 30.01.2011
Дополнительные модули и устройства МКС
Модуль корневого сегмента и гиродинов на NODE1 Z1 13.10.2000
Энергетический модуль (секция СБ АС) на Z1 Р6 04-08.12.2000
Манипулятор на модуле LAB (Canadarm) SSRMS 22.04.2001
Ферма S0 S0 11-17.04.2002
Подвижная сервисная система MSS 11.06.2002
Ферма S1 S1 10.10.2002
Устройство для перемещения оборудования и экипажа CETA 10.10.2002
Ферма P1 P1 26.11.2002
Устройство B системы перемещения оборудования и экипажа CETA (B) 26.11.2002
Ферма Р3/Р4 P3/P4 12.09.2006
Ферма Р5 P5 13.12.2006
Ферма S3/S4 S3/S4 12.06.2007
Ферма S5 S5 11.08.2007
Ферма S6 S6 18.03.2009

Конфигурация МКС

Функционально-грузовой блок «Заря»

Развертывание МКС началось запуском 20 ноября 1998 года (09:40:00 ДМВ) с помощью российской ракеты-носителя «Протон» функционально-грузового блока (ФГБ) «Заря», также созданного в России.

Функционально-грузовой блок «Заря» является первым элементом Международной космической станции (МКС). Он разработан и изготовлен ГКНПЦ имени М.В. Хруничева (г. Москва, Россия) в соответствии с контрактом, заключенным с генеральным субподрядчиком по проекту МКС — компанией «Боинг» (г. Хьюстон, штат Техас, США). С этого модуля начинается сборка МКС на околоземной орбите. На начальной стадии сборки ФГБ обеспечивает управление полетом связки модулей, электропитание, связь, прием, хранение и перекачку топлива.

Схема функционально-грузового блока «Заря»

Параметр Значение
Масса на орбите 20260 кг
Длина по корпусу 12990 мм
Максимальный диаметр 4100 мм
Объем герметичных отсеков 71.5 куб.м
Размах солнечных батарей 24400 мм
28 кв.м
Гарантированная среднесуточная мощность электроснабжения напряжением 28 в 3 кВт
Мощность электроснабжения американского сегмента до 2 кВт
Масса заправляемого топлива до 6100 кг
Высота рабочей орбиты 350-500 км
15 лет

Компоновка ФГБ включает в себя приборно-грузовой отсек (ПГО) и герметичный адаптер (ГА), предназначенный для размещения бортовых систем, обеспечивающих механическую стыковку с другими модулями МКС и прибывающими на МКС кораблями. ГА отделен от ПГО герметичной сферической переборкой, в которой имеется люк диаметром 800 мм. На внешней поверхности ГА имеется специальный узел для механического захвата ФГБ манипулятором корабля «Шаттл». Герметичный объем ПГО составляет 64,5 куб.м, ГА — 7,0 куб.м. Внутреннее пространство ПГО и ГА разделено на две зоны: приборную и жилую. В приборной зоне размещены блоки бортовых систем. Жилая зона предназначена для работы экипажа. В ней находятся элементы систем контроля и управления бортовым комплексом, а также аварийного оповещения и предупреждения. Приборная зона отделена от жилой зоны панелями интерьера.

ПГО функционально разделен на три отсека: ПГО- 2 — это коническая секция ФГБ, ПГО-З — примыкающая к ГА цилиндрическая секция, ПГО-1 — цилиндрическая секция между ПГО-2 и ПГО-З.

Соединительный модуль «Юнити»



Первым изготовленным в США элементом Международной космической станции является модуль Node 1 («первый узловой»), называемый также Unity («Единство» или «Единение»).

Модуль Node 1 был изготовлен на предприятии The Boeing Co. в г.Хантсвилл (Алабама).

В модуле установлено свыше 50000 деталей, 216 трубопроводов перекачки жидкостей и газов, 121 кабель внутреннего и наружного монтажа общей длиной порядка 10 км.

Модуль доставлен и установлен экипажем шатла Индевор (STS-88) 7 декабря 1998 года. Состав экипажа: командир Роберт Кабана, пилот Фредерик Стёркоу, специалисты полета Джерри Росс, Нэнси Кёрри, Джеймс Ньюман и Сергей Крикалев.

Модуль «Unity» — выполненная из алюминия цилиндрическая конструкция с шестью люками для подсоединения других компонентов станции — четыре из которых (радиальные) представляют собой закрытые люками проемы с рамами, а два торцевых оснащены замками, к которым присоединены стыковочные адаптеры, имеющие по два осевых стыковочных узла., образует коридор, соединяющий жилые и рабочие помещения Международной космической станции. Этот узел, длиной 5,49 м и диаметром 4,58 м, соединен с функциональным грузовым блоком «Заря».

Кроме подсоединения к модулю «Заря», этот узел служит коридором, соединяющим американский лабораторный модуль, американский обитаемый модуль (жилые отсеки) и воздушный шлюз.

Через модуль «Unity» проходят важные системы и коммуникации, такие как трубопроводы подачи жидкостей, газов, средства регулирования среды, системы жизнеобеспечения, электроснабжения и передачи данных.

В Космическом центре им.Кеннеди Unity был оснащен двумя герметичными стыковочными адаптерами PMA (Pressurized Mating Adapter), имеющими вид несимметричных конических коронок. Адаптер PMA-1 обеспечит стыковку американских и российских компонентов станции, PMA-2 – стыковку к ней кораблей Space Shuttle. В адаптерах размещены компьютеры, обеспечивающие функции контроля и управления модулем Unity, а также передачу данных, речевой информации и видеосвязь с хьюстонским ЦУПом на первых этапах монтажа МКС, дополняя российские системы связи, установленные в модуле «Заря». Элементы адаптеров построены на предприятии компании Boeing в г.Хантингтон-Бич, шт.Калифорния.

Unity с двумя адаптерами в пусковой конфигурации имеет длину 10.98 м и массу около 11500 кг.

Проектирование и изготовление модуля Unity обошлось примерно в 300 млн $.

Служебный модуль «Звезда»


Служебный модуль (СМ) «Звезда» был выведен на околоземную орбиту ракетой-носителем «Протон» 12.07.2000г. (07:56:36 ДМВ) и 26.07.2000г. пристыкован к функционально-грузовому блоку (ФГБ) МКС.

Конструктивно СМ «Звезда» состоит из четырех отсеков: трех герметичных – переходного отсека (ПхО), рабочего отсека (РО) и промежуточной камеры (ПрК), а также негерметичного агрегатного отсека (АО), в котором размещена объединенная двигательная установка (ОДУ). Корпус герметичных отсеков выполнен из алюминиево-магниевого сплава и представляет собой сварную конструкцию, состоящую из блоков цилиндрической, конической и сферической формы.

