Максимальная магнитуда. Что такое землетрясение

Благодаря современным технологиям, ученым удалось подсчитать, сколько ежегодно происходит землетрясений на нашей планете. Их фиксируется больше миллиона. Большая часть их них не ощущается людьми из-за своей малой магнитуды, но есть те, которые становятся настоящей катастрофой.

А что такое магнитуда землетрясений и в чем ее измеряют? Как ученым удается определять, какие из явлений нанесут ущерб, а какие останутся неощутимыми?

Магнитуда

Учеными были разработаны специальные шкалы, по которым измеряют силу подземных толчков. Чтобы понять, что такое магнитуда землетрясения, необходимо ознакомиться с величинами измерений этого явления.

Есть несколько типов шкал: Меркалли - Канкани, Медведева - Шпонхойера - Карника, Рихтера. Благодаря им понятно, что такое магнитуда. Это число, которое можно измерить по определенному эталонному показателю. Во время очередного землетрясения принято говорить о бальности и магнитуде.

Шкала определения магнитуды

Самой первой шкалой длительное время считали сетку Меркалли - Канкани. В наше время она является устаревшей моделью, так что значение подземных толчков ею не измеряют.

Однако на ее основе разработаны все современные методы оценки силы ударов, в числе которых международная шкала MSK 64 (Медведева - Шпонхойера - Карника). Ее берут в большинстве стран мира для анализа интенсивности явления.

MSK 64

Данная система оценки представлена двенадцатибальной шкалой. По ней можно узнать, что характеризует магнитуда землетрясения:

  • 1 балл. Такие явления не ощущаются людьми, но их фиксируют аппараты.
  • 2 балла. В некоторых случаях могут наблюдаться людьми, чаще всего на верхних этажах зданий.
  • 3 балла. Удары заметны тем, у кого высокая чувствительность.
  • Землетрясение 4 балла. Отмечается дребезжание стекол.
  • 5 баллов. Считается достаточно ощутимым землетрясением, при котором могут раскачиваться отдельные предметы.
  • 6 баллов. Образование трещин на зданиях.
  • 7 баллов. Возможно падение тяжелых предметов. В стенах зданий появляются крупные трещины.
  • 8 баллов. Дома частично рушатся.
  • 9 баллов. Здания и другие конструкции рушатся.
  • 10 баллов. В грунте возникают глубокие трещины, старые строения полностью разрушаются.
  • 11 баллов. На поверхности земли появляются многочисленные трещины, в горах происходят обвалы. Здания полностью разрушаются.
  • 12. Рельеф серьезно изменяется, а строения полностью разрушаются.

Оценка по системе Рихтера

В 1935 году ученый Ч. Рихтер предположил, что магнитуда - это энергия сейсмических волн. На основе этого утверждения он разработал особую шкалу, по которой до сих пор проводят оценку сотрясательной активности.

Шкала магнитуд Рихтера характеризует величину энергии, выделяемой во время сейсмологической активности. В ней используется логарифмический масштаб, где каждое значение указывает на толчок в десять раз больше предыдущего. К примеру, если фиксируется землетрясение 4 балла, то явление вызовет в десять раз более сильное колебание, чем магнитуда 3 балла по этой же шкале.

По Рихтеру, сейсмологическая активность измеряется следующим образом:

    1.0-2.0 - фиксируется приборами;

    2.0-3.0 - слабые ощущения толчков;

    3.0 - раскачиваются люстры в домах;

    4-5 - толчки слабые, но могут вызывать незначительные разрушения;

    6.0 - толчки, способные вызвать умеренные разрушения;

    7 - трудно устоять на ногах, по стенам начинают идти трещины, лестничные пролеты могут разрушаться;

    8.5 - очень сильные землетрясения, способные вызывать изменения рельефа.

    9 - вызывает цунами, почва сильно трескается.

    10 - глубина разлома сто и более километров.

Землетрясения в истории

Одним из самых сильных землетрясений в мире стала сейсмологическая активность, зафиксированная в 1960 году в Чили. По шкале Рихтера, приборы указали на значительную активность. Тогда чилийцы узнали, что такое магнитуда 8.5 балла. Толчки вызвали цунами с десятиметровой высотой волн.

Через четыре года, в северной части Аляскинского залива, были зафиксированы сотрясания магнитудой 9 баллов. Из-за этой активности плит произошло сильное изменение береговой линии некоторых островов.

