Напряженность магнитного поля, его базовые характеристики. Примеры задач

1. Вращающий момент, действующий на рамку с током со стороны магнитного поля. Магнитный момент рамки с током. Вращающий момент. Определение индукции магнитного поля. Единицы индукции и вращающего момента.

Поместив рамку в однородное магнитное поле, на нее действует пара сил, которая создает вращающий момент.

2. Напряженность магнитного поля и ее связь с индукцией. Единица напряженности.

Вектор магнитной индукции является общей характеристикой точек магнитного поля независимо от того, как создается магнитное поле: намагниченным телом или проводником с током находящимся в данной среде.

Однако можно ввести некоторую характеристику магнитного поля не зависящую от среды, а определяющуюся токами и конфигурацией проводников - вектор напряженности магнитного поля . Эти две характеристики (одна общая, а другая частная) связаны между собой: где - абсолютная магнитная проницаемость вакуума,μ - относительная магнитная проницаемость среды, для вакуума μ = 1.

Напряженностью магнитного поля – отношение механической силы, действующей на положительный полюс пробного магнита, к величине его магнитной массы или механическая сила, действующая на положительный полюс пробного магнита единичной массы в данной точке поля.

Единица напряженности магнитного поля - ампер на метр (А/м): 1 А/м - напряженность такого поля, магнитная индукция которого в вакууме равна 4π*Тл.

3. Изображение магнитных полей с помощью силовых линий индукции (напряженности). Вид линий магнитной индукции прямого и кругового токов, соленоида. Правила, но которым определяют направление линий магнитной индукции.

4. Магнитные поля проводников с токами. Закон Био-Савара-Лапласа.

Магнитное поле – это силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения.

Закон Био-Савара-Лапласа:

В векторной форме:

В скалярной форме:

5. Применение закона Био-Савара-Лапласа для определения напряженности поля, создаваемого:

а) прямым проводником конечной длины (вывод формулы)

б) бесконечно длинным прямым проводником (вывод формулы)

в) круговым проводником в центре (вывод формулы)

г) соленоидом и тороидом

д) круговым проводником на оси (без вывода)

6. Сила Ампера. Правило для определения направления силы Ампера.

На проводник с током, находящийся в магнитном поле, действует сила, равная F = I·L·B·sina

I - сила тока в проводнике; B - модуль вектора индукции магнитного поля; L - длина проводника, находящегося в магнитном поле; a - угол между вектором магнитного поля инаправлением тока в проводнике.

Сила Ампера – Сила, действующую на проводник с током в магнитном поле.

Максимальная сила Ампера равна: F = I·L·B. Ей соответствует a = 90.

Направление силы Ампера определяется по правилу левой руки : если левую руку расположить так, чтобы перпендикулярная составляющая вектора магнитной индукции В входила в ладонь, а четыре вытянутых пальца были направлены по направлению тока, то отогнутый на 90 градусов большой палец покажет направление силы, действующей на отрезок проводника с током, то есть силы Ампера.

Всем доброго времени суток. В я рассказывал о основной характеристике магнитного поля – магнитной индукции, однако приведённые расчётные формулы соответствуют магнитному полю в вакууме. Что в практической деятельности встречается довольно редко. Когда находятся в какой–либо среде, даже в воздухе, магнитное поле, которое они создают, претерпевает некоторые, а иногда и существенные изменения. Какие изменения происходят с магнитным полем, и от чего это зависит, я расскажу в данной статье.

Как связана индукция и напряженность магнитного поля?

Магнетиком называется вещество, которое под действием магнитного поля способно намагничиваться (или как говорят физики приобретать магнитный момент). Магнетиками являются практически все вещества. Намагничивание веществ объясняется тем, что в веществах присутствуют свои собственные микроскопические магнитные поля, которые создаются вращением электронов по своим орбитам. Когда внешнее отсутствует, то микроскопические поля расположены произвольным образом, а под воздействием внешнего магнитного поля соответствующим образом ориентируются.

Для характеристики намагничивания различных веществ используют так называемый вектор намагничивания J .

Таким образом, под действием внешнего магнитного поля с магнитной индукцией В 0 , магнетик намагничивается и создает свое магнитное поле с магнитной индукцией В’ . В итоге общая индукция В будет состоять из двух слагаемых

Тут возникает проблема вычисления магнитной индукции намагниченного вещества В’ , для решения которой необходимо считать электронные микротоки всего вещества, что практически нереально.