Переходный отсек предназначен для обеспечения перехода членов экипажа между СМ и другими модулями МКС. Он также выполняет функции шлюзового отсека при выходе членов экипажа в открытый космос, для чего на боковой крышке имеется клапан сброса давления.

По форме ПхО представляет собой сочетание сферы диаметром 2.2 м и усеченного конуса с диаметрами оснований 1.35 м и 1.9 м. Длина ПхО – 2.78 м, герметичный объем – 6.85 м3. Конусной частью (большим диаметром) ПхО крепится к РО. На сферической части ПхО установлены три гибридных пассивных стыковочных агрегата ССВП-М Г8000 (один осевой и два боковых). К осевому узлу на ПхО стыкуется ФГБ «Заря». На верхнем узле ПхО планируется установка Научно-энергетической платформы (НЭП). К нижнему стыковочному узлу ПхО должен сначала причалить Стыковочный отсек №1, а затем – Универсальный стыковочный модуль (УСМ).

Основные технические характеристики

Параметр Значение
Стыковочные узлы 4 шт.
Иллюминаторы 13 шт.
Масса модуля на этапе выведения 22776 кг
Масса на орбите после отделения от РН 20295 кг
Габариты модуля:
длина с обтекателем и промежуточным отсеком 15,95 м
длина без обтекателя и промежуточного отсека 12,62 м
длина по корпусу 13.11 м
ширина с раскрытой солнечной батареей 29,73 м
максимальный диаметр 4.35 м
объем герметичных отсеков 89.0 м3
внутренний объем с оборудованием 75,0 м3
объем обитания экипажа 46.7 м3
Обеспечение жизнедеятельности экипажа до 6 человек
Размах солнечных батарей 29.73 м
Площадь фотоэлектрических элементов 76 м2
Максимальная выходная мощность солнечных батарей 13.8 кВт
Длительность функционирования на орбите 15 лет
Система электроснабжения:
рабочее напряжение, В 28
мощность солнечных батарей, кВт 10
Двигательная установка:
маршевые двигатели, кгс 2?312
двигатели ориентации, кгс 32?13,3
масса окислителя (тетроксида азота), кг 558
масса горючего (НДМГ), кг 302

Основные функции:

  • обеспечение условий работы и отдыха экипажа;
  • управление работой основных частей комплекса;
  • снабжение комплекса электроэнергией;
  • двустороннюю радиосвязь экипажа с наземным комплексом управления (НКУ);
  • прием и передача телевизионной информации;
  • передача на НКУ телеметрической информации о состоянии экипажа и бортовых систем;
  • прием на борту информации по управлению;
  • ориентация комплекса относительно центра масс;
  • коррекция орбиты комплекса;
  • сближение и стыковка других объектов комплекса;
  • поддержание заданного температурно-влажностного режима жилого объема, элементов конструкции и оборудования;
  • выход в открытое пространство космонавтов, выполнение работ по техническому обслуживанию и ремонту внешней поверхности станции;
  • проведение научных и прикладных исследований и экспериментов с использованием доставляемой целевой аппаратуры;
  • возможность осуществлять двустороннюю бортовую связь всех модулей комплекса «Альфа».

На наружной поверхности ПхО имеются кронштейны, на которых закреплены поручни, три комплекта антенн (АР-ВКА, 2АР-ВКА и 4АО-ВКА) системы «Курс» для трех стыковочных узлов, стыковочные мишени, агрегаты СТР, блок дозаправки ДУ, телекамера, бортовые огни и другое оборудование. Наружная поверхность закрыта панелями ЭВТИ и противометеоритными экранами. В ПхО имеется четыре иллюминатора.

Рабочий отсек предназначен для размещения основной части бортовых систем и оборудования СМ, для жизни и работы экипажа.

Корпус РО состоит из двух цилиндров разных диаметров (2.9 м и 4.1 м), соединенных между собой коническим переходником. Длина цилиндра малого диаметра – 3.5 м, большого – 2.9 м. Переднее и заднее днища – сферические. Общая длина РО – 7.7 м, герметичный объем с оборудованием – 75.0 м3, объем обитания экипажа – 35.1 м3. Панели интерьера отделяют жилую зону от приборной, а также от корпуса РО.

В РО имеется 8 иллюминаторов.

Жилые помещения РО оборудованы средствами обеспечения жизнедеятельности экипажа. В зоне малого диаметра РО находится центральный пост управления станцией с блоками контроля и аварийно-предупредительными пультами. В зоне большого диаметра РО имеются две персональные каюты (объемом 1.2 м3 каждая), санитарный отсек с умывальником и ассенизационным устройством (объемом 1.2 м3), кухня с холодильником-морозильником, рабочий стол со средствами фиксации, медицинская аппаратура, тренажеры для физических упражнений, небольшая шлюзовая камера для отделения контейнеров с отходами и малых КА.

Снаружи корпус РО закрыт многослойной экранно-вакуумной теплоизоляцией (ЭВТИ). На цилиндрических частях установлены радиаторы, которые выполняют также функции противометеоритных экранов. Незащищенные радиаторами участки закрыты углепластиковыми экранами сотовой конструкции.

На внешней поверхности РО установлены поручни, которыми члены экипажа могут пользоваться для перемещения и фиксации во время работы в открытом космосе.

Снаружи малого диаметра РО установлены датчики системы управления движением и навигацией (СУДН) для ориентации по Солнцу и Земле, четыре датчика системы ориентации СБ и другое оборудование.

Промежуточная камера предназначена для обеспечения перехода космонавтов между СМ и кораблями «Союз» или «Прогресс», пристыкованными к кормовому стыковочному агрегату.

ПрК по форме представляет собой цилиндр диаметром 2.0 м и длиной 2.34 м. Внутренний объем – 7.0 м3.

ПрК снабжена одним пассивным стыковочным агрегатом, расположенным по продольной оси СМ. Узел предназначен для стыковок грузовых и транспортных кораблей, в том числе российских кораблей «Союз ТМ», «Союз ТМА», «Прогресс М» и «Прогресс М2», а также европейского автоматического корабля ATV. Для внешнего наблюдения в ПрК имеются два иллюминатора, а снаружи на ней закреплена телекамера.

Агрегатный отсек предназначен для размещения агрегатов объединенной двигательной установки (ОДУ).

АО имеет цилиндрическую форму, с торца закрывается донным экраном из ЭВТИ. Наружная поверхность АО закрыта противометеоритным защитным кожухом и ЭВТИ. На наружной поверхности установлены поручни и антенны, имеются люки для обслуживания оборудования, расположенного внутри АО.

На корме АО имеется два корректирующих двигателя, а на боковой поверхности – четыре блока двигателей ориентации. Снаружи на заднем шпангоуте АО закреплена штанга с остронаправленной антенной (ОНА) бортовой радиотехнической системы «Лира». Кроме того, на корпусе АО стоят три антенны системы «Курс», четыре антенны радиотехнической системы управления и связи, две антенны телевизионной системы, шесть антенн системы телефонно-телеграфной связи, антенны аппаратуры радиоконтроля орбиты.

