Методы генетики. Медицинская биология Для чего применяется цитогенетический метод

В генетике человека используются разнообразные методы иссле­дования, применяемые и в других разделах биологии - генетике, физиологии, цитологии, биохимии и др. Антропогенетика располагает также собственными методами исследования: цитогенетическим, близнецовым, генеалогическим и др. 4

Достижениями молекулярной биологии и биохимии внесен боль­шой вклад в развитие генетики. В настоящее время биохимическим и молекулярно-генетическим методам исследования принадлежит веду­щая роль в генетике человека и медицинской генетике. Однако и клас­сические методы генетики человека, такие как цитогенетический, генеалогический и близнецовый, имеют существенное значение в на­стоящее время, особенно в вопросах диагностики, медико-генетического консультирования и прогнозирования потомства.

Ознакомимся с возможностями цитогенетического метода.

Суть этого метода заключается в изучении строения отдельных хромосом, а также особенностей набора хромосом клеток человека в норме и патологии. Удобным объектом для этого служат лимфоциты, клетки эпителия щеки и другие клетки, которые легко получать, культивировать и подвергать кариологическому анализу. Это важный метод определения пола и хромосомных наследственных заболеваний человека.

Основой цитогенетического метода является изучение морфологии отдельных хромосом клеток человека. Современный этап познания строения хромосом характеризуется созданием молекулярных моделей этих важнейших структур ядра, изучением роли отдельных компо­нентов хромосом в хранении и передаче наследственной инфор­мации.

В главе 1 мы рассмотрели такие компоненты хромосом, как белки и нуклеиновые кислоты. Здесь же кратко остановимся на строении и морфологии хромосом.

Строение хромосом.

Хромосомную теорию наследственности создал американский уче­ный Т. Г. Морган. Проведя большое количество исследований на плодовой мушке дрозофиле, Морган и его ученики установили, что именно в хромосомах находятся открытые Менделем факторы наследственности, которые были названы генами. Т. Морган и его ученики показали, что гены расположены линейно по длине хромо­сомы.

После того как было доказано, что хромосомы являются осно­вными генофорами (носителями генов), начался период их наибо­лее интенсивного изучения. Успехи молекулярной биологии и генетики позволили понять некоторые закономерности строения и функциониро­вания хромосом прокариот и эукариот, однако многое здесь остается еще неизвестным. В последние годы хромосомы эукариот, особенно человека, становятся предметом изучения различных специалистов, начиная от генетиков и кончая физиками.

Внастоящее время установлено, что в основе строения хромосомы лежит хроматин - сложный комплекс ДНК, белков, РНК и других веществ, входящих в хромосому (строение хроматина мы подробно рассмотрели в главе 1). Предполагается, что в хромосому человека входит одна гигантская молекула ДНК, молекулы РНК, гистоны и кислые белки, различные ферменты, фосфолипиды, металлы Са 2+ , Mg 2+ и некоторые другие вещества. Способ укладки и взаимного расположения молекул этих химических соединений в хромосоме пока не известен. Длинная нить ДНК не может располагаться в хромосоме беспорядочно. Существует предположение, что нить ДНК упакована закономерным образом и связана с белками.

Ф. Арриги и соавторы (1971) установили, что уникальные последо­вательности занимают более 56% ДНК хромосом человека, высокопов­торяющиеся - 12,4 %, промежуточные повторы - 8 %. Общее количество повторяющихся генов в ДНК хромосомы человека равно 28%. Число хромосом у человека длительное время оставалось невыяснен­ным. Дело в том, что опреде­лить количество хромосом у млекопитающих, особенно у человека, было трудно. Хромо­сомы оказались маленькими, весьма многочисленными, пло­хо поддавались подсчету. При фиксации клетки они слива­лись в комки, что затрудняло определение истинного числа хромосом. Поэтому первые исследователи не могли точно и правильно подсчитать коли­чество хромосом в клетках человека. Называлось разное количество хромосом - от 44 до 50.

О
бычно хромосомы в клетках наблюдают во время митоза на ста­дии метафазной пластинки. В интерфазном ядре хромосомы в световой микроскоп не видны. В 1912 г. Г. Винивартер, изучая хромосомы в сперматогониях и оогониях половых желез человека, удаленных во время операции, установил, что мужской набор хромосом (кариотип) содержит 47 хромосом, а женский - 48. В 1922 г. Т. Пайнтер повторил исследования Винивартера и установил, что мужской и женский кариотипы содержат по 48 хромосом, но женский отличается от мужского только двумя хромосомами. У женщин находится 2 большие половые хромосомы, а у мужчины одна большая Х-хромосома и одна маленькая К-хромосома. В последующие годы эту точку зрения под­держивали и другие ученые. П. И. Живаго и А. Г. Андреа (1932) предложили первую классификацию хромосом в зависимости от их длины. Так как хромосомы очень близко располагаются одна около другой и их очень трудно исследовать, то и в последующие го­ды точное число хромосом у человека служило предметом споров и дискуссий. Однако постепенно было достигнуто согласие между исследователями по этому вопросу, и в течение 30 лет большинство цитогенетиков считало, что у человека диплоидное число хромосом равно 48, а гаплоидное - 24. Усовершенствованные методы изучения хро­мосом позволили получить более точные сведения о количестве хромо­сом в клетках у человека, а также выявить аномалии нормального кариотипа, ответственные за некоторые уродства. Особенно плодотвор­ным оказались два метода:

1. Обработка культуры клеток алкалоидом колхицином, который ведет к накоплению делящихся клеток на стадии метафазы;

2. Обработка клеток слабыми растворами солей, вызывающими набухание, расправление хромосом, что облегчает их исследование.

В 1956 г. шведские цитологи Дж. Тийо и А. Леван изготовили культуры клеток из тканей легких, взятых у абортированных челове­ческих эмбрионов и, используя усовершенствованную методику обра­ботки клеток, получили необычайно четкие препараты, в которых ясно было видно 46 хромосом. 5

Несколькими месяцами позднее Ч. Форд и Дж. Хаммертон в Англии установили, что диплоидные предшественники половых клеток в се­менниках мужчин (сперматогонии) также имеют по 46 хромосом, а гаплоидные (сперматоциты 1-го деления) - по 23 хромосомы.

После этого были изучены многие клетки из разных органов и тканей человека и везде нормальное число хромосом оказалось равным 46.

Женский кариотип отличается от мужского только одной половой хромосомой. Остальные 22 пары одинаковы у мужчин и женщин. Эти 22 пары хромосом называются аутосомами. Нормальный кариотип состоит из 44 аутосом (22 пары) и двух половых хромосом - XX у женщин и XY у мужчин, т. е. женский кариотип имеет две большие половые хромосомы, а мужской - одну большую и одну малень­кую.

В половых клетках человека находится одинарный (гаплоидный) набор хромосом - 23, а в соматических клетках - двойной (диплоидный) набор - 46. Эти открытия стимулировали дальнейшее изу­чение хромосом. Были разработаны методы исследования хромосом в культуре лимфоцитов периферической крови и на других объектах. В настоящее время хромосомы относительно легко исследуют в лим­фоцитах периферической крови. Венозную кровь помещают в специ­альную питательную среду, добавляют фитогемаглютинин, который стимулирует клетки к делению, и помещают на 72 ч. в термостат. За 6 ч. до конца инкубации сюда добавляют колхицин, который за­держивает процесс деления клеток на стадии метафазной пластинки. Затем культуру помещают в гипотонический раствор NaCl, в котором клетки набухают, что приводит к легкому разрыву оболочек ядра и переходу хромосом в цитоплазму. После этого препараты окрашивают ядерными красителями, в частности ацетоорсеином, и рассматривают их в световом микроскопе с иммерсией.

Под микроскопом учитывают общее количество хромосом, фото­графируют их, затем из фото вырезают ножницами каждую хромосому и наклеивают на чистый лист бумаги в ряд, начиная от самой боль­шой (первой) хромосомы и кончая самой маленькой (двадцать второй) и половой Y-хромосомой. Люминесцентная методика позволяет быстро и просто проводить массовые исследования с целью выявления боль­ных с различными типами хромосомных аномалий. Совокупность коли­чественных (число хромосом и их размеры) и качественных (морфо­логия хромосом) признаков диплоидного набора единичной клетки обозначается термином «кариотип». Строение хромосом изменяется в зависимости от стадии деления клеток (профазы, метафазы, анафазы, телофазы).

Уже в профазе митоза видно, что хромосома образована двумя взаимно переплетающимися нитями одинакового диаметра - хроматидами. В метафазе хромосома уже спирализована, и две ее хроматиды ложатся параллельно, разделенные узкой щелью. Каждая хроматида состоит из двух полухроматид. В результате митоза хроматиды мате­ринской хромосомы становятся сестринскими хромосомами, а полухроматиды - их хроматидами. В основе хроматид лежат хромонемы - так называют более тонкие нити ДНП, состоящие из белка и нуклеи­новых кислот.

В интерфазе (промежуток между двумя делениями клеток) хрома­тин тесно связан с ядерными мембранами и ядерным белковым матриксом. Он образует также большие участки деспирализованных ни­тей ДНП. Затем постепенно хроматин спирализуется, образуя типич­ные метафазные х
ромосомы. Размеры их варьируют от 2 до 10 микрон.

В настоящее время интенсивно исследуются структурные особен­ности аутосом и половых хромосом (на клетках костного мозга, лимфоцитах, фибробластах, клетках кожи, регенерирующей печени).

Вхромосомах выявлены структуры, названные хромомерами. Хромомер - это спирализованный участок хромонемы. Промежутки меж­ду хромомерами представлены хромонемными нитями. Расположение хромомеров на каждой хромосоме строго фиксировано, наследственно детерминировано.