Еще одно мощное землетрясение произошло в 2004 году в Индийском океане. По шкале Рихтера ему присвоено 9 баллов. Толчки стали причиной возникновения сильнейшего цунами с высотой волны более пятнадцати метров.

В 2011 году, в Японии, произошло землетрясение, которое стало причиной огромной трагедии: погибли тысячи людей и была разрушена АЭС.

К сожалению, подобные катастрофы не большая редкость. Как предотвратить землетрясения, ученым пока неизвестно.

Шкала Рихтера была придумана для определения силы земных колебаний. Иными словами она поможет нам устанавливать мощность землетрясений. Система эта- международная. Придумал ее итальянец Меркалли. Кем же был Рихтер и почему все лавры достались ему?

История шкалы Рихтера

Шкала землетрясения Рихтера разработана в тридцатых годах двадцатого века. Система Меркалли была не только переименована, но и доделана. Итальянец вял за основу 12-бальную шкалу. Минимальные толчки равнялись единице.

Сильными считались землетрясения от 6-ти баллов. Не все государства были с этим согласны. , к примеру, применяли 10-ти бальную, а в Японии на 7-бальную шкалы. Но в век глобализации всё изменилось.

Нужен был общий стандарт, а данные всех сейсмографов были расшифрованы в любой точке на Земле. Тут-то за дело и взялся Чарльз Рихтер. Американец стал применять десятичный логарифм.

Измерение амплитуды колебаний было прямо пропорционально изменению иглы на сейсмографе. Рихтер также внес поправки в зависимости от удаления местности от эпицентра землетрясения.

Шкала магнитуд Рихтера была официально зарегистрирована в 1935-ом. Мир стал ориентироваться не только на 10 баллов, но и на разницу в десять баллов между соседними отметками линейки.

2-бальное землетрясение считается в 10 раз сильнее 1-бального, а 3-бальные толчки в 10 раз мощнее 2-бальных, и так далее. Но, как определять силу толчков? Как узнать и определить, что подвижки земной коры именно 3-х, 7-ми, 9-бальные?

Шкала Рихтера - баллы в визуальных и физических проявлениях

Баллы помогут нам измерить частоту поверхностных толчков. Их мощность в недрах Земли, где произошёл разлом, больше. Часть энергии уходит по пути к твердой коре планеты. Значит, мощность тем больше, чем ближе к поверхности очаг. Один балл люди не ощущают.

Два балла почувствуют лишь жители верхних этажей высоток, ощущая слабые колебания. При трёх баллах качаются люстры. Ощутимые сотрясения внутри зданий, даже не больших, — это четыре балла.

А пяти-бальные землетрясения ощутимы уже не только в домах, но и на улицах. При шести баллах могут потрескаться стекла, движется мебель, посуда. Трудно держаться на ногах становится во время семи-бального землетрясения. По кирпичным стенам расходятся трещины, могут быть разрушены лестничные пролеты, на дорогах случаются оползни.

При восьми баллах здания могут разрушаться, а так же, рваться коммуникации, которые расположены под землей. Девяти-бальные толчки приводят к волнениям на воде, могут вызвать, цунами. Почва идет трещинами.

Сминает же и ломает её во время 10-бальных землетрясений. Одиннадцать баллов … Стоп. Ведь шкала Рихтера заканчивается на десятке. В том-то и дело. Пробелы в знаниях людей привели к смешиванию систем Меркалли и Рихтера.

Поверхностную интенсивность толчков в баллах измеряли по итальянской шкале. Она, как видно, не исчезла, а неофициально присоединилась к американской. У Меркалли присутствует и 11, и 12 баллов.

При 11-ти кирпичные здания разрушатся до основания, от дорог тоже остается лишь воспоминание. 12 баллов - это катастрофическое землетрясение, меняющее рельеф земли. Трещины в ней достигают вширь 10-15 метров.

О чем же нам говорят отметки истинной шкалы Рихтера. Она основана на магнитуде, которую не учитывал Меркалли. Магнитуда замеряет энергию, выделившуюся при подвижках в земных недрах. Рассматривают не внешние проявления землетрясения, а их внутренняя суть.

Шкала Рихтера — таблица магнитуд

Если определять баллы возможно, наблюдая за изменениями на поверхности планеты, то магнитуду измеряют только по показаниям сейсмографов. В расчете за основу берут тип волн некоего типичного, среднего землетрясения.