Также на АО закреплены датчики СУДН для ориентации по Солнцу, датчики системы ориентации СБ, бортовые огни и пр.

Внутренняя компоновка Служебного модуля:

1 – переходный отсек; 2 – переходный люк; 3 – аппаратура стыковки в ручном режиме; 4 – противогаз; 5 – блоки очистки атмосферы; 6 – твердотопливные генераторы кислорода; 7 – каюта; 8 – отсек санитарного устройства; 9 – промежуточная камера; 10 – переходный люк; 11 – огнетушитель; 12 – агрегатный отсек; 13 – место установки бегущей дорожки; 14 – пылесборник; 15 – стол; 16 – место установки велоэргометра; 17 – иллюминаторы; 18 – центральный пост управления.

Состав служебного оборудования СМ «Звезда»:

бортовой комплекс управления в составе:

— системы управления движением (СУД);
— бортовой вычислительной системы;
— бортового радиокомплекса;
— системы бортовых измерений;
— системы управления бортовым комплексом (СУБК);
— оборудования телеоператорного режима управления (ТОРУ);

система электропитания (СЭП);

объединенная двигательная установка (ОДУ);

система обеспечения тепловых режимов (СОТР);

система обеспечения жизнедеятельности (СОЖ);

средства медицинского обеспечения.

Лабораторный модуль «Дестини»


9 февраля 2001 года экипаж космического корабля шаттл «Атлантис» STS-98 доставил и пристыковал к станции лабораторный модуль "Дестини " («Судьба»).

Американский научный модуль «Дестини» состоит из трёх цилиндрических секций и двух оконечных урезанных конусов, которые содержат герметичные люки, используемые экипажем для входа в модуль и выхода из него. «Дестини» пристыкован к переднему стыковочному узлу модуля «Юнити».

Научное и вспомогательное оборудование внутри модуля «Дестини» смонтировано в стандартных блоках полезной нагрузки ISPR (International Standard Payload Racks). Всего «Дестини» содержит 23 блока ISPR - по шесть на правом, на левом борту и потолке, и пять на полу.

«Дестини» имеет систему жизнеобеспечения, которая обеспечивает электроснабжение, очистку воздуха, а также контроль температуры и влажности в модуле.

В герметичном модуле астронавты могут выполнять исследования в различных областях научных знаний: в медицине, технологии, биотехнологии, физике, материаловедении, и изучении Земли.

Модуль изготовлен американской компанией «Боинг».

Универсальная шлюзовая камера «Квест»


Универсальная шлюзовая камера «Квест» была доставлена к МКС космическим кораблем «Шаттл» «Атлантис» STS-104 15 июля 2001 года и с помощью дистанционного манипулятора станции «Канадарм 2» была извлечена из грузового отсека «Атлантиса», перенесена и пристыкована к причалу американского модуля NODE-1 «Юнити».

Универсальная шлюзовая камера «Квест» предназначена для обеспечения выходов в открытый космос экипажей МКС с использованием как американских скафандров, так и российских скафандров «Орлан».

До установки этой шлюзовой камеры выходы в открытый космос производились либо через переходной отсек (ПхО) служебного модуля «Звезда» (в российских скафандрах), либо через Space Shuttle (в американских скафандрах).

После установки и приведения в рабочее состояние шлюзовая камера стала одной из основных систем для обеспечения выхода в открытый космос и возврата на МКС и позволила применять любую из существующих систем скафандров или обе одновременно.

Основные технические характеристики

Шлюзовая камера представляет собой герметичный модуль, состоящий из двух основных отсеков (состыкованных своими торцами при помощи соединительной перегородки и люка): отсека экипажа, через который астронавты выходят из МКС в открытый космос, и отсека оборудования, где хранятся агрегаты и скафандры для обеспечения ВКД, а также так называемые агрегаты для ночного «вымывания», которые используются в ночь перед выходом в открытый космос для вымывания азота из крови астронавта в процессе понижения атмосферного давления. Эта процедура позволяет избежать проявления признаков декомпрессии после возврата космонавта из открытого космоса и наддува отсека.

Отсек экипажа

высота – 2565 мм.

внешний диаметр – 1996 мм.

герметичный объем – 4.25 куб. м.

Основное оборудование:

люк для выхода в открытый космос диаметром 1016 мм;

пульт управления шлюзованием.

Отсек оборудования

Основные технические характеристики:

длина – 2962 мм.

внешний диаметр – 4445 мм.

герметичный объем – 29.75 куб. м.

Основное оборудование:

гермолюк для перехода в отсек оборудования;

гермолюк для перехода в МКС

две стандартные стойки со служебными системами;

аппаратура обслуживания скафандров и отладки оборудования для ВКД;

насос для откачивания атмосферы;

панель подключения интерфейсных разъемов;

Отсек экипажа представляет собой переработанную внешнюю шлюзовую камеру корабля Space Shuttle. Он оснащен системой освещения, наружными поручнями и интерфейсными разъемами UIA (Umbilical Interface Assembly) для подключения систем обеспечения. Разъемы UIA расположены на одной из стен отсека экипажа и предназначены для подачи воды, отвода жидких отходов и подачи кислорода. Разъемы используются также для обеспечения связи и электропитания скафандров и могут обслуживать одновременно два скафандра (как российских, так и американских).

Перед открытием люка отсека экипажа для выхода в открытый космос, давление в отсеке снижается сначала до 0,2 атм, а затем до нуля.

Внутри скафандра поддерживается атмосфера из чистого кислорода при давлении 0,3 атм для американского скафандра и 0,4 атм для российского.

Пониженное давление требуется для обеспечения достаточной подвижности скафандров. При более высоких давлениях скафандры становятся жесткими, и в них трудно работать в течение длительного времени.

Отсек оборудования оснащен служебными системами для выполнения операций по надеванию и снятию скафандров, а также для периодического проведения работ по их техническому обслуживанию.

В отсеке оборудования расположены устройства для поддержания атмосферы внутри отсека, аккумуляторные батареи, система электропитания и другие обеспечивающие системы.

Модуль «Квест» может обеспечить воздушную среду, с пониженным содержанием азота, в которой космонавты могут «ночевать» перед выходом в открытый космос, благодаря чему их кровоток очищается от излишнего содержания азота, что предотвращает кессонную болезнь во время работы в скафандре с воздухом насыщенным кислородом, и после работы, при изменении давления окружающей среды (давление в российских скафандрах «Орлан» — 0.4 атм, в американских EMU — 0.3 атм). Ранее, для подготовки к выходам в космос, чтобы очистить ткани тела от азота, использовался метод, при котором люди вдыхали чистый кислород в течение нескольких часов перед выходом.