Альтернативой данного решения есть ввод вспомогательных параметров, а именно напряженность магнитного поля Н и магнитная восприимчивость χ . Напряженность связывает магнитную индукцию В и намагничивание вещества J следующим выражением

где В – магнитная индукция,

μ 0 – магнитная постоянная, μ 0 = 4π*10 -7 Гн/м.

В то же время вектор намагничивания J связан с напряженность магнитного поля В параметром, характеризующим магнитные свойства вещества и называемым магнитной восприимчивостью χ

где J – вектор намагничивания вещества,

Однако наиболее часто для характеристики магнитных свойств веществ используют относительную магнитную проницаемость μ r .

Таким образом, связь между напряженностью и магнитной индукцией будет иметь следующий вид

где μ 0 – магнитная постоянная, μ 0 = 4π*10 -7 Гн/м,

μ r – относительная магнитная проницаемость вещества.

Так как намагничивание вакуума равна нулю (J = 0), то напряженность магнитного поля в вакууме будет равна

Отсюда можно вывести выражения напряженности для магнитного поля, создаваемого прямым проводом с током:

где I – ток протекающий по проводнику,

b – расстояние от центра провода до точки, в которой считается напряженность магнитного поля.

Как видно из данного выражения единицей измерения напряженности является ампер на метр (А/м ) или эрстед (Э )

Таким образом, магнитная индукция В и напряженность Н являются основными характеристиками магнитного поля, а магнитная проницаемость μ r – магнитной характеристикой вещества.

Намагничивание ферромагнетиков

В зависимости от магнитных свойств, то есть способности намагничиваться под действием внешнего магнитного поля, все вещества делятся на несколько классов. Которые характеризуются разной величиной относительной магнитной проницаемости μ r и магнитной восприимчивости χ. Большинство веществ являются диамагнетиками (χ = -10 -8 … -10 -7 и μ r < 1) и парамагнетиками (χ = 10 -7 … 10 -6 и μ r > 1), несколько реже встречаются ферромагнетики (χ = 10 3 … 10 5 и μ r >> 1). Кроме данных классов магнетиков существует ещё несколько классов магнетиков: антиферромагнетики, ферримагнетики и другие, однако их свойства проявляются только при определённых условиях.

Особый интерес в радиоэлектронике ферромагнитные вещества. Основным отличием данного класса веществ является нелинейная зависимость намагничивания, в отличие от пара- и диамагнетиков, имеющих линейную зависимость намагничивания J от напряженности Н магнитного поля.


Зависимость намагничивания J ферромагнетика от напряженности Н магнитного поля.

На данном графике показана основная кривая намагничивания ферромагнетика. Изначально намагниченность J, в отсутствие магнитного поля (Н = 0), равна нулю. По мере возрастания напряженности намагничивание ферромагнетика проходит довольно интенсивно, вследствие того что его магнитная восприимчивость и проницаемость очень велика. Однако по достижении напряженности магнитного поля порядка H ≈ 100 А/м увеличение намагниченности прекращается, так как достигается точка насыщения J НАС. Данное явление называется магнитным насыщением . В данном режиме магнитная проницаемость ферромагнетиков сильно падает и при дальнейшем увеличении напряженности магнитного поля стремится к единице.

Гистерезис ферромагнетиков

Еще одной особенностью ферромагнетиков является наличие , которая является основополагающим свойством ферромагнетиков.

Для понимания процесса намагничивания ферромагнетика изобразим зависимость индукции В от напряженности Н магнитного поля, где красным цветом выделим основную кривую намагничивания . Данная зависимость довольно неопределенна, так как зависит от предыдущего намагничивания ферромагнетика.

Возьмём образец ферромагнитного вещества, которое не подвергалось намагничиванию (точка 0) и поместим его в магнитное поле, напряженность Н которого начнем увеличивать, то есть зависимость будет соответствовать кривой 0 – 1 , пока не будет достигнуто магнитное насыщение (точка 1). Дальнейшее увеличение напряженности не имеет смысла, потому как намагниченность J практически не увеличивается, а магнитная индукция увеличивается пропорционально напряженности Н . Если же начинать уменьшать напряженность, то зависимость В(Н) будет соответствовать кривой 1 – 2 – 3 , при этом когда напряженность магнитного поля упадёт до нуля (точка 2), то магнитная индукция не упадёт до нуля, а будет равна некоторому значению B r , которое называется остаточной индукцией , а намагничивание будет иметь значение J r , называемое остаточным намагничиванием .