Хромомер - сравнительно крупная генетическая единица, сравни­мая по длине с хромосомой кишечной палочки. Строение и функция хромомера - основная загадка современной генетики. Предполагают, что некоторые хромомеры - это один генетический локус, где есть один структурный ген и много генов регуляторных. Возможно, в дру­гих хромомерах располагается несколько структурных генов.

Хромонемы и хромомеры окружены неокрашивающимся вещест­вом - матриксом. Полагают, что матрикс содержит дезоксирибонуклеиновую и рибонуклеиновую кислоты, белки.

Определенные участки хромосом образуют ядрышки. Ядрышки - это более или менее деспирализованные участки хромосом, окружен­ные продуктами деятельности генов (рибосомы, частицы РНК и т. п.). Здесь идет синтез рибосомальной РНК, а также осуществляются определенные этапы формирования рибосом. В нем синтезируется боль­шая часть РНК клетки.

В метафазной хромосоме различают еще несколько образований: центромеру, два плеча хромосомы, теломеры и спутник.

Центромерный (meros - по-гречески, часть) участок хромосомы - это неокрашивающийся разрыв в хромосоме, видимый на препарате хромосом. Центромера содержит 2-3 пары хромомер, имеет сложное строение. Предполагают, что она направляет движение хро­мосомы в митозе. К центромерам прикрепляются нити веретена.

Теломеры - специальные структуры на концах хромосом - также имеют сложное строение. В их состав входит несколько хромомер. Теломеры предотвращают концевое присоединение метафазных хромо­сом друг к другу. Отсутствие теломеров делает хромосому «липкой» - она легко присоединяется к другим фрагментам хромосом.

Одни участки хромосомы называются эухроматиновыми, другие - гетерохроматиновыми. Эухроматиновые районы хромосом - это гене­тически активные участки, они содержат основной комплекс функ­ционирующих генов ядер. Потеря даже мельчайшего фрагмента эухроматина может вызвать гибель организма. Гетерохроматиновые районы хромосом - обычно сильно спирализованы и, как правило, генети­чески мало активны. В гетерохроматине находится ядрышковый ор­ганизатор. Потеря даже значительной части гетерохроматина часто не приводит организм к гибели. Гетерохроматиновые участки хромосомы реплицируются позднее, чем эухроматиновые. Следует помнить, что эухроматин и гетерохроматин - это не вещество, а функциональ­ное состояние хромосомы.

Если расположить фотографии гомологичных хромосом по мере возрастания их размеров, то можно получить так называемую идиограмму кариотипа. Таким образом, идиограмма - это графическое изображение хромосом. На идиограмме пары гомологов располагаются рядами в порядке убывающего размера.

У человека на идиограмме среди 46 хромосом различают три типа хромосом в зависимости от положения в хромосоме центромер:

1. Метацентрические - центромера занимает центральное поло­жение в хромосоме, оба плеча хромосомы имеют почти одинаковую длину;

2. Субметацентрические - центромера располагается ближе к одному концу хромосомы, в результате чего плечи хромосомы разной длины.

Классификация хромосом человека по размеру и расположению центромера

Группа хромосом

Номер по кариотипу

Характеристика хромосом

1 и 3 почти метацентрические и 2-крупная субметацентрическая

крупные субакроцентрические

средние субметацентрические

средние акроцентрические

мелкие субметацентрические

самые мелкие мегацентрические

самые мелкие акроцентрические

Х-хромосома (относится к III группе

средняя почти метацентрическая

Y-хромосома

мелкая акроцентрическая

3. Акроцентрические - центромера находится у конца хромосо­мы. Одно плечо очень короткое, другое длинное. Хромосомы не очень легко отличать одну от другой. Цитогенетики с целью унификации методов идентификации хромосом на конференции в 1960 г. в г. Ден­вере (США) предложили классификацию, учитывающую величину хромосом и расположения центромер. Патау в том же году дополнил эту классификацию и предложил разделить хромосомы на 7 групп. Согласно этой классификации, к первой группе А относятся крупные 1, 2 и 3 суб- и акроцентрические хромосомы. Ко второй группе В - крупные Субметацентрические пары 4-5. К третьей группе С относят­ся средние субакроцентрические (6-12 пары) и Х-хромосома, которая по величине находится между 6 и 7 хромосомами. К группе Д (чет­вертой) относятся средние акроцентрические хромосомы (13, 14 и 15 пары). К группе Е (пятой)- мелкие Субметацентрические хромосомы (16, 17 и 18 пары). К группе F (шестой) мелкие метацентрические (19 и 20 пары), а к группе G (седьмой) - самые мелкие акроцентрические хромосомы (21 и 22 пары) и мелкая акроцентрическая половая Y-хромосома (табл. 4).

Существуют и другие классификации хромосом (Лондонская, Па­рижская, Чикагская), в которых развиты, конкретизированы и до­полнены положения Денверской классификации, что в конечном итоге облегчает идентификацию и обозначение каждой из хромосом человека и их частей.

Акроцентрические хромосомы IV группы (Д, 13-15 пары) и груп­пы VII (G, 21-22 пары) на коротком плече несут маленькие дополнительные структуры, так называемые сателлиты. В некото­рых случаях эти сателлиты являются причиной сцепления хромосом между собой при делении клеток в мейозе, вследствие чего происходит неравномерное распреде­ление хромосом. В одной половой клетке оказывается 22 хромосомы, а в другой - 24. Так возникают моносомии и трисомии по той или иной паре хро­мосом. Фрагмент одной хромосомы мо­жет присоединиться к хромосоме дру­гой группы (например, фрагмент 21 или 22 присоединяется к 13 или 15). Так возникает транслокация. Трисомия 21-й хромосомы или транслокация ее фраг­мента являются причиной болезни Дауна.

Внутри семи этих групп хромосом на основании лишь внешних различий, видимых в простой микроскоп, провести идентификацию хромосом почти невоз­можно. Но при обработке хромосом акрихини притом и при помощи ряда дру­гих методов окраски их можно иден­тифицировать. Известны различные

способы дифференциальной окраски хромосом по Q-, G-, С-технике (А. Ф.Захаров, 1973) (рис. 27). Назовем некоторые методы идентифи­кации индивидуальных хромосом человека. Широко применяются раз­личные модификации так называемого метода Q. Например, метод QF - с использованием флюорохромов; метод QFQ - с использованием акрихина; метод QFH - с использованием специального красителя фир­мы «Хекст» № 33258, выявляющего повторяющиеся последовательности нуклеотидов в ДНК хромосом (сателлитную ДНК и т. п.). Мощным средством изучения и индивидуальной характеристики хромосом явля­ются модификации трипсинового метода GT. Назовем, например, GTG-метод, включающий обработку хромосом трипсином и окраску краси­телем Гимза, GTL-метод (обработка трипсином и окраска по Лейтману).

Известны методы с обработкой хромосом ацетатными солями и красителем Гимза, методы с использованием гидроокиси бария, акридиноранжа и другие.

ДНК хромосом выявляется при помощи реакции Фельгена, окраски метиловым зеленым, акридиноранжем, красителем № 33258 фирмы «Хекст». Акридиноранжевый краситель с ДНК однонитчатой образует димерные ассоциаты и дает красную люминесценцию, с двунитчатой спиральной ДНК образует одномерные ассоциаты и люминесцирует зеленым светом.

Измеряя интенсивность красной люминесценции, можно судить о количестве свободных мест в ДНП и хроматине, а отношение зеле­ная - красная люминесценция - о функциональной активности хро­мосом.

Гистоны и кислые белки хромосом выявляются при различных рН окраской бромфенодовым синим, зеленым прочным, серебрением, иммунолюминесцентным методом, РНК - окраской галлюцианиновыми квасцами, красителем фирмы «Хекст» № 1, акридиноранжем при нагревании до 60°.

Широко применяются электронная микроскопия, гистоавторадиография и ряд других методов.

В 1969 г. шведский биолог Т. Касперссон и его сотрудники пока­зали, что хромосомы, окрашенные горчичным акрихином и освещенные под микроскопом Наиболее длинноволновой частью ультрафиолетового спектра, начинают люминесцировать, причем одни участки хромосом светятся ярче, другие слабее. Причина этого - разный химический состав поверхности хромосомы. В последующие годы исследователи обнаружили, что концы Y-хромосомы человека светятся ярче любой другой хромосомы человека, поэтому Y-хромосому легко заметить на препарате.

Акрихиниприт преимущественно связывается с ГЦ-парами ДНК. Флюоресцируют отдельные диски гетерохроматиновых участков. Уда­ляют ДНК - свечение исчезает. Составлены карты флюоресцирующих хромосом. Из 27 видов млекопитающих только у человека, шимпанзе, гориллы и орангутанга светятся Y-хромосомы. Свечение связано с повторами генов, которые появились в эволюции 20 млн. лет назад.

Итак, в норме в соматических клетках человека находится 46 хромосом (23 пары), а в половых - 23 хромосомы, по одной хромо­соме каждой пары. При слиянии сперматозоида и яйцеклетки в зиготе количество хромосом удваивается. Таким образом, каждая сомати­ческая клетка организма человека содержит один набор отцовских хромосом и один набор материнских хромосом. Если у человека 46 хромосом, то у различных обезьян число хромосом равно 34, 42, 44, 54, 60, 66.

При действии ультразвука или высокого давления можно добиться разрыва нитей ДНК, которые входят в состав хромосомы, на отдель­ные фрагменты. Подогревая растворы ДНК до температуры 80-100°,

можно вызвать денатурацию ДНК, расхождение двух составляющих ее нитей. При определенных условиях разъединенные нити ДНК могут снова реассоциировать в устойчивую двунитчатую молекулу ДНК (реассоциация или ренатурация ДНК). Денатурацию и ренатурацию ДНК можно получить и на препаратах фиксированных хромосом, обрабатывая их соответствующим образом. Если после этого хромосо­мы окрасить красителем Гимза, то в них выявляется четкая поперечная исчерченность, состоящая из светлых и темных полос. Расположение этих полос в каждой хромосоме разное. Таким образом, по «Гимза-дискам» можно также идентифицировать каждую из 23 пар хро­мосом.