В апреле 2006 года, командир экспедиции МКС-12 Уильям МакАртур, и бортинженер экспедиции МКС-13 Джеффри Уильямс, проверили новый метод подготовки к выходам в космос, «переночевав» таким образом, в шлюзе. Давление в камере было уменьшено от нормального — 1 атм. (101 килопаскалей или 14.7 фунтов на квадратный дюйм), до 0.69 атм. (70 кПа или 10.2 psi). Из-за ошибки сотрудника ЦУП, экипаж был разбужен на четыре часа раньше положенного срока, и тем не менее тест посчитали успешно пройденным. После этого данный метод, стал использоваться американской стороной на постоянной основе перед выходом в космос.

Модуль «Квест» был необходим американской стороне, потому что их скафандры не соответствовали параметрам российских шлюзовых камер — имели другие компоненты, другие настройки и другие соединительные крепления. До установки «Квеста» выходы в космос могли осуществляться из шлюзового отсека модуля «Звезда» только в скафандрах «Орлан». Американские EMU могли использоваться для выхода в космос только во время стыковыки их шаттла к МКС. В дальнейшем, подключение модуля «Пирс» добавило ещё один вариант использования «Орланов».

Модуль был присоединён 14 июля 2001 года экспедицией STS-104. Он был установлен на правый стыковочный порт модуля «Юнити» к единому механизму пристыковки (англ. CBM ).

Модуль содержит оборудование и разработан таким образом, чтобы работать со скафандрами обоих типов, однако в настоящее время (информация по состоянию на 2006 год!) способен функционировать только с американской стороной, потому что оборудование, необходимое для работы с российскими космическими костюмами, ещё не было запущено. Вследствие этого, когда у экспедиции МКС-9 возникли проблемы с американскими скафандрами, им пришлось пробираться на своё рабочее место окольным путём.

21 февраля 2005 года из-за неисправности модуля «Квест», вызванной, как сообщили СМИ, образовавшейся в шлюзе ржавчиной, космонавты временно осуществляли выходы в космос через модуль «Звезда»

Стыковочный отсек «Пирс»

Стыковочный отсек (СО) “Пирс”, являющийся элементом российского сегмента МКС, запущен в составе специализированного грузового корабля-модуля (ГКМ) “Прогресс М-СО1” 15 сентября 2001 года. 17 сентября 2001 года ГКМ “Прогресс М-СО1” состыковался с Международной космической станцией.

Стыковочный отсек «Пирс» разработан и изготовлен в РКК “Энергия” и имеет двойное назначение. Он может использоваться как шлюзовой отсек для выходов в открытый космос двух членов экипажа и служит дополнительным портом для стыковки с МКС пилотируемых кораблей типа “Союз ТМ” и автоматических грузовых кораблей типа “Прогресс М”.

Кроме этого, он обеспечивает возможность дозаправки баков PC МКС компонентами топлива, доставляемыми на грузовых транспортных кораблях.

Основные технические характеристики

Параметр Значение
Масса при запуске, кг 4350
Масса на орбите, кг 3580
Резервная масса доставляемых грузов, кг 800
Высота орбиты при сборке, км 350-410
Рабочая высота орбиты, км 410-460
Длина (со стыковочным агрегатам), м 4,91
Максимальный диамегр, м 2,55
Объем герметичного отсека, м? 13

Стыковочный отсек “Пирс” состоит из герметичного корпуса и установленных на нем аппаратуры, служебных систем и элементов конструкции, обеспечивающих выходы в открытый космос.

Гермокорпус отсека и силовой набор изготовлены из алюминиевых сплавов АМг-6, трубопроводы — из коррозионно-стойких сталей и титановых сплавов. Снаружи корпус закрыт панелями противометеоритной защиты толщиной 1 мм и экранновакуумной теплоизоляцией

Два стыковочных узла — активный и пассивный — расположены по продольной оси “Пирса”. Активный стыковочный узел предназначен для герметичного соединения со СМ “Звезда”. Пассивный стыковочный узел, расположенный с противоположной стороны отсека, предназначен для герметичного соединения с транспортными кораблями типа “Союз ТМ” и “Прогресс М”.

Снаружи отсека установлены четыре антенны аппаратуры измерения параметров относительного движения “Курс-А” используемой при стыковке СО к МКС, а также аппаратура системы “Курс-П”, обеспечивающей сближение и стыковку к отсеку транспортных кораблей.

В корпусе установлены два кольцевых шпангоута с люками для выхода в открытый космос. Оба люка имеют диаметр в свету 1000 мм. В каждой крышке имеется иллюминатор диаметром в свету 228 мм. Оба люка абсолютно равнозначны и могут использоваться в зависимости от того, с какой стороны “Пирса” удобнее проводить выход членов экипажа в открытый космос. Каждый люк рассчитан на 120 открываний. Для удобства работы космонавтов в открытом космосе вокруг люков имеются кольцевые поручни внутри и снаружи отсека.

Снаружи всех элементов корпуса отсека также установлены поручни для облегчения работы членов экипажа во время выходов.

Внутри СО “Пирс” расположены блоки аппаратуры систем терморегулирования, связи, управления бортовым комплексом, телевизионной и телеметрической систем, проложены кабели бортовой сети и трубопроводы системы терморегулирования.

В отсеке имеются пульты управления шлюзованием, контроля и управления служебными системами СО, связи, снятия и подачи силового питания, выключатели освещения, электророзетки.

Два блока сопряжения БСС обеспечивают шлюзование двух членов экипажа в скафандрах “Орлан-М”.

Служебные системы модуля:

система терморегулирования;

система связи;

система управления бортовым комплексом;

пульты контроля и управления служебными системами СО;

телевизионная и телеметрическая системы.

Целевые системы модуля:

пульты управления шлюзованием.

два блока сопряжения, обеспечивающих шлюзование двух членов экипажа.

два люка для выхода в открытый космос диаметром 1000 мм.

активный и пассивный стыковочный узлы.

Соединительный модуль «Гармония»

Модуль «Гармония» (Harmony) доставлен на МКС на борту шаттл «Дискавери» (STS-120) и 26 октября 2007 года был временно установлен на левый стыковочный узел модуля «Юнити» МКС.

14 ноября 2007 года модуль «Гармония» перемещен экипажем МКС-16 на постоянное место — на передний стыковочный узел модуля «Дестини». Предварительно на передний стыковочный узел модуля «Гармония» был перенесен стыковочный модуль кораблей шаттл.

Модуль «Гармония» является соединительным элементом для двух исследовательских лабораторий: европейской — «Колумбус» и японской – «Кибо».