Для того чтобы снять остаточное намагничивание и уменьшить остаточную индукцию B r до нуля, необходимо создать магнитное поле, противоположное полю, вызвавшему намагничивание, причем напряженность размагничивающего поля должна составлять Н с , называемая коэрцитивной силой. При дальнейшем росте напряженности магнитного поля, которое противоположно первоначальному полю, происходит насыщение ферромагнетика (точка 4).

Таким образом, при действии на ферромагнетик переменного магнитного поля зависимость индукции от напряженности будет соответствовать кривой 1 – 2 – 3 – 4 – 5 – 6 – 1 , которая называется петлёй гистерезиса . Таких петель для ферромагнетика может быть множество (пунктирные кривые), называемые частными циклами. Однако, если при максимальных значениях напряженности магнитного поля происходит насыщение, то получается максимальная петля гистерезиса (сплошная кривая).

Так как магнитная проницаемость μ r ферромагнетиков имеет довольно сложную зависимость от напряженности магнитного поля, поэтому нормируются два параметра магнитной проницаемости:

μ н – начальная магнитная проницаемость соответствует напряженности Н = 0;

μ max – максимальная магнитная проницаемость достигается в магнитном поле при приближении магнитного насыщения.

Таким образом, у ферромагнетиков величины B r , Н с и μ н (μ max) являются основными характеристиками, влияющими на выбор вещества в конкретном случае.

Теория это хорошо, но без практического применения это просто слова.

Напряженность магнитного поля , то есть силу магнитного поля оценивают по густоте магнитных силовых линий в данной точке поля. Напряженность магнитного поля обоз­начают в формулах буквой Н . Напряженность магнитного поля показывает число силовых линий магнитного поля, проходящих через 1 см 2 поперечного сечения поля .

Магнитные силовые линии, пронизывающие какую-либо площадку, называются магнитным потоком через эту площадку. Магнитный поток через данную площадку будет, следова­тельно, тем больше, чем больше силовых линий проходит через нее. Магнитный поток обозначают буквой Ф .

Направление магнитных силовых линий связано с направ­лением тока в проводнике. Наиболее простым способом опре­деления направления магнитных силовых линий является использование правила буравчика (рисунок 1).

Рисунок 1. Определение направления магнитных силовых линий по правилу буравчика.

Правило буравчика состоит в следующем: если направ­ление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения буравчика совпа­дает с направлением магнитных силовых линий.

Интерактивная демонстрация правила буравчика. Нажать на выключатель!

Рисунок 2. Интерактивная демонстрация определения направления линий напряженности магнитного поля с помощью правила буравчика.

Для подачи тока нажмите на выключатель

Для изменения направления тока нажмите на источник напряжения

Придадим проводнику с током форму кольца (рисунок 2). Пользуясь правилом буравчика, мы легко установим, что маг­нитные силовые линии, создаваемые всеми участками провод­ника, имеют внутри кольца одинаковое направление. Значит, внутри кольца магнитное поле будет сильнее, чем снаружи.

Изготовим из проводника цилиндрическую спираль и про­пустим по ней электрический ток (рисунок 3). Ток по всем виткам будет проходить в одном и том же направлении. Это будет равносильно тому, что мы поместим ряд кольцевых проводни­ков на одну общую ось. Проводник, имеющий такую форму, называется соленоидом или катушкой .

Пользуясь правилом буравчика, мы легко установим, что магнитные силовые линии, создаваемые всеми витками ка­тушки, имеют внутри нее одинаковое направление. Значит, внутри катушки будет более сильное магнитное поле, чем внутри одного витка. Между соседними витками катушки маг­нитные силовые линии направлены навстречу друг другу, и по­этому магнитное поле в этих местах будет очень ослаблено. Снаружи же катушки направление всех магнитных силовых линий будет одинаковым.

Магнитное поле катушки тем сильнее, чем больше сила тока, проходящего по ее виткам, и чем теснее, т. е. ближе друг к другу, расположены витки. Из двух катушек с одина­ковым током и одинаковым числом витков более сильное поле имеет катушка, у которой витки расположены ближе друг к другу, т. е. катушка, имеющая меньшую осевую длину.