Этими и другими методиками, особенно гибридизацией соматиче­ских клеток различных животных и человека, пользуются для картиро­вания хромосом, т. е. для определения положения разных генов в той или иной хромосоме. В настоящее время в аутосомах и половых хро­мосомах человека картировано около 200 генов.

На конец 1975 г. было локализовано следующее количество генов в различных хромосомах человека (А. Ф. Захаров, 1977): 1 хромосома - 24 гена; 2 хромосомы - 10, 3-2, 4-3, 5-3, 6-14, 7-4, 8-1, 9-8, 10-5, 11-4, 12-10, 13-3, 14-3, 15-6, 16-4, 17-14, 18-1, 19-4, 20-3, 21-4, 22-1; Y-хромосома - 2; Х-хромосома - 95 генов.

Цитогенетический метод

Основан на изучении хромосом человека в норме и при патологии. В норме кариотип человека включает 46 хромосом - 22 пары аутосом и две половые хромосомы. Использование данного метода позволило выявить группу болезней, связанных либо с изменением числа хромосом, либо с изменениями их структуры. Такие болезни получили название хромосомных.

Материалом для кариотипического анализа чаще всего являются лимфоциты крови. Кровь берется у взрослых из вены, у новорожденных - из пальца, мочки уха или пятки. Лимфоциты культивируются в особой питательной среде, в состав которой, в частности, добавлены вещества, «заставляющие» лимфоциты интенсивно делиться митозом. Через некоторое время в культуру клеток добавляют колхицин. Колхицин останавливает митоз на уровне метафазы. Именно во время метафазы хромосомы являются наиболее конденсированными. Далее клетки переносятся на предметные стекла, сушатся и окрашиваются различными красителями. Окраска может быть а) рутинной (хромосомы окрашиваются равномерно), б) дифференциальной (хромосомы приобретают поперечную исчерченность, причем каждая хромосома имеет индивидуальный рисунок). Рутинная окраска позволяет выявить геномные мутации, определить групповую принадлежность хромосомы, узнать, в какой группе изменилось число хромосом. Дифференциальная окраска позволяет выявить хромосомные мутации, определить хромосому до номера, выяснить вид хромосомной мутации.

В тех случаях, когда необходимо провести кариотипический анализ плода, для культивирования берутся клетки амниотической (околоплодной) жидкости - смесь фибробластоподобных и эпителиальных клеток.

К числу хромосомных заболеваний относятся: синдром Клайнфельтера, синдром Тернера-Шерешевского, синдром Дауна, синдром Патау, синдром Эдвардса и другие.

Больные с синдромом Клайнфельтера (47, ХХY) всегда мужчины. Они характеризуются недоразвитием половых желез, дегенерацией семенных канальцев, часто умственной отсталостью, высоким ростом (за счет непропорционально длинных ног).



Синдром Тернера-Шерешевского (45, Х0) наблюдается у женщин. Он проявляется в замедлении полового созревания, недоразвитии половых желез, аменорее (отсутствии менструаций), бесплодии. Женщины с синдромом Тернера-Шерешевского имеют малый рост, тело диспропорционально - более развита верхняя часть тела, плечи широкие, таз узкий - нижние конечности укорочены, шея короткая со складками, «монголоидный» разрез глаз и ряд других признаков.

Синдром Дауна - одна из самых часто встречающихся хромосомных болезней. Она развивается в результате трисомии по 21 хромосоме (47; 21, 21, 21). Болезнь легко диагностируется, так как имеет ряд характерных признаков: укороченные конечности, маленький череп, плоское, широкое переносье, узкие глазные щели с косым разрезом, наличие складки верхнего века, психическая отсталость. Часто наблюдаются и нарушения строения внутренних органов.

Хромосомные болезни возникают и в результате изменения самих хромосом. Так, делеция р-плеча аутосомы №5 приводит к развитию синдрома «крик кошки». У детей с этим синдромом нарушается строение гортани, и они в раннем детстве имеют своеобразный «мяукающий» тембр голоса. Кроме того, наблюдается отсталость психомоторного развития и слабоумие.

Чаще всего хромосомные болезни являются результатом мутаций, произошедших в половых клетках одного из родителей.

Биохимический метод

Позволяет обнаружить нарушения в обмене веществ, вызванные изменением генов и, как следствие, изменением активности различных ферментов. Наследственные болезни обмена веществ подразделяются на болезни углеводного обмена (сахарный диабет), обмена аминокислот, липидов, минералов и др.

Фенилкетонурия относится к болезням аминокислотного обмена. Блокируется превращение незаменимой аминокислоты фенилаланин в тирозин, при этом фенилаланин превращается в фенилпировиноградную кислоту, которая выводится с мочой. Заболевание приводит к быстрому развитию слабоумия у детей. Ранняя диагностика и диета позволяют приостановить развитие заболевания.

42. Пренатальная диагностика врожденных и наследственных болезней - это комплексная отрасль медицины, которая быстро развивается. Она использует и ультразвуковую диагностику (УЗИ), и оперативную технику (хорионбиопсию, амнио-и кордоцентез, биопсию мышц и кожи плода), и лабораторные методы (цитогенетические, биохимические, молекулярно-генетические).

Пренатальная диагностика имеет исключительно важное значение при медико-генетическом консультировании, поскольку она позволяет перейти от вероятного к однозначному прогнозированию здоровья ребенка в семьях с генетическими осложнениями. В настоящее время пренатальная диагностика осуществляется в I и II триместрах беременности, то есть в периоды, когда в случае выявления патологии еще можно прервать беременность. На сегодня возможна диагностика практически всех хромосомных синдромов и около 100 наследственных болезней, биохимический дефект при которых установлен достоверно.

Пренатальная диагностика - комплексная дородовая диагностика с целью обнаружения патологии на стадии внутриутробного развития. Позволяет обнаружить более 98 % плодов с синдромом Дауна (трисомия 21); трисомии 18 (известной как синдром Эдвардса) около 99,9 %; трисомии 13 (синдром Патау) около 99.9%, более 40 % нарушений развития сердца и др. В случае наличия у плода болезни родители при помощи врача-консультанта тщательно взвешивают возможности современной медицины и свои собственные в плане реабилитации ребёнка. В результате семья принимает решение о судьбе данного ребёнка и решает вопрос о продолжении вынашивания или о прерывании беременности.

К пренатальной диагностике относится и определение отцовства на ранних сроках беременности, а также определение пола плода.

Показания для пренатальной диагностики : наличие в семье наследственного заболевания; возраст матери старше 37 лет; носительство матерью гена Х-сцепленного рецессивного заболевания; наличие в прошлом спонтанных абортов в ранние сроки беременности, мертворождений, детей с пороками развития, хромосомной патологией; наличие структурных перестроек хромосом у одного из родителей; гетерозиготность обоих родителей по одной паре аллелей при патологии с аутосомно-рецессивным типом наследования; зона повышенного радиационного фона.

В настоящее время применяются непрямые и прямые методы пренатальной диагностики. При непрямых методах обследуют беременную (акушерско-гинекологические методы, сыворотка крови на альфа-фетопротеин), при прямых - плод.

К прямым методам, которые проходят без нарушения тканей, без хирургического вмешательства относится ультрасонография. К прямым методом, которые проходят с с нарушением целостности тканей – хорионбиопсия, амниоцентез, кордоцентез и фетоскопия.

Ультрасонография, эхография – это использование ультразвука для получения изображения плода и его оболочек, состояния плаценты.

На 5-й неделе беременности уже можно получить изображение оболочек эмбриона, к концу 6-й недели можно зарегистрировать его сердечную деятельность, а на 7-й неделе можно получить изображение и самого будущего ребенка.

В первые два месяца беременности УЗИ еще не позволяет выявить аномалии развития плода, но может определить его жизнеспособность. На 12 - 20-й неделе беременности уже возможна диагностика близнецовой беременности, локализации плаценты, отсутствия головного или спинного мозга, дефектов костной системы, закрытия невральной трубки, заращение естественных каналов желудочно-кишечного тракта.

Метод безопасен, поэтому продолжительность исследования не ограничена, и его можно применять повторно. При нормальном течении беременности проводят двукратное УЗИ, а при беременности с риском осложнений оно проводится с интервалами в 2 недели.

УЗИ плода обязательно при: наличии у родителей и ближайших родственников врожденных пороков развития; экстрагенитальных заболеваниях у беременной, например, гипертонической болезни, сахарного диабета, тиреотоксикоза, порока сердца, ожирения и др.; наличии мертворожденных детей, перинатальной смерти двух и более детей; угрозе прерывания беременности, кровотечении; недостаточной прибавке массы тела беременной; несоответствии размеров матки сроку беременности; многоплодии; фибромиоме матки.

В целом УЗИ позволяет получить данные о размерах плода (длина туловища, бедра, плеча, диаметр головы), о наличии у него дисморфии, о работе сердца, об объеме жидкости в зародышевой оболочке и размерах плаценты.

УЗИ позволяет обнаружить у плода и некоторые пороки развития. Например, отсутствие головного и спинного мозга, чрезмерное количество спинномозговой жидкости в полости черепа, аномалии структуры почек, неправильное развитие конечностей, легких, множественные врожденные пороки, пороки сердца, отек плода и плаценты.

Эхографияплаценты позволяет установить ее расположение, наличие отслойки ее отдельных участков, кисты, признаки старения, истончение или утолщение плаценты.