Показатель ставится в логарифм с максимальной амплитудой конкретных сотрясений. Магнитуда пропорциональна этому логарифму.

Сила выбрасываемой при землетрясении энергии зависит от размеров его очага, то есть длины и ширины разлома в породах. Типичные толчки по Рихтеру могут измеряться не только целыми, но и дробными .

Так, магнитуда 4,5 приводит к малым разрушениям. Параметры разлома - лишь несколько метров по вертикали и в длину. Очаг в несколько километров, как правило, дает землетрясения с магнитудой 6.

Разлом в сотни километров - магнитуда 8,5. В шкале Рихтера есть и десятка. Но, это, так сказать, нереальный предел. На Земле не происходило землетрясений с магнитудой выше 9-ти. Видимо, и не произойдет.

Для 10-ой магнитуды нужна глубина разлома более 100 километров. Но, на такой глубине земля уже не твердая, вещество превращается в жидкость - мантию планеты. Протяженность очага, тянущего на десятку, должна превысить 1000 километров. Но, подобные разломы ученым не известны.

Не встречаются, точнее, не фиксируются приборами и землетрясения с магнитудой 1. Самые слабые толчки, ощущаемые и сейсмографами, и людьми - 2 балла. Да, показатели магнитуды иногда тоже именуют баллами. Но, правильнее, произносить лишь цифру, дабы не произошло путаницы со шкалой Меркалли.

Существует примерное соотношение бальности землетрясения с его магнитудой. При этом, важно учитывать глубину залегания очага толчков. Проще всего соотнести показатели, глядя на таблицу.

Километры Магнитуда
5 5 6 7 8
10 7 8-9 10 11-12
20 6 7-8 9 10-11
40 5 6-7 8 9-10

Из таблицы видно, что одна и та же магнитуда может приводить к разным разрушениям в зависимости от глубины залегания очага. Есть и другие основания судить, каким будет землетрясение в баллах ? Баллы по шкале Рихтера зависят еще и от сейсмоустойчивости зданий в районе подземных толчков, характера почвы.

В крепких строениях сила землетрясения воспринимается иначе, чем в домах, возведенных без учета возможных подвижек земной коры. Чарльз Рихтер говорил об этом еще в 1930-ых.

Ученый не просто создал международную шкалу, но и всю жизнь боролся за разумное строительство, с учетом всех рисков конкретной местности. Именно благодаря Рихтеру многие страны ужесточили нормы возведения зданий.

Related Posts


— классификация землетрясений по магнитудам, основанная на оценке энергии сейсмических волн, возникающих при землетрясениях. Шкала была предложена в 1935 году американским сейсмологом Чарльзом Рихтером (1900‑1985), теоретически обоснована совместно с американским сейсмологом Бено Гутенбергом в 1941‑1945 годах, получила повсеместное распространение во всем мире.

Шкала Рихтера характеризует величину энергии, которая выделяется при землетрясении . Хотя шкала магнитуд в принципе не ограничена, существуют физические пределы величины выделившейся в земной коре энергии.
В шкале использован логарифмический масштаб , так что каждое целое значение в масштабе указывает на землетрясение, в десять раз большее по мощности, чем предыдущее.

Землетрясение с магнитудой 6,0 по шкале Рихтера вызовет в 10 раз более сильное колебание грунта, чем землетрясение с магнитудой 5,0 по той же шкале. Магнитуда землетрясения и его полная энергия — не одно и то же. Энергия, выделяющаяся в очаге землетрясения, при увеличении магнитуды на единицу возрастает примерно в 30 раз.
Магнитуда землетрясения — безразмерная величина, пропорциональная логарифму отношения максимальных амплитуд определенного типа волн данного землетрясения, измеренных сейсмографом, и некоторого стандартного землетрясения.
Существуют различия в методах определения магнитуд близких, удаленных, мелкофокусных (неглубоких) и глубоких землетрясений. Магнитуды, определенные по разным типам волн, отличаются по величине.

Землетрясения разной магнитуды (по шкале Рихтера) проявляются следующим образом:
2,0 — самые слабые ощущаемые толчки;
4,5 — самые слабые толчки, приводящие к небольшим разрушениям;
6,0 — умеренные разрушения;
8,5 — самые сильные из известных землетрясений.