Произведение силы тока в амперах на число витков, носит название ампервитков и характеризует магнитное действие электрического тока, то есть магнитодвижущую силу .

Пользуясь этим термином, можно сказать, что магнитное поле катушки тем сильнее, чем больше ампервитков прихо­дится на единицу ее осевой длины.

Определение уровня напряженности магнитного поля расчетным путем производится, как правило, только на стадии проектирования установок, являющихся источниками магнитного поля. Во всех остальных случаях, таких как: ввод в эксплуатацию новых установок, изменение их конструкции, организация новых рабочих мест и т.д., необходимо проводить экспериментальную проверку.

Контроль уровней постоянного магнитного поля должен производиться путем измерения значений магнитной индукции или напряженности магнитного поля на постоянных рабочих местах персонала или в случае отсутствия постоянного рабочего места в нескольких точках рабочей зоны, расположенных на разных расстояниях от источника поля при всех режимах работы источника или только при максимальном режиме. При гигиенической оценке уровней постоянного магнитного поля на рабочем месте определяющим является наибольшее из всех зарегистрированных значений.

Измерения постоянного магнитного поля следует проводить на рабочих местах и в точках рабочей зоны, расположенных на минимальном расстоянии от источника, в которых находится обслуживающий персонал, на трех уровнях от поверхности поля: 0.5; 1.0 и 1.7 м (рабочая поза «стоя») и 0.5; 0.8 и 1.4 м (рабочая поза «сидя»).

При локальном воздействии постоянного магнитного поля измерения проводятся на уровне конечных фаланг пальцев кистей, середины предплечья, середины плеча. Определяющим значением измеряемых величин является их наибольшее значение.

В случае, когда при выполнении технологических операций возникает необходимость непосредственного контакта рук человека с поверхностью источника (поверхностью постоянного магнита), измерения должны проводиться путем также непосредственного контакта датчика прибора с поверхностью источника.

Контроль уровней магнитного поля промышленной частоты проводится при соблюдении тех же условий, что и при контроле электрического поля частотой 50 Гц.

Измерение напряженности (индукции) магнитного поля должно производиться на всех рабочих местах обслуживающего электроустановки персонала, в местах прохода людей (вблизи экранированных токопроводов, под шинными мостами и т.п.), а также в производственных помещениях с постоянным пребыванием персонала, которые расположены на расстоянии менее 20 м от токоведущих частей электроустановок.

Измерения должны производиться на рабочих местах на высоте 0.5; 1.5 и 1.8 м от поверхности земли (пола). При нахождении источника магнитного поля под рабочим местом измерения должны проводиться также на уровне пола помещения, земли. Определяющим является наибольшее зарегистрированное значение.

Не допускается проведение измерений при наличии осадков, температуре и влажности, выходящих за предельные рабочие параметры средств измерений.

Измерение напряженности магнитного поля (или магнитной индукции) производится с помощью специальных приборов. Выбор того или иного прибора зависит от уровня измеряемого поля, от частоты, от места и от цели, с которой производится измерение. Однако во всех случаях приборы должны обеспечивать погрешность измерения не более ±10 %.

Рекомендуется использовать приборы с трехкоординатным индукционным датчиком, обеспечивающим автоматическое измерение максимального модуля напряженности магнитного поля при любой ориентации датчика в пространстве.

Приведем характеристики некоторых приборов, применяемых для измерения уровней магнитных полей.

Миллитесламетр портативный универсальный ТП-2У предназначен для измерения магнитной индукции постоянных, переменных и импульсных магнитных полей. Прибор имеет диапазон измерений от 0.01 до 1999 мТл. При измерении амплитудного значения магнитной индукции переменного магнитного поля частота поля может изменяться от 0.2 до 2000 Гц.

Миллитесламетр портативный модульный трехкомпонентный МПМ-2 предназначен для измерения модуля и трех взаимно-перпендикулярных составляющих B X , B Y , B Z вектора магнитной индукции постоянных и переменных магнитных полей в диапазоне от 0.01 до 199.9 мТл. Удобен при контроле магнитных полей на рабочих местах, в помещениях и в полевых условиях. При измерении магнитной индукции переменного поля частота поля может изменяться от 40 до 200 Гц.