Допплеровское ультразвуковое сканирование, цветная допплерометрия отражают кровообращение плода.

ЯМР-томография плода позволяет выявить структурные аномалии, не обнаруживаемые при УЗИ, например, малые аномалии мозга, туберозный склероз, аномалии структуры почек и др.

Часто используют три метода исследования: уровня альфа-фетопротеина (особый эмбриональный белок), содержания хорионического гонадотропина (гормон, вырабатываемый плацентой в период беременности) и свободного эстриола (женский половой гормон) в крови женщины во 2-м триместре беременности. Отклонения этих показателей от нормы служат индикаторами высокого риска для плода.

Содержание альфа-фетопротеина в биологических жидкостях повышено при множественных пороках развития плода, спинномозговой грыже, чрезмерном количестве спинномозговой жидкости в области черепа, отсутствии головного или спинного мозга, пороках развития желудочно-кишечного тракта, дефектах передней брюшной стенки, аномалиях почек, фетоплацентарной недостаточности (недостаточной работе плаценты), задержке развития плода, многоплодной беременности, преэклампсии, резус-конфликте, вирусном гепатите В.

Концентрация альфа-фетопротеина в крови беременной снижена в случаях хромосомных болезней у плода, например, болезни Дауна, или наличия у беременной сахарного диабета I типа.

В настоящее время исследование альфа-фетопротеина проводится в 1-м триместре беременности одновременно с определением специфического для беременных белка А, что позволяет диагностировать болезнь Дауна и некоторые другие хромосомные аномалии у плода уже на 11 - 13-й неделях.

Хорионический гонадотропин (ХГ) определяется уже на 8 - 9-й дни после зачатия. При исследовании крови женщины во 2-м триместре беременности повышение уровня ХГ свидетельствует о задержке внутриутробного развития плода, высоком риске его гибели, отслойке плаценты, и о других видах фетоплацентарной недостаточности (нарушение работы плаценты).

Исследование уровня белка беременности I (Schwangerschaft protein I) в плазме крови женщин уже в 1-м триместре беременности служит индикатором хромосомных болезней плода.

Хорионбиопсия – это взятие ткани хориона (зародышевая оболочка). Проводится между 8-й и 10-й неделями. Ткань используется для цитогенетических и биохимических исследований, анализа ДНК. С помощью этого метода можно выявлять все виды мутаций (генные, хромосомные и геномные).

Значительным преимуществом хорионбиопсии является то, что она может быть использована на ранних этапах развития плода. Т. е. если выявятся отклонения в развитии плода и родители решат прервать беременность, то аборт на 10 – 12 неделе менее опасен, чем на 18 - 20-й неделе, когда становятся известны результаты амниоцентеза.

Амниоцентез – получение амниотической жидкости (жидкость вокруг зародыша) и клеток плода для анализа. Получение материала возможно на 16-й неделе беременности.

Основные показания для амниоцентеза общие: возраст беременной более 35 лет;нарушения нормы уровней альфа-фетопротеина, хорионичеокого гонадотропина и свободного эстриола в крови беременной;наличие нескольких серьезных факторов риска осложнений беременности.

Отдельные: мертворождения, перинатальная смертность;рождение предыдущего ребенка с хромосомными болезнями или с дисморфическими признаками;хромосомный сбалансированный мозаицизм у родителей;синдром ломкой Х-хромосомы у ближайших родственников;определение пола плода при риске наследственных Х-сцепленных заболеваний (гемофилия, иммунодефицит и др.);наследственные болезни обмена веществ;воздействие тератогенных агентов на организм беременной в критические периоды развития плода;задержка внутриутробного развития и дисморфия плода по данным УЗИ;риск внутриутробных инфекций (краснуха, цитомегалия, токсоплазмоз).

Осложнения при этом методе исследования не превышают 1 %.

Амниотическая жидкость используется для биохимических исследований, которые выявляют генные мутации. А клетки используются для анализа ДНК (выявляет генные мутации), цитогенетического анализа и выявления Х- и Y-хроматина (диагностирует геномные и хромосомные мутации).

Биохимические исследования амниотической жидкости могут дать ценную информацию. Например, диагностика адреногенитального синдрома (нарушения синтеза гормонов корой надпочечников и работы системы гипаталамус - гипофиз – яичники) у эмбриона возможна уже на 8-й неделе.

Исследование спектра аминокислот амниотической жидкости позволяет выявить некоторые наследственные болезни обмена веществ у плода, например, аргинин-янтарную ацидурию, цитруллинурию и др.

Исследование амниотической жидкости применяется для выявления хромосомных отклонений от нормы, определения активности ферментов.

Кордоцентез – взятие крови из пуповины. Материал используется для цитогенетических, молекулярно-генетических и биохимических исследований. Проводится с 18-й по 22-ю неделю.

Преимущество кордоцентеза по сравнению с амниоцентезом заключается в том, что берется кровь плода, что имеет решающее значение для диагностики внутриутробных инфекций, например, ВИЧ, краснухи, цитомегалии, парвовируса В19.

Однако показания для проведения кордоцентеза ограничены в связи с высоким риском осложнений, таких как внутриутробная гибель плода (до 6 %), недонашивание беременности (9 %).

Фетоскопия - осмотр плода фиброоптическим эндоскопом, введенным в зародышевую оболочку через переднюю стенку матки. Метод позволяет осмотреть плод, пуповину, плаценту и произвести биопсию.

Фетоскопия имеет очень ограниченное применение, т. к. сопровождается высоким риском прерывания беременности и технически сложна.

Современные технологии позволяют осуществлять биопсию кожи, мышц, печени плода. Материал используется для диагностики тяжелых наследственных заболеваний, например, генодерматозов, мышечных дистрофий, гликогенозов и др.

Риск прерывания беременности при применении методов пренатальной диагностики, нарушающих целостность тканей, составляет 1 - 2%.

Везикоцентез – прокол стенки мочевого пузыря плода для получения его мочи. Материал используется для исследования в случаях серьезных заболеваний и пороков развития органов мочевой системы.

Доимплантационная диагностика наследственных болезней стала возможной благодаря появлению экстракорпорального оплодотворения и использованию множественных копий эмбриональной ДНК.

Существует технология для выявления таких болезней, как Тея-Сакса, гемофилия, миодистрофия Дюшенна, фрагильная Х-хромосома и др. Однако она доступна немногим очень крупным центрам и дорого стоит.

Разрабатываются методы выделения клеток плода, циркулирующих в крови беременной, для проведения цитогенетических, молекулярно-генетических и иммунологических анализов.

Развитие и распространение методов пренатальной диагностики наследственных заболеваний позволят значительно снизить частоту наследственной патологии новорожденных.

Метод микроскопического изучения наследственных структур клетки - хромосом. Он включает кариотипирование и определение полового хроматина.

а) Кариотипирование проводится для получения метафазных хромосом.

Кариотип - это диплоидный набор хромосом в соматических клетках на стадии метафазы, характерный для данного вида.

Кариотип, представленный в виде диаграммы, называется идиограмма, кариограмма или хромосомный комплекс.

Для кариотипирования наиболее удобным источником клеток являются лимфоциты (клетки периферической крови). Вначале получают достаточное количество делящихся клеток (стимуляция ФГА), а затем метафазные пластинки (для остановки деления на стадии метафазы используют колхицин) с раздельно лежащими хромосомами (гипотонический раствор). Препараты окрашивают и фотографируют, хромосомы вырезают и раскладывают.

Для систематизации хромосом используют две стандартные классификации: Денверскую и Парижскую. В основу Денверской классификации положены два принципа: длина хромосом и их форма (метацентрические, субметацентрические, акроцентрические), при этом используется метод сплошной окраски хромосом. По этой классификации все хромосомы разделены на семь групп, каждая пара хромосом имеет свой номер. Недостатком классификации является трудность в идентификации хромосом внутри группы.

Парижская классификация основывается на дифференциальном окрашивании метафазных хромосом. Каждая хромосома имеет свой индивидуальный рисунок, четкую дифференциацию по длине на светлые и темные полосы - диски (сегменты). Разработана система обозначения линейной дифференциации хромосом (номер хромосомы, плечо, район, сегмент).

б) Определение Х-полового хроматина.

Половой хроматин (тельце Барра) - компактная темная глыбка, которая имеется в интерфазном ядре соматических клеток нормальных женщин. Половой хроматин представляет спирализованную Х-хромосому. Инактивация одной из Х-хромосом является механизмом, выравнивающим баланс генов в мужском и женском организме. Согласно гипотезе Марии Лайон, инактивация Х-хромосомы происходит на ранних стадиях эмбриогенеза (14 день), она носит случайный характер, причем инактивируются только длинные плечи Х-хромосомы. По числу глыбок полового хроматина можно судить о числе Х-хромосом (формула n+1, где n - число телец Барра). При любом числе Х-хромосом в активном состоянии будет только одна Х-хромосома. Цитогенетические методы используются для диагностики хромосомных болезней (изменение числа и структуры хромосом), определения пола, изучения хромосомного полиморфизма членов популяций.

Цитогенетический метод применяют в целях:

    изучения кариотипа человека

    диагностики хромосомных заболеваний

    изучения мутагенного действия различных веществ при генных и хромосомных мутациях

    составлении генетических карт хромосом

Этапы:

1. Культивирование клеток крови на питательных средах

2. Стимуляция митотических делений

3. Добавление колхицина для разрушения нитей веретена деления, остановка деления на стадии метафазы

4. Обработка клеток гипотоническим раствором для свободного расположения хромосом

5. Окрашивание

6. Микроскопирование и фотографирование

7. Построение идиограммы

Основа метода – микроскопическое изучение хромосомы. Цитологические исследования стали широко использоваться с начала 20-гг. ХХ в . для изучения морфологии хромосом, культивирования лейкоцитов для получения метафазных пластинок .