Ученые считают, что землетрясения более сильные, чем с магнитудой 9.0, произойти на Земле не могут. Известно, что каждое землетрясение представляет собой толчок или серию толчков, которые возникают в результате смещения горных масс по разлому. Расчеты показали, что размер очага землетрясения (то есть величина площади, на которой произошло смещение горных пород, которыми и определяется сила землетрясения и его энергия) при слабых, едва ощутимых человеком толчках измеряется в длину и по вертикали несколькими метрами.

При землетрясениях средней силы, когда возникают в каменных зданиях трещины, размеры очага достигают уже километров. Очаги же при самых сильных, катастрофических землетрясениях имеют протяженность 500‑1000 километров и уходят на глубину до 50 километров. У максимального из зарегистрированных на Земле землетрясений очаг равен 1000 x 100 километров, т.е. близок к максимальной длине разломов, известных ученым. Невозможно и дальнейшее увеличение глубины очага, так как земное вещество на глубинах более 100 километров переходит в состояние, близкое к плавлению.

Магнитуда характеризует землетрясение как цельное, глобальное событие и не является показателем интенсивности землетрясения, ощущаемой в конкретной точке на поверхности Земли. Интенсивность или сила землетрясения, измеряемая в баллах, не только сильно зависит от расстояния до очага; в зависимости от глубины центра и типа горных пород сила землетрясений с одинаковой магнитудой может различаться на 2‑3 балла.

Шкала балльности (не шкала Рихтера) характеризует интенсивность землетрясения (эффект его воздействия на поверхности), т.е. измеряет ущерб, нанесенный данной местности. Балльность устанавливается при обследовании района по величине разрушений наземных сооружений или деформаций земной поверхности.

Существует большое число сейсмических шкал, которые можно свести к трем основным группам . В России применяется наиболее широко используемая в мире 12‑балльная шкала МSK‑64 (Медведева‑Шпонхойера‑Карника), восходящая к шкале Меркалли‑Канкани (1902), в странах Латинской Америки принята 10‑балльная шкала Росси‑Фореля (1883), в Японии — 7‑балльная шкала.

Оценка интенсивности, в основу которой положены бытовые последствия землетрясения , легко различаемые даже неопытным наблюдателем, в сейсмических шкалах разных стран различна. Например, в Австралии одну из степеней сотрясения сравнивают с тем "как лошадь трется о столб веранды", в Европе такой же сейсмический эффект описывается так — "начинают звонить колокола", в Японии фигурирует "опрокинутый каменный фонарик".

Материал подготовлен на основе информации открытых источников

Ежегодно на нашей планете происходят сотни тысяч землетрясений. Большинство из них настолько малы и незначительны, что зафиксировать их способны лишь специальные датчики. Но, бывают и более серьёзные колебания: два раза в месяц земная кора содрогается достаточно сильно для того, чтобы разрушить всё вокруг.

Поскольку большинство толчков подобной силы происходят на дне Мирового океана, если их не сопровождает цунами, люди о них даже не подозревают. А вот когда содрогается суша, стихия бывает до того разрушительна, что счёт жертв идёт на тысячи, как это случилось в XVI веке в Китае (во время подземных толчков магнитудой 8,1 погибло более 830 тыс. людей).

Землетрясением называют подземные толчки и колебания земной коры, вызванные природными или искусственно созданными причинами (движением литосферных плит, извержением вулканов, взрывами). Последствия толчков большой интенсивности нередко бывают катастрофичны, по количеству жертв уступая лишь тайфунам.

К сожалению, на данный момент учёные не настолько хорошо изучили процессы, что происходят в недрах нашей планеты, а потому прогноз землетрясений дают довольной приблизительный и неточный. Среди причин возникновений землетрясений специалисты выделяют тектонические, вулканические, обвальные, искусственные и техногенные колебания земной коры.

Тектонические

Большинство зафиксированных в мире землетрясений возникло в результате движений тектонических плит, когда происходит резкое смещение горных пород. Это может быть как столкновение друг с другом, так и опускание более тонкой плиты под другую.

Хотя этот сдвиг обычно невелик, и составляет лишь несколько сантиметров, в движение приходят расположенные над эпицентром горы, которые выделяют огромной силы энергию. В результате на земной поверхности образовываются трещины, по краям которых начинают смещаться огромные участки земли вместе со всем, что на ней находится – полями, домами, людьми.