Он обеспечивает электропитание присоединённых к нему модулей и обмен данными. Для обеспечения возможности увеличения численности постоянно действующего экипажа МКС в модуле установлена дополнительная система обеспечения жизнедеятельности.

Кроме того модуль оборудован тремя дополнительными спальными местами для космонавтов.

Модуль представляет собой алюминиевый цилиндр длиной 7,3 метра и внешним диаметром 4,4 метра. Герметичный объём модуля составляет 70 м?, вес модуля — 14 300 кг.

Модуль Node 2 был доставлен в Космический центр им. Кеннеди 1 июня 2003 года. Название «Гармония» модуль получил 15 марта 2007 года.

11 февраля 2008 года к правому стыковочному узлу «Гармонии» экспедицией шаттла Атлантис STS-122 была присоединена европейская научная лаборатория «Коламбус». Весной 2008 года к ней была пристыкована японская научная лаборатория «Кибо». Верхний (зенитный) стыковочный узел, предназначавшийся ранее для отменённого японского модуля центрифуг (CAM), временно будет использоваться для стыковки с первой частью лаборатории «Кибо» — экспериментальным грузовым отсеком ELM , который 11 марта 2008 года доставила на борт экспедиция STS-123 шаттла «Индевор».

Лабораторный модуль «Колумбус»

«Коламбус» (англ. Columbus — Колумб) — модуль Международной космической станции созданный по заказу Европейского космического агентства консорциумом европейских аэрокосмических фирм. «Коламбус» это первый серьёзный вклад Европы в строительство МКС, представляет собой научную лабораторию, дающую европейским учёным возможность проводить исследования в условиях микрогравитации.

Модуль был запущен 7 февраля 2008 года, на борту шаттла «Атлантис» в ходе полёта STS-122. Пристыкован к модулю «Гармония» 11 февраля в 21:44 UTC.

Модуль «Колумбус» построен по заказу Европейского космического агентства консорциумом европейских аэрокосмических фирм. Стоимость его строительства превысила $1,9 млрд.

Он представляет из себя научную лабораторию, предназначенную для проведения физических, материаловедческих, медико-биологических и иных экспериментов в условиях отсутствия гравитации. Планируемая длительность функционирования «Колумбус» 10 лет.

Корпус модуля цилиндрической формы диаметром 4477 мм и длиной 6871 мм имеет массу 12 112 кг.

Внутри модуля имеется 10 унифицированных мест (ячеек) для установки контейнеров с научной аппаратурой и оборудованием.

На внешней поверхности модуля имеется четыре места для крепления научной аппаратуры предназначенной для проведения исследований и экспериментов в условиях открытого космоса. (изучение солнечно-земных связей, анализ воздействия на оборудование и материалы длительного пребывания в космосе, эксперименты по выживанию бактерий в экстремальных условиях и т.д.).

На момент доставки на МКС в модуле были уже установлены 5 контейнеров с научной аппаратурой для проведения научных экспериментов в области биологии, физиологии и материаловедения массой 2,5 тонны.

    Когда члены экипажа не заняты проведением научных экспериментов, они выполняют ремонтные работы станции или подготавливаются к работе вне космического корабля.

    Какие эксперименты и ремонтные работы ведутся на МКС?

    С 2000 года на МКС проводятся самые различные научные эксперименты для различных правительственных агентств, частных компаний, образовательных учреждений. Эксперименты варьируются от выращивания каких-нибудь цукини до наблюдения за поведением колонии муравьев. Одним из последних экспериментов, например, является 3D-печать в условиях невесомости и испытания роботов-гуманоидов , которые в будущем, вполне возможно, будут помогать экипажам станции в работе. На вопрос о том, какой эксперимент, по мнению Коулман, является самым интересным, она ответила: «Сами члены экипажа». Называя себя «ходячим и говорящим экспериментом остеопороза», Коулман отметила, что человек в космосе примерно в 10 раз быстрее теряет массу и плотность своих костей, по сравнению с 70-летним человеком на Земле. Поэтому изучение и анализ образцов крови и мочи в условиях микрогравитации «помогает лучше понять механизм потери и восстановления массы костей».

    В дополнение к задачам по проведению научных исследований члены экипажа МКС отвечают за правильную работу всех систем станции. В конце концов если что-то пойдет неправильно, то жизни всего живого на борту будет угрожать опасность. Иногда даже приходится выходить наружу, чтобы починить какую-нибудь сломавшуюся деталь или просто расчистить скопившийся рядом со станцией космический мусор, который определенно может нанести вред. В этом случае члены экипажа надевают свои скафандры и выходят в открытый космос. Кстати, одним из самых запоминающихся выходов в открытый космос был случай с американским астронавтом Сунитой Уильямс, которая использовала обычную зубную щетку, чтобы починить солнечную систему питания станции.

    Так как выход в открытый космос по времени всегда ограничен, канадское космического агентство (CSA) решило прикрепить к выдвижной мобильной обслуживающей системе Canadarm2 двурукого робота-помощника «Декстра». Многофункциональная система используется для разных задач, среди которых и дополнительная сборка станции, и ловля беспилотных космических аппаратов, направляющихся к МКС, таких как модуль «Dragon» компании SpaceX, возящий различные припасы на станцию. Роботом «Декстром» удаленно управляют с Земли. Оттуда же происходит управление ремонтными работами станции, чтобы лишний раз не тревожить ее экипаж. В этом году «Декстр» даже занимался ремонтом самой системы Canadarm2.

    Как экипаж МКС соблюдает чистоту и использует туалет?

    Волосы, кусочки ногтей или пузырьки воды — не самые лучшие друзья дорогому оборудованию станции. Добавьте сюда микрогравитацию — и при халатности можно ждать беды. Вот почему члены экипажа очень и очень осторожны, когда дело доходит до собственной гигиены. Известный многим канадский астронавт Крис Хэдфилд (ставший настоящей медийной звездой в 2013 году) однажды даже рассказал, что безопасность доходит до такого уровня, что членам экипажа приходиться глотать зубную пасту после того, как они почистят зубы. Хэдфилд широко известен благодаря своим роликам на YouTube, где он рассказывает о жизни на станции и показывает, как люди на ней моют руки (специальным мылом), бреются (при этом используя специальный гель), стригутся (при использовании своего рода пылесоса), а также стригут ногти (и при этом ловят каждый уплывающий в таком случае кусочек собственной плоти). В свою очередь, Коулман рассказывает о том, что члены экипажа используют специальный шампунь, однако за время пребывания на станции ей не удалось принять душ, хотя душем это назвать можно лишь с большой натяжкой. Дело в том, что чтобы вымыться, жители станции используют только влажную губку, а не целый набор, который можно встретить на Земле.