Развитие современной цитогенетики человека связано с именами цитологов Д.Тио и А.Левана. В 1956 г. они первыми установили, что у человека 46 хромосом , что положило начало широкому изучению митотических и мейотических хромосом человека.

В 1959 г. французские ученые Д.Лежен, Р.Тюрпен и М. Готье установили хромосомную природу болезни Дауна. В последующие годы были описаны многие другие хромосомные синдромы, часто встречающиеся у человека. Цитогенетика стала важнейшим разделом практической медицины. В настоящее время цитогенетический метод применяется для диагностики хромосомных болезней, составление генетических карт хромосом, изучения мутационного процесса и других проблем генетики человека.

В 1960 г. в г. Денвере была разработана первая Международная классификация хромосом человека. В ее основу легли размеры хромосом и положение первичной перетяжки – центромеры. Все хромосомы по форме разделены на метоцентрические, субметацентрические и акроцентрические и подразделены на 7 групп, обозначенных латинскими буквами А, В, С, D, E, F, G. Каждая пара хромосом была наделена порядковым номером от 1 до 22, выделены отдельно и поименованы латинскими буквами – Х и У половые хромосомы.

В 1971 г. на Пражской конференции генетиков в дополнении к Денверской классификации были представлены методы дифференциальной окраски хромосом, благодаря которым каждая хромосома приобретает свой неповторимый рисунок, что помогает точной идентификации.

Основные сведения о морфологии хромосом человека получены при изучении их в метафазах митоза и профазе – метафазе мейоза. При этом важно, количество делящихся клеток, было высоким. Важнейшие цитогенетические работы выполнены на лимфоцитах переферической крови, поскольку культивирование лимфоцитов в течение 2-3 суток в присутствии фитогемагглютинина позволяет получить метофазные пластинки для хромосомного анализа.

Цитогенетическому анализу подвергают однослойные метафазные пластинки с раздельно лежащими хромосомами. Для этого делящиеся клетки обрабатывают кольхицином и некоторыми химическими веществами.

Важным этапом цитогенетического анализа является окраска полученных препаратов. Ее проводят простыми дифференциальными и флуоресцентными методами.

Успехи молекулярной цитогенетики человека позволяют разработать новые методы изучения хромосом. Так, следует отметить метод флуоресцентной гибридизации, который дает возможность исследовать широкий круг вопросов: от локализации гена до расшифровки сложных перестроек между несколькими хромосомами.

Таким образом, соединение цитогенетических и молекулярно – генетических методов в генетике человека делает почти неограниченными возможности диагностики хромосомных аномалий.


Среди многих методов изучения наследственной патологии человека цитогенетический метод занимает одно из главных. С помощью цитогенетического исследования в генетике человека можно решать такие сложные вопросы, как анализы материальных основ наследственности и кариотипа в норме и патологии, изучать некоторые закономерности мутационного и эволюционного процессов. Все хромосомные болезни у человека были открыты с помощью цитогенетического метода. Для его проведения используют культуру лимфоцитов периферической крови, кожные фибробласты, костный мозг. Классификация хромосом человека, методы индивидуализации

хромосом с помощью различных типов окрашивания, молекулярная организация хромосом, хромосомный пол человека - все эти темы будут освещены в практикуме по медицинской генетике, который выйдет в свет вскоре после настоящей монографии.

Цитогенетика человека занимает особое место в медицинской генетике. Это обусловлено тем, что большая часть множественных пороков и нарушений половой дифференцировки у человека связана с различными структурными и числовыми нарушениями в системе аутосом и гоносом. До недавнего времени с помощью цитогенетического метода можно было судить только о кариотипе - точном числе и структуре хромосом. С введением в практику здравоохранения высокоразрешающих методов молекулярной цитогенетики удалось «подобрать ключи» к патологии, которую не удавалось диагностировать с помощью рутинных методов цитогенетики. Были разработаны и внедрены в клиническую цитогенетику ДНК-диагностика, гибридизация нуклеиновых кислот in situ, которые помогли выяснить природу большого количества микроделеционных синдромов (Ворсанова С.Г. и соавт., 1998, 1999, 2006); появились компьютерные системы для анализа хромосом, которые позволяют проводить автоматический анализ хромосом и внедрять очень эффективную многоцветную детекцию ДНК-зондов. Весьма успешную работу в этом направлении осуществляют лаборатории Научного Центра психического здоровья (руководитель Юров Ю.Б.) и Московского НИИ педиатрии и детской хирургии (руководитель Ворсанова С.Г.), которые создали оригинальную хромосомоспецифическую коллекцию ДНК-зондов на все хромосомы человека и их отдельные участки.

Необходимость цитогенетического исследования диктуется наличием огромного количества хромосомных болезней. Описано уже около 1000 типов хромосомных нарушений, для более 100 из них четко определена клиническая картина. Частота хромосомных аномалий среди новорожденных составляет примерно 1%, среди мертворожденных этот показатель равен 6-7%. У детей, родившихся с задержкой психомоторного развития и имеющих пороки развития внутренних органов, хромосомные болезни встречаются от 1 до 30%. Кроме того, хорошо известно, что по крайней мере около 60% спонтанных абортов в I триместре беременности (в первые дни беременности эти цифры еще выше) связаны с хромосомными аберрациями.

Хромосомные нарушения резко нарушают эмбриогенез. В этот период, период морфогенеза в процессах развития будущего потомства принимают участие до 1000 генов, локализованных во всех хромосомах, поэтому хромосомная или геномная мутация может привести к спонтанному аборту (Бочков Н.П., 2004). Примерно 1 /з оплодотворенных яйцеклеток погибает в 1-ю неделю беременности. Во II триместре хромосомные нарушения являются причиной спонтанных абортов в 25-30% случаев. После 20 нед беременности хромосомные аномалии встречаются только в 10% случаев. При отягощенном акушерском анамнезе у супружеских пар с повторными спонтанными абортами, мертворождениями или рождением детей с пороками развития хромосомные аномалии обнаруживаются в 5%.

Среди других контингентов хромосомные аномалии обнаруживаются у детей с олигофренией - в среднем в 15% (в основном из-за структурных перестроек). У больных с нарушением половой дифференцировки частота хромосомных нарушений колеблется от 20 до 50% (в 50% случаев обнаруживается мозаицизм). У больных с первичной и вторичной аменореей частота хромосомных аномалий колеблется от 10 до 50% (более 90% - численные нарушения и мозаицизм). При мужском бесплодии частота аномальных хромосом достигает 10-15% (до 70% - численные нарушения и мозаицизм).

Знания по медицинской генетике, в том числе и по цитогенетике, необходимы акушерам-гинекологам, педиатрам, эндокринологам, психоневрологам, паталогоанатомам, а также другим специалистам. Имеется достаточное количество не только детей, но и взрослых больных, у которых психоневрологические нарушения, нарушения половой сферы или репродуктивной функции связаны с нарушением хромосомного аппарата.

Исторически хромосомные болезни клиницисты начали еще изучать до установления точного числа хромосом человека. Синдромы Дауна, Клайнфельтера и Шерешевского-Тернера клинически были описаны задолго до открытия хромосомной этиологии этих заболеваний.

С открытием «лишней» хромосомы при синдроме Дауна (Лежен Ж. и соавт., 1959) в медицину вошло новое понятие - «хромосомопатии», или «хромосомные болезни».

В настоящее время к хромосомным болезням относят такие формы патологии, при которых наблюдаются, как правило, нарушение психики и множественные врожденные пороки различных

систем организма человека. Генетической основой таких состояний являются численные или структурные изменения хромосом, наблюдаемые в соматических или половых клетках.

Термин «болезнь» по отношению к хромосомным аномалиям употребляется не всегда справедливо. Болезнь - это процессуальность, т.е. закономерная смена симптомов и синдромов во времени. Болезнь имеет продрому, начало, стадию полного развития и исходное состояние. Совокупность же специфических признаков, характеризующих любую хромосомную аномалию, является конституциональной, врожденной, и признаки эти непрогредиентны. Другими словами, врожденные аномалии развития, в основе которых лежат нарушения кариотипа, отличаются от болезней в обычном понимании резким сдвигом процессуальной фазы во времени. Процессуальная фаза в данном случае проходит во время эмбрионального развития. В силу этих соображений употребление термина «хромосомные болезни» необходимо применять при полном осознании его своеобразия.

Одной из важнейших задач медицинской генетики, и в первую очередь клинической цитогенетики человека, является выяснение связи хромосомных аномалий с пороками развития. Положительное решение этой проблемы позволило бы, в свою очередь, установить роль каждой отдельной хромосомы в эмбриональном развитии человека; это, конечно, помогло бы цитогенетикам составить цитологические карты каждого отдельного локуса хромосомы и таким образом определить значение его для развития и жизнедеятельности организма в целом.

3.2. ЭТИОЛОГИЯ И КЛАССИФИКАЦИЯ ХРОМОСОМНЫХ БОЛЕЗНЕЙ

Среди хромосомных нарушений принято выделять геномные и хромосомные нарушения. У человека найдены все формы хромосомных и геномных мутаций. К геномным мутациям относятся аномалии, характеризующиеся увеличением полного набора хромосом (полиплоидии) или изменением количества хромосом по одной из пар (анеуплоидии). К структурным хромосомным мутациям относятся все типы перестроек, которые обнаружены у человека, - делеция (нехватка), дупликация (удвоение), инверсия (перевертывание), инсерция (вставка), транслокация (перемещение).