Вулканические

А вот вулканические колебания хоть и слабы, но продолжаются долго. Обычно особой опасности они не представляют, но катастрофические последствия зафиксированы всё же были. В результате мощнейшего извержения вулкана Кракатау в конце XIX ст. взрывом была уничтожена половина горы, а последующие за этим подземные толчки были такой силы, что раскололи остров на три части, погрузив две трети в пучину. Поднявшееся после этого цунами уничтожило абсолютно всех, кто сумел до этого выжить и не успел покинуть опасную территорию.



Обвальные

Нельзя не упомянуть об обвалах и больших оползнях. Обычно сотрясения эти несильны, но в некоторых случаях их последствия бывают катастрофичны. Так, произошло однажды в Перу, когда огромная лавина, вызвав землетрясение, на скорости 400 км/ч сошла с горы Аскаран, и, сровняв с землёй не одно поселение, погубила более восемнадцати тысяч человек.

Техногенные

В некоторых случаях причины и последствия землетрясений нередко связаны с человеческой деятельностью. Учёными было зафиксировано увеличение количества подземных толчков в районах крупных водохранилищ. Связано это с тем, что собранная масса воды начинает давить на ниже находящуюся земную кору, а проникающая сквозь грунт вода – разрушать её. Кроме того, увеличение сейсмической активности было замечено в местах добычи нефти и газа, а также в районе шахт и карьеров.

Искусственные

Землетрясения можно вызвать и искусственным путём. Например, после того как КНДР испытывало новое ядерное оружие, во многих местах планеты датчики зафиксировали землетрясения умеренной силы.

Подводное землетрясение возникает во время столкновения тектонических плит на океаническом дне или недалеко от побережья. Если очаг расположен неглубоко, а магнитуда равняется 7 баллам, подводное землетрясение чрезвычайно опасно, поскольку вызывает цунами. Во время содрогания морской коры одна часть дна опускается, другая – приподнимается, в результате чего вода в попытках вернуться к первоначальному положению, начинает двигаться по вертикали, порождая серию огромных волн, идущих по направлению к побережью.


Подобное землетрясение вместе с цунами нередко могут иметь катастрофические последствия. Например, одно из самых сильных моретрясений произошло несколько лет назад в Индийском океане: в результате подводных толчков поднялось большое цунами и, обрушившись на близлежащие побережья, привело к гибели более двухсот тысяч человек.

Начало толчков

Очаг землетрясения являет собой разрыв, после образования которого земная поверхность мгновенно смещается. Надо заметить, разрыв этот происходит не сразу. Сперва плиты наталкиваются друг на друга, в результате чего возникает трение и образуется энергия, которая постепенно начинает накапливаться.

Когда напряжение становится максимальным и начинает превышать силу трения, горные породы разрываются, после чего освобождённая энергия преобразуется в сейсмические волны, двигающиеся со скоростью 8 км/с и вызывающие колебания земли.


Характеристика землетрясений по глубине эпицентра делится на три группы:

  1. Нормальные – эпицентр до 70 км;
  2. Промежуточные – эпицентр до 300 км;
  3. Глубокофокусные – эпицентр на глубине, превышающей 300 км, типичны для Тихоокеанского кольца. Чем глубже эпицентр, тем дальше дойдут порождённые энергией сейсмические волны.

Характеристика

Состоит землетрясение из нескольких этапов. Основному, наиболее сильному толку, предшествуют предупреждающие колебания (форшоки), а после него начинаются афтершоки, последующие сотрясения, причём магнитуда самого сильного афтершока на 1,2 меньше, чем у основного толчка.

Период от начала форшоков до конца афтершоков вполне может длиться несколько лет, как это, например, случилось в конце XIX столетия на острове Лисса в Адриатическом море: длилось оно три года и за это время учёные зафиксировали 86 тысяч толчков.

Что касается длительности основного толчка, то она обычно непродолжительна и редко когда длится более минуты. Например, самый мощный толчок на Гаити, произошедший несколько лет назад, длился сорок секунд – и этого оказалось достаточно, чтобы превратить город Порт-о-Пренс в руины. А вот на Аляске была зафиксирована серия толчков, которые сотрясали землю около семи минут, при этом три из них привели к значительным разрушениям.