    Что касается туалетов, то, разумеется, на МКС невозможно использование обычных туалетов, какими мы привыкли пользоваться на Земле. Космические туалеты используют санационную систему для сбора человеческих отходов, которые затем хранятся в специальных мешках внутри алюминиевых контейнеров до тех пор, пока полностью не заполнятся. Каждый такой заполненный контейнер затем сбрасывается в атмосферу, где он полностью сгорает. Трейси Колдуэлл-Дайсон (летавшая на МКС в 2010 году) рассказала издательству Huffington Post, что несмотря на то, что туалет изначально не разрабатывался с тем учетом, что им будет пользоваться женщина (его разработка велась российским космическим агентством, которое отправляло на МКС только мужчин), она все-таки смогла им пользоваться.

    Что же касается мочи, то, как говорит Хэдфилд, урина отправляется прямиком в систему фильтрации, где на выходе получается чистая вода, которую жители станции повторно используют для питья, а также регидратации их продуктов питания.

    Еда, развлечения и Интернет

    Еда на МКС обычно хранится в специальных вакуумных упаковках, которыми очень легко пользоваться. Команда станции получает самый разный рацион, начиная от основных блюд и заканчивая десертами. Некоторые из этих продуктов упакованы в готовом виде, некоторые требуют регидратации перед употреблением (например, шпинат в порошке или мороженое). После лакомства членам экипажа необходимо избавиться от этих открытых упаковок, чтобы избежать попадание кусочков еды на дорогое оборудование. Весьма интересная деталь заключается в том, что некоторые командиры экспедиций на МКС полностью запрещают употребление на станции некоторых продуктов, например супа гамбо (американское блюдо) или кексов (а также других рассыпчатые продуктов), так как после их употребления станцию приходится постоянно очищать от крошек.

    В доступе у жителей станции имеется несколько средств для собственного развлечения: кино, ТВ-передачи, книги и музыка, например. Однако для Гарана и многих других людей, живших на МКС, ничто не может сравниться по интересу с фотографированием и любованием нашей планетой издалека. Именно поэтому при запросе в Google «фотографии с МКС» вас ждет огромное количество всевозможных снимков. Ну а если учесть, сколько снимков с МКС можно найти в Сети, то становится определенно понятным тот факт, что у жителей станции есть и доступ к Интернету. Со слов астронавта Клейтона Андерсона, на МКС Сеть появилась в 2010 году, однако Коулман отмечает, что интернет был весьма медленным и в 2011 году, когда она прибыла на МКС. Общение жителей станции с командой на Земле, а также с членами своих семей происходит с помощью голосового или видеочата на канале с частотой 2-4 ГГц, однако, по ее словам, интернет в то время был настолько медленный, что «не стоил времени на его использование во время ее экспедиции». Сегодня же максимальная скорость Интернета на МКС (не без участия отдельного выделенного коммуникационного спутника NASA) может доходить до 300 Мбит/сек.

    Как жители станции следят за своим физическим здоровьем?

    Практически каждый новый член экипажа МКС сталкивается с так называемой «космической болезнью» в первые дни своего пребывания на станции. Симптомами этой болезни являются тошнота и головокружение. Поэтому каждому «новичку» выдается рвотный пакет с антибактериальной тканью, которую астронавты используют для очистки лица и рта от остатков рвоты, чтобы та не распространилась вокруг. Со временем тела «новичков» начинают акклиматизироваться и они ощущают некоторые изменения в своем физическом состоянии. В момент этих изменений тело человека становится чуть длиннее (позвоночник за отсутствием притяжения полностью расправляется), а лицо человека немного опухает, ввиду того что жидкость в теле начинает стремиться наверх.

    К сожалению, тошнота и головокружение — не единственные факторы акклиматизации. У вновь прибывших на станцию людей нередко наблюдаются проблемы со зрением, сопровождающиеся вспышками и полосами света в глазах. Ученые аэрокосмических агентств до сих пор пытаются выяснить точную причину этого явления, поэтому они просят жителей станции наблюдать за состоянием своих глаз и регулярно отправлять новые сведения обратно на Землю. Некоторые ученые тем не менее считают, что эта проблема связана с повышением давления внутри черепа (жидкость, как уже писалось выше, в состоянии микрогравитации начинает движение вверх).

    На этом проблемы не заканчиваются, а только начинаются. Факт в том, что чем больше вы находитесь в космосе, тем больше костной и мышечной массы вы теряете ввиду отсутствия гравитации. Конечно же, плавать в космосе, должно быть, определенно весело, но, находясь на борту МКС, вы в буквальном смысле изнашиваете ваше тело. К счастью, жители станции могут бороться с этими проблемами путем частых физических тренировок по два часа в день, используя специальное оборудование: велоэргонометр (или просто велотренажер), беговую дорожку (со множеством ремней для фиксации вашего тела), а также специальное устройство Advanced Resistive Exercise Device (ARED), которое использует вакуум для имитации гравитационного давления и позволяет выполнять упражнения на приседания. Астронавт Уильямс однажды даже использовала этот тренажер для имитации плавания!

    Как обстоят дела с поддержанием психического здоровья?

    «Важность всей миссии становится особенно ясной, когда ты уже находишься на борту МКС. Это, в свою очередь, и помогает ладить с людьми, с которыми ты работаешь. Это гораздо легче делать там, чем на Земле, потому что там проще увидеть общую цель, к которой ты движешься с остальными людьми на станции», — комментирует Коулман.

    Жители станции вообще спят?

    С таким плотным графиком работы с научными данными, проведением многочисленных экспериментов, слежением за правильной работой всех систем станции, физическими упражнениями и многим другим может показаться, что эти люди вообще никогда не спят. Однако это не так. Жителям станции разрешается спать даже в момент, когда они по ней «плавают». Тем не менее каждому члену экипажа, как и обычному человеку, требуется некоторое личное пространство, поэтому чаще всего люди спят в небольших «каморках» в вертикально расположенных спальных мешках, которые удерживают их в момент отдыха. Время сна может составлять до восьми с половиной часов в сутки, однако большинство жителей станции полностью высыпаются чуть более чем за шесть часов. Дело в том, что в условиях микрогравитации ваше тело не так устает, как при обычной гравитации.

Международная космическая станция, МКС (англ. International Space Station, ISS) - пилотируемый многоцелевой космический научно-исследовательский комплекс.

В создании МКС принимают участие: Россия (Федеральное космическое агентство, Роскосмос); США (национальное аэрокосмическое агентство США, NASA); Япония (Японское агентство аэрокосмических исследований, JAXA), 18 европейских стран (Европейское космическое агентство, ESA); Канада (Канадское космическое агентство, CSA), Бразилия (космическое агентство Бразилии, AEB).

Начало строительства - 1998 год.

Первый модуль - "Заря".

Завершение строительства (предположительно) - 2012 год.

Срок окончания работы МКС (предположительно) - 2020 год.

Высота орбиты - 350-460 километров от Земли.

Наклонение орбиты - 51,6 градуса.