Можно выделить два основных типа перестроек: внутрихромосомные и межхромосомные. В свою очередь, перестройки могут быть сбалансированными (т.е. в геноме присутствуют все локусы, однако их расположение в хромосомах отличается от исходного - нормального) и несбалансированными. Несбалансированные перестройки характеризуются утратой или удвоением участков хромосомы. Внутрихромосомные перестройки, связанные с перестройками внутри одного плеча хромосомы, называются парацентрическими. Крайние участки без центромеры называются фрагментами, и они обычно утрачиваются в ходе митоза.

Делеция - утрата части хромосомы, происходящая в результате двух разрывов и одного воссоединения, с утратой сегмента, лежащего между разрывами. У человека известна потеря 1 /з короткого плеча хромосомы 5, именуемая как синдром «кошачьего крика» и описанная впервые Дж. Леженом в 1963 г.

Дупликация - удвоение сегмента хромосомы, в результате чего клетка организма становится полиплоидной по данному сегменту. Если дупликация находится непосредственно за исходным участком хромосомы, это называется тандем-дупликацией. Кроме того, дупликации могут быть локализованы в других участках хромосомы. Большинство таких перестроек летальны, а те люди, которые с ними выжили, как правило, не способны воспроизвести потомство.

В случае инверсии участок хромосомы разворачивается на 180°, и разорванные концы соединяются в новом порядке. Если в инвертированный участок попадает центромера, такую инверсию называют перицентрической. Если инверсия затрагивает только одно плечо хромосомы, она называется парацентрической. Гены в инвертированном участке хромосомы располагаются в обратном порядке по отношению к исходному в хромосоме.

К межхромосомным перестройкам относят транслокации - обмен сегментами между хромосомами. Различают следующие типы транслокаций:

Реципрокная транслокация, когда две хромосомы взаимно обмениваются сегментами (сбалансированная транслокация); как и инверсия, она не вызывает аномальных эффектов у носителя;

Нереципрокная транслокация - когда сегмент одной хромосомы переносится в другую;

Транслокация типа центрического соединения - когда после разрывов в околоцентромерном районе соединяются два фрагмента с центромерами таким образом, что их центромера соединяется, образуя одну. Взаимное объединение двух акроцентрических хромосом из групп D и G приводит к образованию одной метаили субметацентрической хромосомы. Такую транслокацию называют робертсоновской.

Рис. 3.3. Транслокация t(5;14)

Транслокационный синдром Дауна возникает именно таким образом, при этом больные имеют выраженную симптоматику болезни Дауна, но в их кариотипе всего 46 хромосом, причем хромосом 21 - две, третья транслоцирована обычно на одну из хромосом группы D или G. Исследование кариотипов родителей таких детей показало, что чаще всего фенотипически нормальные родители (как правило, матери) имеют 45 хромосом и точно такую же транслокацию хромосомы 21, как и ребенок.

В основу классификации хромосомных болезней положены тип хромосомной аномалии и характер дисбаланса хромосомного материала соответствующего кариотипа. Исходя из этих принципов хромосомные аномалии делятся на три группы:

Численные нарушения по отдельным хромосомам;

Нарушение кратности полного гаплоидного набора хромосом;

Структурные перестройки хромосом.

Первые две группы относятся к геномным мутациям, а третья группа - к хромосомным мутациям. Кроме этого, необходимо учитывать тип клеток, в которых произошла мутация (в гаметах или зиготе), а также иметь в виду, была ли мутация унаследована или она возникла заново. Таким образом, при постановке диагноза хромосомной болезни необходимо учитывать:

Тип мутации;

Конкретную хромосому;

Форму (полная или мозаичная);

Наследуемый или ненаследуемый случай.

Большая часть хромосомных аномалий, возникающих в хромосомных наборах человека, связана с нарушением числа хромосом. Полиплоидия возникает в результате нарушения нормального митотического цикла: удвоение хромосом не сопровождается делением ядра и клетки. Примерами полиплоидии, которые описаны у человека, являются триплоидии (69,ХХХ; 69,ХХУ) и тетраплоидии (92,ХХХХ; 92,ХХХУ). Эти нарушения несовместимы с жизнью и встречаются в материале спонтанных абортусов или плода и у мертворожденных, а иногда и у новорожденных, продолжительность жизни которых с такими аномалиями составляет, как правило, всего несколько дней.

Анеуплоидия возникает в результате нерасхождения хромосом в мейотических делениях или в митозе. Термин «нерасхождение» означает отсутствие разъединения хромосом (в мейозе) либо хроматид (в митозе) в анафазе. В результате нерасхождения возникают гаметы с аномальным набором хромосом.

Структурные изменения хромосом у человека встречаются намного реже, чем численные аберрации. Структурные перестройки могут быть хромосомными и хроматидными, сопровождаться изменением количества генетического материала (делеции и дупликации) или только сводиться к перемещению его (инверсии, инсерции, транслокации). В перестройку может вовлекаться одна или больше хромосом с несколькими разрывами и соединениями. Иногда в организме могут встречаться клетки с различными кариотипами. Такое сочетание кариотипа обычно обозначают термином «мозаицизм» .

Большинство хромосомных болезней возникает спорадически в результате геномной и хромосомной мутации в гаметах здоровых родителей или на первых делениях зиготы. Хромосомные изменения в гаметах приводят к развитию так называемых полных, или регулярных, форм нарушения кариотипа, а соответствующие изменения хромосом на ранних стадиях развития эмбриона являются причиной возникновения соматического мозаицизма или мозаичных организмов (наличие в организме двух или более клеточных линий с разным числом хромосом). Мозаицизм может касаться как половых хромосом, так и аутосом. У человека чаще всего мозаичные формы обнаруживаются в системе половых хромосом. Мозаики, как правило, имеют более «стертые» формы заболевания, чем люди с измененным числом хромосом в каждой клетке. Так, ребенок с мозаичным вариантом болезни Дауна может иметь фактически нормальный интеллект, но физические признаки этого заболевания все равно остаются.

Число аномальных клеток может быть различным: чем их больше, тем более ярко выражен симптомокомплекс той или иной хромосомной болезни. В некоторых случаях удельный вес аномальных клеток так невелик, что человек кажется фенотипически здоровым.

Установить мозаицизм оказывается не так просто, поскольку клон аномальных клеток имеет в онтогенезе тенденцию к элиминации. Иначе говоря, число таких клеток может быть у взрослого человека относительно мало, в то время как в эмбриональный и ранний постнатальный периоды их удельный вес был достаточно велик, что привело к развитию выраженных клинических симптомов болезни. Однако, несмотря на известные трудности изучения мозаицизма, его открытие и исследование вносят ясность в проблему стертых и рудиментарных форм хромосомных болезней.

Любая из хромосом кариотипа человека может вовлекаться в численные или структурные изменения. Исходя из этого можно наблюдать очень большое разнообразие описанных хромосомных форм. Практическая цитогенетика постоянно сталкивается с обнаружением хромосомных аномалий при исследовании различных клеток и тканей в разные периоды развития человека. Классификация индивидуальных хромосом, которые могут вовлекаться в хромосомные аномалии, а следовательно, и выделение хромосомных синдромов в настоящее время - легко разрешимая проблема в связи с введением в хромосомный анализ методов индивидуализации хромосом: различных типов окрашивания по длине; гибридизации нуклеино-

вых кислот in situ, метода сравнительной геномной гибридизации, спектроскопического метода анализа хромосом. В последнее время при FISH-анализе иногда используют разноцветные ДНК-зонды, позволяющие быстро выявить качественные и количественные перестройки хромосом.

3.3. ПАТОГЕНЕЗ И КЛИНИЧЕСКИЕ ОСОБЕННОСТИ ХРОМОСОМНЫХ БОЛЕЗНЕЙ

Хромосомные аномалии возникают в результате того, что изменения количества или качества генетической информации в сторону ее избытка или недостатка нарушает функционирование нормальной генетической программы онтогенеза (индивидуального развития организма). Характер и тяжесть проявления хромосомных болезней зависит от вида аномалий и вовлеченных хромосом. Хромосомные синдромы обычно характеризуются множественными пороками развития независимо от типа хромосомной аберрации. Многочисленные исследования разнообразных типов повреждения хромосом и вызываемые ими отклонения развития позволяют сделать вывод о том, что в патогенезе хромосомных болезней основное место занимает нарушение физического (соматического) и психического развития.

Общим для всех форм хромосомных аномалий является множественность поражения различных систем и органов. Нарушения развития могут наблюдаться в широких диапазонах - от гибели и элиминации зигот на первых стадиях дробления до нарушений, совместимых с постнатальным существованием. Тщательное клинико-цитогенетическое изучение хромосомных аномалий позволяет выделить ряд признаков, которые в различных сочетаниях и с разной степенью выраженности встречаются у всех пораженных индивидуумов. К таким признакам относят умственную отсталость, пре- и постнатальную задержку развития, аномалии многих органных систем, особенно челюстно-лицевой области, скелета, сердечно-сосудистой и мочеполовой систем. В частности, отмечаются краниофациальная дисплазия, ненормальные форма и расположение ушных раковин, гипертелоризм, эпикант, готическое нёбо, аномалии строения глазных щелей и яблок, специфическое изменение кожного рисунка на ладонях и подошвах, аномалия строения и расположения пальцев нижних и верхних конечностей и др.

Все диагностические признаки, встречающиеся при хромосомных болезнях, можно условно разделить на три группы.

К первой группе можно отнести комплекс признаков, позволяющих лишь заподозрить хромосомную аномалию. Это общие признаки (некоторые из них перечислены выше): физическое недоразвитие, ряд дизморфий мозгового и лицевого черепа, косолапость, клинодактилия мизинцев, некоторые пороки развития внутренних органов (сердца, почек, легких).