Рассчитать, какой именно толчок окажется основным и будет иметь наибольшую магнитуду, крайне сложно, проблематично и стопроцентных способов нет. Поэтому сильные землетрясения нередко застают население врасплох. Так, например, случилось в 2015 году в Непале, в стране, где настолько часто фиксировались несильные сотрясения, что люди попросту не обращали на них особого внимания. Поэтому содрогание почвы магнитудой в 7,9 балла привело к большому числу жертв, а последующие за ним через полчаса и на следующий день более слабые афтершоки с магнитудой 6,6 не улучшили ситуации.

Нередко бывает, что сильнейшие содрогания, происходящие с одной стороны планеты, сотрясают противоположную сторону. Например, землетрясение с магнитудой в 9,3, произошедшее 2004 году в Индийском океане, несколько ослабило возрастающее напряжение в разломе Сан-Андреас, что находится на стыке литосферных плит вдоль побережья Калифорнии. Оно оказалось такой силы, что немного видоизменило вид нашей планеты, сгладив её выпуклость в средней части и сделав более округлой.

Что такое магнитуда

Одним из способов замерить амплитуду колебаний и количество освобождаемой энергии является шкала магнитуд (шкала Рихтера), содержащая условные единицы от 1 до 9,5 (её очень часто путают с двенадцатибалльной шкалой интенсивности, измеряемую в баллах). Увеличение магнитуды землетрясений лишь на одну единицу означает увеличение амплитуды колебаний в десять, а энергии – в тридцать два раза.

Проведённые расчёты показали, что размер эпицентра во время слабых колебаний поверхности как в длину, так и по вертикали измеряется несколькими метрами, когда средней силы – километрами. А вот землетрясения, вызывающие катастрофы, имеют протяжённость до 1 тыс. километров и от точки разрыва уходят на глубину до пятидесяти километров. Таким образом, максимальный зарегистрированный размер эпицентра землетрясений на нашей планете составлял 1000 на 100 км.


Выглядит магнитуда землетрясений (шкала Рихтера) следующим образом:

  • 2 – слабые почти неощутимые колебания;
  • 4 — 5 – хоть толчки слабые, они могут привести к незначительным разрушениям;
  • 6 – средние разрушения;
  • 8,5 – одни из сильнейших зафиксированных землетрясений.
  • Наиболее крупным считается Великое Чилийское землетрясение с магнитудой в 9,5, породившее цунами, которое, преодолев Тихий океан, добралось до Японии, преодолев 17 тыс. километров.

Ориентируясь на магнитуду землетрясений, учёные утверждают, что из десятков тысяч, происходящих на нашей планете колебаний в год, лишь одно имеет магнитуду 8, десять – от 7 до 7,9 и сто – от 6 до 6,9. Нужно учитывать, что если магнитуда землетрясения 7, последствия могут быть катастрофичными.

Шкала интенсивности

Чтобы понять, почему происходят землетрясения, учёными была разработана шкала интенсивности, основанная на таких внешних проявлениях, как воздействие на людей, животных, здания, природу. Чем ближе эпицентр землетрясений к земной поверхности, тем больше интенсивность (эти знания дают возможность дать хотя бы приблизительный прогноз землетрясений).

Например, если магнитуда землетрясения была равна восьми, а эпицентр находился на глубине десяти километров, интенсивность землетрясения составит от одиннадцати до двенадцати баллов. А вот если эпицентр был расположен на глубине пятидесяти километров, интенсивность окажется меньшей и будет измеряться в 9-10 баллов.


Согласно шкале интенсивности, первые разрушения могут произойти уже при шестибалльных толчках, когда появляются тонкие трещины в штукатурке. Землетрясение в одиннадцать баллов считается катастрофическим (поверхность земной коры покрывается трещинами, здания разрушаются). Самые сильные землетрясения, способные значительно изменить вид местности, оцениваются в двенадцать баллов.

Что делать при землетрясениях

По приблизительным подсчётам учёных число людей, которые погибли в мире из-за землетрясений за последние полтысячелетия, превышает пять миллионов человек. Половина из них приходится на Китай: он расположен в зоне сейсмической активности, а на его территории проживает большое число людей (в XVI ст. погибло 830 тыс. человек, в середине прошлого века – 240 тысяч).