МКС совершает 16 оборотов в сутки.

Вес станции (на момент завершения строительства) - 400 тонн (на 2009 год - 300 тонн).

Внутреннее пространство (на момент завершения строительства) - 1, 2 тысячи кубометров.

Длина (вдоль главной оси, по которой выстроились основные модули) - 44,5 метра.

Высота - почти 27,5 метров.

Ширина (по солнечным панелям) - более 73 метров.

МКС посетили первые космические туристы (отправлены Роскосмосом совместно с компанией Space Adventures).

В 2007 году организован полёт первого малайзийского космонавта - шейха Музафара Шукора (Muszaphar Shukor).

Затраты на строительство МКС к 2009 году составили 100 миллиардов долларов.

Управление полётом:

российским сегментом осуществляется из ЦУП-М (ЦУП-Москва, город Королев, Россия);

американским сегментом - из ЦУП-Х (ЦУП-Хьюстон, город Хьюстон, США).

Работу входящих в состав МКС лабораторных модулей контролируют:

европейского "Колумбус" - Центр управления Европейского космического агентства (город Оберпфаффенхофен, Германия);

японского "Кибо" - ЦУП Японского агентства аэрокосмических исследований (город Цукуба, Япония).

Полётом европейского автоматического грузового корабля ATV "Жюль Верн" ("Jules Verne"), предназначенного для снабжения МКС, совместно с ЦУП-М и ЦУП-Х управлял Центр Европейского космического агентства (город Тулуза, Франция).

Техническую координацию работ по российскому сегменту МКС и его интеграции с американским сегментом осуществляет совет главных конструкторов под руководством президента, генерального конструктора РКК "Энергия" им. С.П. Королева, академика РАН Ю.П. Семенова.
Руководство подготовкой и проведением запуска элементов российского сегмента МКС осуществляет Межгосударственная комиссия по обеспечению полетов и эксплуатации орбитальных пилотируемых комплексов.


По существующему международному соглашению каждому участнику проекта принадлежат его сегменты на МКС.

Ведущей организацией по созданию российского сегмента и его интеграции с американским сегментом является РКК "Энергия" им. С.П. Королева, а по американскому сегменту - компания ""Боинг " ("Boeing").

В изготовлении элементов российского сегмента принимают участие около 200 организаций, в том числе: Российская академия наук; завод экспериментального машиностроения РКК "Энергия" им. С.П. Королева; ракетно-космический завод ГКНПЦ им. М.В. Хруничева; ГНП РКЦ "ЦСКБ-Прогресс"; КБ общего машиностроения; РНИИ космического приборостроения; НИИ точных приборов; РГНИИ ЦПК им. Ю.А. Гагарина.

Российский сегмент: служебный модуль "Звезда"; функциональный грузовой блок "Заря"; стыковочный отсек "Пирс".

Американский сегмент: узловой модуль "Юнити"("Unity"); шлюзовой модуль "Квест" ("Quest"); лабораторный модуль "Дестини" ("Destiny").

Канада создала для МКС на модуле LAB манипулятор - 17,6-метровую руку-робот "Канадарм" ("Canadarm").

Италия поставляет на МКС так называемые многоцелевые модули логистики (Multi-Purpose Logistics Modules, MPLM). К 2009 году их сделано три: "Леонардо", "Рафаэлло", "Донателло" ("Leonardo", "Raffaello", "Donatello"). Это большие цилиндры (6,4 х 4,6 метра) со стыковочным узлом. Пустой модуль логистики весит 4,5 тонны, в него можно загрузить до 10 тонн оборудования для экспериментов и расходных материалов.

Доставку людей на станцию обеспечивают российские "Союзы" и американские шаттлы (челноки многоразового использования); грузы доставляют российские "Прогрессы" и американские шаттлы.

Япония создала свою первую научную орбитальную лабораторию, которая стала самым большим модулем МКС, - "Кибо"(в переводе с японского "Надежда", международная аббревиатура - JEM, Japanese Experiment Module).

По заказу Европейского космического агентства консорциумом европейских аэрокосмических фирм был сделан исследовательский модуль "Колумбус". Он предназначен для проведения физических, материаловедческих, медико-биологических и других экспериментов в условиях отсутствия гравитации. По заказу ESA был сделан модуль "Гармония" ("Harmony"), который соединяет модули "Кибо" и "Колумбус", а также обеспечивает их электропитание и обмен данными.

На МКС также сделаны дополнительные модули и устройства: модуль корневого сегмента и гиродинов на узле-1 (Node 1); энергетический модуль (секция СБ АС) на Z1; подвижная сервисная система; устройство для перемещения оборудования и экипажа; устройство "B" системы перемещения оборудования и экипажа; фермы S0, S1, P1, Р3/Р4, Р5, S3/S4, S5, S6.

Все лабораторные модули МКС обладают стандартизированными стойками для установки блоков с экспериментальным оборудованием. Со временем МКС обрастёт новыми узлами и модулями: российский сегмент должен пополнится научно-энергетической платформой, многоцелевым исследовательским модулем "Энтерпрайз" ("Enterprise") и вторым функционально-грузовым блоком (ФГБ-2). На модуле узел-3 (Node 3) будет смонтирован построенный в Итали узел "Купол" ("Cupola"). Это купол с рядом очень крупных иллюминаторов, через которые обитатели станции, как в театре, смогут наблюдать приход кораблей и контролировать работу своих коллег в открытом космосе.

История создания МКС

Работы по международной космической станции начались в 1993 году.

Россия предложила США объединить усилия в осуществлении пилотируемых программ. К тому моменту у России сложилась 25-летняя история эксплуатации орбитальных станций "Салют" и "Мир", а также был бесценный опыт проведения длительных полетов, исследований и развитая инфраструктура космических средств. Но к 1991 году страна оказалась в тяжелом экономическом положении. В это же время финансовые трудности испытывали и создатели орбитальной станции "Фридом" (США).

15 марта 1993 года генеральный директор агентства Роскосмос А Ю.Н. Коптев и генеральный конструктор НПО "Энергия" Ю.П. Семенов обратились к руководителю NASA Голдину с предложением о создании Международной космической станции.

2 сентября 1993 года председатель правительства Российской Федерации Виктор Черномырдин и вице-президент США Альберт Гор подписали "Совместное заявление о сотрудничестве в космосе", которое предусматривало создание совместной станции. 1 ноября 1993 года был подписан "Детальный план работ по Международной космической станции", а в июне 1994 года - контракт между агентствами NASA и Роскосмос "О поставках и услугах для станции "Мир" и Международной космической станции".