Ко второй группе относят признаки, встречающиеся в основном при определенных хромосомных болезнях. Их сочетание позволяет в большинстве случаев диагностировать хромосомную аномалию. Среди характерных, наиболее часто встречающихся признаков при трисомии хромосомы 13 следует назвать глубокую задержку умственного и физического развития (100%), гипертелоризм (90%), низко расположенные уродливые уши (90%). При трисомии хромосомы 18 следует отметить долихоцефалию (90%), тяжелую задержку психомоторного и физического развития (100%), затруднения при глотании, проблемы с кормлением (100%), микрогнатию и короткую грудину (90%).

К третьей группе относят признаки, характерные только для одной хромосомной аномалии, например «кошачий крик» при синдроме 5р-, алопеция при синдроме 18р.

При изучении корреляции фенотипа с кариотипом было сделано важное заключение о том, что чем больше хромосомного материала утрачено или приобретено, тем сильнее отклонения в развитии, тем раньше в онтогенезе они проявляются. Поэтому аномалии по крупным хромосомам встречаются очень редко. Кроме того, нехватка генетического материала сказывается на организме тяжелее, чем его избыток, и поэтому полные моносомии (особенно у живорожденных детей) встречаются гораздо реже, чем полные трисомии. Тяжесть клинической картины зависит не только от размера хромосомы, вовлекаемой в патологический процесс, большое значение имеет и ее качественный состав. Например, полные трисомии у живорожденных чаще всего обнаруживаются по аутосомам 13, 18, 21. Это связано с тем, что данные хромосомы содержат больше гетерохроматина, чем эухроматина. Основу последнего составляют активные районы, содержащие гены, которые контролируют развитие признаков организма. И, естественно, скорее погибнет та клетка, в которой имеется нехватка генов, определяющих продукцию таких белков, которые

участвуют в ключевых биохимических реакциях, обеспечивающих жизнеспособность клетки.

Для хромосомных нарушений характерны увеличение частоты гибели плодов и снижение жизнеспособности живорожденных. Однако при некоторых хромосомных аномалиях возможно выживание до взрослого состояния. В первую очередь это относится к группе синдромов, связанных с патологией в системе половых хромосом. Общее нарушение генного баланса, вызванное аномалиями в системе половых хромосом, гораздо менее фатально для развития организма, чем это имеет место при аутосомных аберрациях, поэтому наличие гоносомных нарушений в кариотипе человека совместимо не только с рождением, но и с нормальной жизнеспособностью и даже иногда с нормальным фенотипом.

Многочисленные исследования, проведенные в больших популяциях новорожденных и здоровых взрослых, а также в различных контингентах умственно отсталых лиц, позволили установить, что аномалии по половым хромосомам среди умственно отсталых людей встречаются в 4-5 раз чаще, чем у новорожденных.

Установлено, что 17-25% мужчин с синдромом Клайнфельтера имеют сниженный интеллект. Лишняя хромосома Х у женщин, вероятно, проявляется в еще большем снижении интеллекта, чем у мужчин.

Отмечена прямая корреляция между числом лишних Х хромосом и степенью умственной отсталости. Если наличие одной лишней хромосомы Х не всегда сопровождается олигофренией (синдромы ХХУ, ХХХ), то наличие лишних двух Х хромосом уже всегда дает картину умственной отсталости (средние значения IQ у больных с кариотипом 48, ХХХУ 52,5, а с кариотипом 49, ХХХХУ - 35,2). Синдром Шерешевского-Тернера более редок среди умственно отсталых женщин.

Причины умственной отсталости при ауто- и гоносомных абберациях, очевидно, заключаются в грубых нарушениях генного баланса и вытекающих отсюда нарушениях множества ферментных функций.

Как уже указывалось выше, клинические проявления одних и тех же форм хромосомных болезней сильно варьируют: от летального эффекта до незначительных отклонений. Почему это происходит, остается неясным: ведущую роль играют то ли генотипические факторы, то ли факторы внешней среды. Например, нет ответа на вопрос,

почему только 2/3 случаев трисомии по хромосоме 21 элиминируется во внутриутробном периоде (примерно такая же картина наблюдается при моносомии ХО).

В формировании клинических (фенотипических) проявлений хромосомных аномалий участвуют многие факторы. Среди них в первую очередь следует отметить:

Генотип организма;

Генный состав индивидуальной хромосомы, вовлекаемой в хромосомную аберрацию;

Тип аберрации и размер недостающего или избыточного хромосомного материала;

Степень мозаичности организма по аберрантным клеткам.

Тяжесть клинических проявлений зависит от соотношения нормальных и аномальных клеточных клонов;

Факторы внешней среды;

Онтогенетическую стадию развития организма.

Исходя из приведенных данных следует сделать вывод о том, что в патогенезе хромосомных аномалий еще много неясного, поскольку пока нет общей четкой схемы развития сложных патологических процессов, каковыми являются хромосомные болезни.

3.4. ЧАСТОТА И РАСПРОСТРАНЕННОСТЬ ХРОМОСОМНЫХ БОЛЕЗНЕЙ

Наиболее полные сведения о частоте и распространенности хромосомных болезней можно получить на основании цитогенетических исследований спонтанных абортов, мертворожденных и новорожденных. Методы учета хромосомных аномалий должны быть строго унифицированы. Цитогенетическое обследование необходимо проводить новорожденным с врожденными пороками развития, недоношенным; больным с олигофренией, нарушением половой дифференцировки, с первичной и вторичной аменореей, спонтанными абортами, лицам с мужским бесплодием. Цитогенетический метод может применяться во многих областях практической и теоретической медицины (акушерство и гинекология, педиатрия, психиатрия, эндокринологи, патологическая анатомия и др.) - вот почему знания хромосомной патологии, ее клинических особенностей, методов диагностики и профилактики играют важную роль в подготовке будущего врача.

Как указывалось ранее, хромосомные аномалии чаще всего наблюдаются при спонтанных абортах - до 60%, у мертворожденных - до 70% и у живорожденных - около 1%.

Клинические и цитогенетические исследования, проводимые у новорожденных с хромосомной патологией, показывают, что жизнеспособность зависит от типа хромосомного нарушения. Большинство новорожденных с аутосомными трисомиями погибают в первые дни жизни. В свою очередь, у больных с аномалиями половых хромосом жизнеспособность снижена незначительно. Это зависит от того, что полная клиническая картина у данного контингента проявляется лишь в период полового созревания, когда начинают функционировать гены, определяющие половое развитие организма и формирование вторичных половых признаков.

Среди эффектов хромосомных аномалий в онтогенезе, кроме спонтанных абортов и врожденных пороков развития, у человека наблюдается явление однородительских дисомий. Однородительская дисомия возникает тогда, когда будущий потомок получает от одного из родителей обе хромосомы одной из пар (кариотип представлен 46 хромосомами). В результате может происходить гомозиготизация по патологическим рецессивным генам, которые могут быть причиной данного заболевания. Примерами однородительской дисомии являются синдромы Прадера-Вилли, Ангельмана, Беквита-Видемана и др.

Хромосомные аномалии возникают не только в ранние периоды онтогенеза. Спонтанный уровень хромосомных перестроек наблюдается у человека на протяжении всей жизни (около 2%). Чаще всего эти перестройки обычно элиминируются, но в какой-то момент могут стать источником злокачественного роста. Известно, что некоторые числовые и структурные хромосомные аномалии либо вызывают злокачественную трансформацию клеток, либо обусловливают предрасположенность к развитию онкологических заболеваний. Опухолевая прогрессия часто возникает в результате появления новых клеточных клонов, несущих различные виды хромосомных перестроек, которые кардинально отличаются от исходного клеточного штамма. В результате анализа огромного количества опухолей (свыше 25 тыс.), который был суммирован и опубликован в пятом издании «Каталога хромосомных аберраций при онкологических заболеваниях», удалось выявить новые гены, изменение которых в некоторых случаях могло привести к злокачественному перерожде-

нию нормальных клеток. По данным ВОЗ, рак это общее обозначение более чем 100 болезней, которые могут поражать любую часть организма, и его считают болезнью генома. Ретинобластома явилась первой опухолью, для которой была выявлена специфическая связь с презиготной хромосомной мутацией в длинном плече хромосомы 13. Классическим примером хромосомной мутации, детерминирующей возникновение хронического миелоидного лейкоза, является так называемая филадельфийская хромосома. Транслокация участков длинных плеч хромосом 9 и 22 приводит к образованию аномальной хромосомы, вызывающей злокачественные изменения белой крови. Известны и другие транслокации хромосом (8;21), (8;14), которые приводят к возникновению соответственно острого миелоидного лейкоза и лимфомы Беркитта.

В середине 60-х годов прошлого века многочисленными исследованиями было доказано, что у больных с врожденными хромосомными аномалиями рак возникает во много раз чаще, чем в популяции, и предрасположенность к новообразованиям при некоторых наследственных синдромах сопровождается (или обусловлена) повышенной частотой спонтанных или индуцированных хромосомных повреждений.

Необходимо помнить, что при старении организма спонтанный уровень хромосомных нарушений увеличивается.

Патологические синдромы, объединяемые термином «хромосомные болезни», являются неоднородными. Описано большое количество многообразных форм хромосомных аномалий у человека. Однако не все из них могут претендовать на «самостоятельность» в виде четко очерченного синдрома или болезни. Это связано с тем, что при некоторых хромосомных нарушениях патологическое состояние не обусловлено непосредственно конкретной хромосомной перестройкой.

Общая частота морфологических пороков развития у детей в возрасте до 1 года составляет примерно 27,2 на 1000 населения. Около 60% из них выявляются в первые 7 дней жизни уже в родовспомогательных учреждениях. Одна из частных причин пороков развития - орофасциальные расщелины, которые входят в «большую пятерку» уродств, занимая по частоте второе место.