Подобные катастрофические последствия можно было предотвратить, если бы защита от землетрясений была хорошо продумана на государственном уровне, а при конструировании зданий учитывалась возможность возникновения сильных подземных толчков: большинство людей погибло именно под обломками. Нередко люди, проживающие или пребывающие в сейсмически активной зоне, не имеют ни малейшего понятия о том, как именно нужно действовать в условиях чрезвычайной ситуации и каким способом можно спасти свою жизнь.

Необходимо знать, что если подземные толчки застали вас в здании, нужно сделать всё возможное, чтобы как можно быстрее выбраться на открытое пространство, при этом лифтами пользоваться категорически нельзя.

Если уйти из здания невозможно, а землетрясение уже началось, покидать его крайне опасно, поэтому нужно встать или в дверном проёме, или в углу возле несущей стены, или залезть под крепкий стол, защитив голову мягкой подушкой от предметов, которые могут упасть сверху. После того как толчки закончатся, здание нужно покинуть.

Если во время начала землетрясений человек оказался на улице, нужно отойти от дома минимум на одну треть от его высоты и, избегая высоких зданий, оград и других построек, двигаться по направлению широких улиц или парков. Также необходимо держаться как можно дальше от оборванных электрических проводов промышленных предприятий, поскольку там могут храниться взрывоопасные материалы или ядовитые вещества.

А вот если первые подземные толчки застали человека, когда тот пребывал в автомобиле или общественном транспорте, нужно срочно покинуть транспортное средство. Если же машина находится на открытой местности, наоборот, остановить машину и переждать землетрясение.

Если же так получилось, что вас полностью завалило обломками, главное, не впадать в панику: человек может продержаться без еды и воды несколько дней и дождаться, пока его найдут. После катастрофических землетрясений работают спасатели со специально обученными собаками, а те способны учуять жизнь среди завалов и подать знак.

В разных странах принято по-разному оценивать интенсивность землетрясения.

· В России и некоторых других странах принята 12-балльная шкала Медведева - Шпонхойера - Карника .

· В Европе - 12-балльная Европейская макросейсмическая шкала .

· В США - 12-балльная модифицированная шкала Меркалли .

· В Японии - 7-балльная шкала Японского метеорологического агентства .

  • 12-балльная шкала интенсивности землетрясений Медведева - Шпонхойера - Карника (MSK-64) была разработана в 1964 году и получила широкое распространение в Европе и СССР. С 1996 года в странах Европейского союза применяется более современная Европейская макросейсмическая шкала (EMS). MSK-64 лежит в основе СП 14.13330.2014 «Строительство в сейсмических районах» и продолжает использоваться в России и странах СНГ. В Казахстане в настоящее время используется СНиП РК 2.03-30-2006 «Строительство в сейсмических районах».
Балл. Сила землетрясения Краткая характеристика
I. Не ощущается Не ощущается. Отмечается только сейсмическими приборами.
II. Очень слабые толчки Отмечается сейсмическими приборами. Ощущается только отдельными людьми, находящимися в состоянии полного покоя в верхних этажах зданий, и очень чуткими домашними животными
III. Слабое Ощущается только внутри некоторых зданий, как сотрясение от грузовика.
IV. Интенсивное Распознаётся по лёгкому дребезжанию и колебанию предметов, посуды и оконных стёкол, скрипу дверей и стен. Внутри здания сотрясение ощущает большинство людей.
V. Довольно сильное Под открытым небом ощущается многими, внутри домов - всеми. Общее сотрясение здания, колебание мебели. Маятники часов останавливаются. Трещины в оконных стёклах и штукатурке. Пробуждение спящих. Ощущается людьми и вне зданий, качаются тонкие ветки деревьев. Хлопают двери.
VI. Сильное Ощущается всеми. Многие в испуге выбегают на улицу. Картины падают со стен. Отдельные куски штукатурки откалываются.
VII. Очень сильное Повреждения (трещины) в стенах каменных домов. Антисейсмические, а также деревянные и плетневые постройки остаются невредимыми.
VIII. Разрушительное Трещины на крутых склонах и на сырой почве. Памятники сдвигаются с места или опрокидываются. Дома сильно повреждаются. Падают фабричные трубы.
IX. Опустошительное Сильное повреждение и разрушение каменных домов. Старые деревянные дома кривятся.
X. Уничтожающее Трещины в почве иногда до метра шириной. Оползни и обвалы со склонов. Разрушение каменных построек. Искривление железнодорожных рельсов.
XI. Катастрофа Широкие трещины в поверхностных слоях земли. Многочисленные оползни и обвалы. Каменные дома почти полностью разрушаются. Сильное искривление и выпучивание железнодорожных рельсов, разрушаются мосты.
XII. Сильная катастрофа Изменения в почве достигают огромных размеров. Многочисленные трещины, обвалы, оползни. Возникновение водопадов, подпруд на озёрах, отклонение течения рек. Изменяется рельеф. Ни одно сооружение не выдерживает.
  1. МЕХАНИЗМ ОЧАГА.