Начальный этап строительства предусматривает создание функционально законченной структуры станции из ограниченного числа модулей. Первым на орбиту выведен ракетой-носителем "Протон-К" функционально-грузовой блок "Заря" (1998), сделанный в России. Вторым доставлен кораблем шаттл и состыкован с функционально-грузовым блоком американский стыковочный модуль узел-1 - "Юнити" (декабрь 1998). Третьим выведен российский служебный модуль "Звезда" (2000), который обеспечивает управление станцией, жизнеобеспечение экипажа, ориентацию станции и коррекцию орбиты. Четвертым - американский лабораторный модуль "Дестини" (2001).

Первый основной экипаж МКС, прибывший на станцию 2 ноября 2000 года на корабле "Союз ТМ-31": Уильям Шеперд (США), командир МКС, бортинженер-2 корабля "Союз-ТМ-31"; Сергей Крикалев (Россия), бортинженер корабля "Союз-ТМ-31"; Юрий Гидзенко (Россия), пилот МКС, командир корабля "Союз ТМ-31".

Продолжительность полёта экипажа МКС-1 составила около четырёх месяцев. Его возвращение на Землю было осуществлено американским кораблём "Спейс шаттл", который доставил на МКС экипаж второй основной экспедиции. Корабль "Союз ТМ-31" оставался в составе МКС в течение полугода и служил в качестве корабля-спасателя для работающего на её борту экипажа.

В 2001 году на корневом сегменте Z1 был установлен энергетический модуль P6, на орбиту доставлены лабораторный модуль "Дестини", шлюзовая камера "Квест", стыковочный отсек "Пирс", две грузовые телескопические стрелы, дистанционный манипулятор. В 2002 году станция пополнилась тремя ферменными конструкциями (S0, S1, P6), две из которых снабжены транспортировочными устройствами для перемещения дистанционного манипулятора и астронавтов во время работы в открытом космосе.

Строительство МКС было приостановлено в связи с произошедшей 1 февраля 2003 года катастрофой американского корабля "Колумбия", а в 2006 году работы по строительству были возобновлены.

В 2001 и дважды в 2007 году был зафиксирован отказ работы компьютеров в российских и американских сегментах. В 2006 году в российском сегменте станции произошло задымление. Осенью 2007 года экипаж станции провёл ремонтные работы солнечной батареи.

На станцию были доставлены новые секции солнечных батарей. В конце 2007 года МКС пополнилась двумя герметичными модулями. В октябре шаттл "Дискавери" STS-120 привёз на орбиту соединительный модуль узел-2 "Гармония", который стал основным причалом для шаттлов.

Европейский лабораторный модуль "Колумбус" был выведен на орбиту на корабле "Атлантис" STS-122 и с помощью манипулятора этого корабля поставлен на свое штатное место (февраль 2008). Затем был введён в состав МКС японский модуль "Кибо" (июнь 2008), его первый элемент был доставлен на МКС шаттлом "Индевор" STS-123 (март 2008).

Перспективы МКС

По мнению некоторых пессимистически настроенных экспертов, МКС - это напрасно потраченные время и деньги. Они считают, что станция ещё не построена, но уже устарела.

Однако в осуществлении долгосрочной программы космических полётов на Луну или к Марсу человечеству без МКС не обойтись.

С 2009 года постоянный экипаж МКС будет увеличен до 9 человек, возрастёт количество экспериментов. Россия запланировала провести в ближайшие годы 331 эксперимент на МКС. Европейское космическое агентство (ESA) и его партнёры уже построили новый корабль-транспортник — Automated Transfer Vehicle (ATV), который будет выводиться на базовую орбиту (высотой 300 километров) ракетой Ariane-5 ES ATV, откуда ATV за счёт своих двигателей перейдёт на орбиту МКС (400 километров над Землёй). Полезный груз этого автоматического корабля длиной 10,3 метра и диаметром 4,5 метра составляет 7,5 тонн. Это будет и экспериментальное оборудование, и пища, и воздух, и вода для экипажа МКС. Первый из ряда ATV (сентябрь 2008) получил имя "Жюль Верн" ("Jules Verne"). После стыковки с МКС в автоматическом режиме ATV может проработать в её составе полгода, после чего корабль загружают мусором и в управляемом режиме затопляют в Тихом океане. ATV планируется запускать раз в год, а всего их будет построено не меньше 7. К программе МКС подключится японский автоматический грузовик H-II "Transfer Vehicle" (HTV), выводимый на орбиту японской же ракетой-носителем H-IIB, которую сейчас ещё разрабатывают. Полный вес HTV составит 16,5 тонн, из которых 6 тонн - полезный груз для станции. Он сможет оставаться пристыкованным к МКС до одного месяца.

Устаревшие шаттлы будут сняты с полётов в 2010 году, а новое поколение появится не раньше 2014-2015 года.
К 2010 году российские пилотируемые "Союзы" будут модернизированы: прежде всего заменят электронные системы управления и связи, что позволит нарастить полезную нагрузку корабля за счёт сокращения веса электронного оборудования. Обновлённый "Союз"сможет находиться в составе станции почти год. Российской стороной будет построен корабль "Клипер" (по плану первый испытательный пилотируемый рейс на орбиту - 2014, ввод в эксплуатацию - 2016). Этот шестиместный крылатый челнок многоразового использования задуман в двух вариантах: с агрегатно-бытовым отсеком (АБО) или двигательным отсеком (ДО). За "Клипером", поднявшимся в космос на сравнительно низкую орбиту, будет прилетать межорбитальный буксир "Паром". "Паром" - новая разработка, призванная сменить со временем грузовые "Прогрессы". Этот буксир должен подтягивать с низкой опорной орбиты до орбиты МКС так называемые "контейнеры", грузовые "бочки" с минимум оборудования (4-13 тонн грузов), выводимые в космос при помощи "Союзов" или "Протонов". У "Парома" два стыковочных узла: один для контейнера, второй - для причаливания к МКС. После вывода контейнера на орбиту паром за счёт своей двигательной установки спускается к нему, стыкуется с ним и поднимает его к МКС. А после разгрузки контейнера "Паром" спускает его на более низкую орбиту, где тот отстыкуется и самостоятельно тормозит, чтобы сгореть в атмосфере. Буксир же останется ждать новый контейнер, чтобы доставить его к МКС.

Официальный сайт РКК "Энергия": http://www.energia.ru/rus/iss/iss.html

Официальный сайт корпорации "Боинг " (Boeing): http://www.boeing.com

Официальный сайт центра управления полётами: http://www.mcc.rsa.ru

Официальный сайт национального аэрокосмического агентства США (NASA): http://www.nasa.gov

Официальный сайт Европейского космического агентства (ESA): http://www.esa.int/esaCP/index.html

Официальный сайт Японского агентства аэрокосмических исследований (JAXA): http://www.jaxa.jp/index_e.html

Официальный сайт Канадского космическогое агентства (CSA): http://www.space.gc.ca/index.html

Официальный сайт космического агентства Бразилии (AEB):