По сведениям национального института стоматологии США, 40% населения мира имеют врожденные и наследственные аномалии развития черепно-лицевой области, из которых 15% нуждаются в серьез-

ном хирургическом лечении. По данным ВОЗ, общая встречаемость врожденной расщелины верхней губы и нёба в мире колеблется от 0,8 до 2 случаев на 1000 рождений. Распространение по континентам следующее: в Азии - 1 случай на 500 новорожденных; в Европе - 1 на 700; в Африке - 1 на 1000; в России - 1 на 800. По разным источникам, доля больных с врожденными и наследственными аномалиями черепно-лицевой области в России составляет около 35%, причем ежегодно рождается свыше 50 тыс. детей, которые требуют пристального внимания стоматологической службы.

Одним из самых частых врожденных пороков развития среди всех аномалий челюстно-лицевой области является расщелина губы и нёба, популяционная частота которой по разным источникам колеблется от 1:1000 до 1:460 (ежегодно в Москве этот показатель примерно 1:700). Расщелины губы и/или нёба составляют около 87% от всех врожденных пороков развития лица. Почти каждая пятая типичная расщелина является компонентом тяжелого синдрома.

Из 3 трисомий (синдром Дауна, синдром Патау и синдром Эдвардса), которые встречаются у человека, расщелины губы и/или нёба чаще всего возникают при синдроме Патау (около 70%) и считаются наиболее типичным признаком данного синдрома.

Анализ обращаемости в медико-генетические консультации показывает, что чаще всего к этому специализированному виду медицинской помощи обращаются семьи с хромосомными болезнями, врожденными пороками развития и нервно-психическими заболеваниями. Цитогенетический метод и молекулярно-цитогенетические методы позволяют непосредственно выявить все нарушения кариотипа. Они применяются в тех случаях, когда хромосомная аномалия предполагается как наиболее вероятный этиологический фактор патологии в семье.

Для заболеваний, обусловленных числовыми аберрациями хромосом, вероятность повторного случая в семье крайне мала (не превышает 1%), если известно, что ни у одного из родителей нет хромосомной аномалии, а также отсутствуют другие факторы риска (например, средний возраст матери). Исключение составляют транслокации.

Для семей, в которых уже имеется ребенок с трисомной формой синдрома Дауна, риск рождения еще одного больного ребенка повышен (1 на 50-200 новорожденных в отношении синдрома Дауна и 1 на 100 новорожденных в отношении всех хромосомных аномалий).

При аномалиях половых хромосом повторные случаи любой из них в семье исключительно редки. При синдромах ХХУ и ХХХ обнаружена связь с возрастом матери. В этих случаях риск для сибсов оценивается эмпирически (для каждого типа аномалии) с учетом возраста матери. Наиболее неблагоприятным будет прогноз при транслокациях в том случае, если в гаметах одного из родителей имеется сбалансированная хромосомная мутация.

Показания для проведения цитогенетического обследования:

Возраст женщины более 35 лет;

Наличие у предыдущего ребенка хромосомных аномалий;

Врожденные пороки двух и более систем;

Врожденные пороки в сочетании с олигофренией;

Олигофрения неясной этиологии;

Носительство семейной хромосомной перестройки;

Спонтанные аборты и привычное невынашивание беременности;

Патология плода, выявленная при УЗИ. Правила записи аномальных кариотипов по аутосомам:

Любому врачу, сталкивающемуся в своей практической деятельности с хромосомными аномалиями, необходимо знать правила записи нормальных и абберантных кариотипов. При этом необходимо помнить следующее.

1. В самом начале указывается общее число хромосом.

3. Добавочная аутосома обозначается соответствующим номером и знаком «+», который ставится перед хромосомой, например: 47, ХУ, +21 (мужской кариотип с синдромом Дауна). Утрата целой хромосомы обозначается знаком «-», например: 45, ХХ, -13 (женский кариотип с моносомией по 13 хромосоме).

4. Короткое плечо хромосомы, как уже отмечалось, обозначается латинской буквой «р», длинное плечо - «q». Например, 46, ХУ, 5 р- (синдром «кошачьего крика»).

5. Транслокация обозначается буквой «t» с расшифровкой в скобках, например, 45, ХХ, t (14/21) - женщина-носительница сбалансированной транслокации 14/21.

6. Присутствие более чем одной клеточной линии (мозаицизм) обозначается знаком дроби, например: 45, Х/46, ХХ - мозаик по синдрому Шерешевского-Тернера.

Этими символами и терминологией пользуются только при рутинном способе окрашивании хромосом человека. С разработкой и внедрением в цитогенетику человека новых методов окрашивания хромосом, в частности дифференциального окрашивания, появились несколько технических процедур, которые воспроизводят индивидуальную специфическую исчерченность метафазных хромосом. Хромосома стала окрашиваться в темные и светлые полосы (band) . При различных методах обработки хромосомных препаратов одни и те же полосы могут быть либо светлыми, либо темными.

В зависимости от цели исследования в клинической цитогенетике используют два принципиальных типа дифференциального окрашивания. При первом типе применяются методы, окрашивающие хромосому на всем ее протяжении (методы G-, Q-, R-полосы). При втором - целенаправленно окрашиваются специфические хромосомные структуры: конституциональный гетерохроматин (С-полосы), теломерные полосы (Т-полосы) и районы ядрышкового организатора (ЯОР).

Каждая индивидуальная хромосома в кариотипе содержит серию чередующихся полос (светлых и темных), которые располагаются по всей длине плеч хромосом в определенных районах. Нумерация полос и участков идет в направлении от центромеры к теломере каждого плеча. Участками (районами) называются сегменты хромосом, находящиеся между двумя соседними полосами. Для обозначения любой хромосомы придерживаются следующего правила - указывается:

1) номер хромосомы;

2) символ плеча (p and q);

3) номер участка (района);

4) номер полосы (или субполосы) в пределах этого участка. Вышеприведенные обозначения записываются по порядку без

пробелов и пунктуации.

Приведем примеры некоторых записей:

46, ХУ, del(5)p12) - эта запись относится к делеции короткого плеча 5 хромосомы, участку 1, полосе 2.

45, ХУ, rob(13;21)(q10;q10) - означает, что в данном случае имеется робертсоновская транслокация с утратой коротких

плеч 13 и 21 хромосомы; разрыв и воссоединение произошли в 10-м участке (район центромер) длинных плеч обеих хромосом.

Mos 45, ХО/46, ХХ(r) - в этом случае имеется мозаицизм при синдроме Шерешевского-Тернера с кольцевой Х хромосомой.

Более подробные сведения по номенклатуре и классификации хромосомных аномалий в норме и патологии приведены в авторитетных источниках Прокофьевой-Бельговской А.А. (1969), Ворсановой С.Г. (2006) и в международном документе «Международная система для номенклатуры в цитогенетике человека» (2005).

3.5. ЛЕЧЕНИЕ ХРОМОСОМНЫХ БОЛЕЗНЕЙ

Лечение хромосомной патологии - в основном симптоматическое. Цель такой терапии заключается в том, чтобы скорректировать такие фенотипические проявления, как умственная отсталость, замедленный рост, недостаточная феминизация или маскулинизация, недоразвитие гонад, устранение или исправление различных костных дефектов и т.д. Для этого широко используют различные виды терапии, в том числе анаболические гормоны, андрогены и эстрогены, гормоны гипофиза и щитовидной железы, различные витамины и общеукрепляющие средства. Очень широко применяется хирургическое, симптоматическое лечение: удаление катаракты, лишнего (шестого) пальца на ноге или руке, пластические операции при незаращении верхней губы и/или нёба, устранение стеноза привратника и врожденных пороков сердца, удаление различных опухолей и т.д. Перечисленные дефекты часто сопровождают трисомии по хромосомам 13, 18 и 21, триплоидию, синдромы 4р- и 5р- и иные хромосомные аномалии. Из других видов симптоматической терапии следует отметить климатотерапию, бальнеолечение, разные виды электротерапии, теплолечение, рентгенорадиологическое облучение.

Несмотря на широкое разнообразие симптоматической терапии, применяемой для лечения хромосомных болезней, они до сих пор неизлечимы. Учитывая этот фактор, в настоящее время основное внимание уделяется предупреждению рождения детей с хромосомными аномалиями.

3.6. КЛИНИЧЕСКАЯ ХАРАКТЕРИСТИКА ХРОМОСОМНЫХ БОЛЕЗНЕЙ

К хромосомным болезням относят группу врожденных патологий, которые возникают в результате нарушения числа и структуры хромосом в соматических и половых клетках человека. Общая популяционная частота таких аномалий - около 1%. Как правило, это спорадические случаи; большинство хромосомных заболеваний (90%) возникает за счет новых мутаций. Исключение составляют транслокационные варианты, которые являются результатом сбалансированных транслокаций родителей.

3.6.1. Аутосомные синдромы

Переходя к общей характеристике аутосомных синдромов, следует помнить, что все моносомии по любой из аутосом обычно приводят к внутриутробной гибели плода. Чаще всего в материалах спонтанных абортусов встречаются моносомии. При трисомиях аутосом летальность гораздо меньше, однако родившиеся дети имеют тяжелейшие врожденные пороки развития. Наиболее благоприятное положение наблюдается при наличии в организме мозаицизма. Дети с мозаичным кариотипом обладают повышенной жизнеспособностью, а клиническая картина у них менее выражена. Кроме численных хромосомных нарушений, у человека описано большое количество структурных перестроек.

Известно, что среди живорожденных с аутосомными синдромами чаще всего встречаются полные трисомии по 13, 18 и 21 хромосомам, среди которых 75% приходится на долю синдрома Дауна. Из других полных трисомий по аутосомам зарегистрированы единичные случаи родов по хромосомам 8, 9, 14 и 22.

Дата добавления: 2015-09-18 | Просмотры: 1009 | Нарушение авторских прав


| 2 | | | | | | | | | | | |