Выяснение причин землетрясений и объяснение их механизма - одна из важнейших задач сейсмологии. Общая картина происходящего представляется следующей.

В очаге происходят разрывы и интенсивные неупругие деформации среды, приводящие к землетрясению. Деформации в самом очаге носят необратимый характер, а в области, внешней к очагу, являются сплошными, упругими и преимущественно обратимыми. Именно в этой области распространяются сейсмические волны. Очаг может либо выходить на поверхность, как при некоторых сильных землетрясениях, либо находиться под ней, как во всех случаях слабых землетрясений.

(Рейда теория)

Ответ: а) Разрыв сплошной горных пород наступает в результате накопления упругих деформаций выше предела, которой может выдержать горная порода. Деформации возникающие при перемещении соседних блоков земной коры.

Б) перемещение блоков не происходит внезапно, они нарастают.

В) движение в момент землетрясения состоит из упругой отдачи-резкого смещения сторон разрыва в положение, в котором отсутствуют упругие деформации.

Г) Сейсмические волны возникают на поверхности разрыва.

Д) Энергия освобожденная во время землетрясений, до землетрясений была энергией упругой деформации горных пород.

  1. ЧАСТОТА И ГЕОГРАФИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ ЗЕМЛЕТРЯСЕНИЙ.





  1. ХАРАКТЕРИСТИКА ОСНОВНЫХ СЕЙСМИЧЕСКИХ ЗОН.



  1. УПРУГИЕ ДЕФОРМАЦИИ и напряжения












Упругая деформация - деформация, исчезающая после прекращения действий на тело внешних сил. При этом тело принимает первоначальные размеры и форму.

Область физики, изучающая упругие деформации, называется теорией упругости.

При упругой деформации её величина не зависит от предыстории и полностью определяется механическими напряжениями, то есть является однозначной функцией от напряжений. Для большинства веществ эту зависимость можно с хорошей точностью считать прямой пропорциональностью. При этом упругая деформация описывается законом Гука. Наибольшее напряжение, при котором закон Гука справедлив, называется пределом пропорциональности.

Некоторые вещества (металлы, каучуки) могут претерпевать значительную упругую деформацию, в то время как у других (керамики, прессованные материалы) даже ничтожная деформация перестаёт быть упругой.

Максимальное механическое напряжение, при котором деформация ещё остаётся упругой, называется пределом текучести. Выше этого предела деформация становится пластической.

Упругие деформации могут изменяться периодически со временем (упругие колебания). Процесс распространения упругих колебаний в среде называют упругими волнами.

Преде́л пропорциона́льности () - 1) Максимальная величина напряжения, при котором ещё выполняется закон Гука, то есть деформация тела прямо пропорциональна приложенной нагрузке (силе). Следует заметить, что во многих материалах нагружение до предела упругости вызывает обратимые (то есть упругие в общем-то) деформации, но непропорциональные напряжениям. Кроме того, эти деформации могут «запаздывать» за ростом нагрузки как при нагружении, так и при разгружении.

2) Напряжение, при котором отступление от линейной зависимости между нагрузкой и удлинением достигает такой величины, что тангенс угла наклона, образованный касательной к кривой "нагрузка-удлинение" в точке Pпц и осью нагрузки, увеличивается на 50% от своего первоначального значения на упругом участке.

Зако́н Гу́ка - утверждение, согласно которому деформация, возникающая в упругом теле (пружине, стержне, консоли, балке и т. п.), пропорциональна приложенной к этому телу силе. Открыт в 1660 году английским учёным Робертом Гуком .

Следует иметь в виду, что закон Гука выполняется только при малых деформациях. При превышении предела пропорциональностисвязь между напряжениями и деформациями становится нелинейной. Для многих сред закон Гука неприменим даже при малых деформациях.