Измеритель переменного магнитного поля ИМП-0.4 имеет две полосы частотного диапазона. В полосе 1 частота сигнала может изменяться от 5 до 2000 Гц, а уровень измеряемой индукции от 200 до 5000 нТл. Полоса 2 имеет частотный диапазон от 2 до 400 кГЦ и уровень измеряемой индукции от 10 до 1000 нТл.

Измеритель переменного магнитного поля ИМП-0.5 состоит из двух блоков ИМП-0.5/1 и ИМП-0.5/2. Первый блок имеет диапазон частот от 5 до 2000 Гц и диапазон измерения от 100 до 2000 нТл. Второй блок имеет диапазон частот от 2 до 400 кГц и диапазон измерения от 10 до 200 нТл.

Приборы ИМП-04 и ИМП-05 предназначены для измерения среднеквадратических значений магнитной индукции низкочастотных магнитных полей вблизи различных технических средств, в том числе компьютеров, при их сертификации, при контроле норм в области охраны природы, а также при аттестации рабочих мест по условиям труда в соответствии с санитарными нормами (СанПиН 2.2.542-96 ).

Измеритель параметров электромагнитного поля промышленной частоты ЭМППЧ-метр предназначен для измерения среднеквадратического значения напряженности электрического и магнитного полей промышленной частоты (50 Гц) в жилых и рабочих помещениях при наличии в них электрооборудования силового, хозяйственного, коммутационного и информационного назначения, а также при проведении комплексного санитарно-гигиенического обследования территорий.

Прибор обеспечивает измерение полей, возбуждаемых промышленными электроустановками, электросетевым оборудованием, медицинской и бытовой электроаппаратурой в соответствии с требованиями ГОСТ 12.1.002-84 , МСанПиН 001-96 , СанПиН 2.1.2.1002-00 .


Прибор имеет диапазон измерения напряженности магнитного поля от 10 до 10000 А/м.

Измеритель напряженности поля промышленной частоты ПЗ-50 предназначен для измерения напряженности электрического и магнитного полей промышленной частоты (50 Гц) и применяется для контроля ПДУ электрического и магнитного поля согласно ГОСТ 12.1.002-84 . Прибор имеет диапазон измерения напряженности магнитного поля от 0.01 до 20000 А/м.

Анализатор переменного магнитного поля типа EFA-1 имеет трехкоординатный датчик, встроенный в корпус прибора и позволяющий автоматически определять максимальный модуль индукции магнитного поля при любом положении в данной точке пространства. Прибор имеет встроенный частотомер и позволяет проводить измерения индукции МП в диапазоне частот 5 – 30 кГц, в т. ч. при фиксированной частоте 50 ± 5 % Гц, имеет цифровое и аналоговое отсчетное устройство, работающие одновременно. Отсчет показаний возможен в действующих и максимальных значениях. Прибор снабжен многофункциональным жидкокристаллическим индикатором с подсветкой, позволяющим осуществлять работу при малой освещенности. У прибора имеется меню пользователя, позволяющее устанавливать требуемый предел измерений, частоту (фиксированную или диапазон), режим работы (непрерывный отсчет показаний или выделение наибольшего значения в данной точке измерений), измеряемое значение (действующее или максимальное). Возможно использование прибора как индикатора при установке (через меню) значения ПДУ. Индикация – световой и звуковой сигнал. Анализатор имеет следующие технические характеристики: пределы измерений индукции МП – 5 нТл – 10 мТл; погрешность измерений – ± 3 или ± 5 % (в зависимости от типа датчика); питание – 5 стандартных гальванических элементов (непрерывная работа 20 ч). Укомплектован зарядным устройством; габариты – 110 х 200 х 60 мм; масса (с элементами питания) – 1000 г; допустимая температура окружающей среды – 0 – 50 °С; относительная

влажность воздуха – до 95 %; имеется возможность подключения к ПЭВМ; соответствует Международным стандартам ISO 9001 и SENELEC50166.

Измеритель напряженности магнитного поля ИНМП-50 имеет измерительный блок и выносной трехкоординатный датчик МП из секционированных катушек, смонтированных в ортогональных плоскостях, закрепленный на штанге с рукояткой; пределы измерения – 10; 100; 1000; 10000 А/м (выбор предела измерения осуществляется автоматически); отсчетное устройство – цифровое; погрешность измерения – < 10 %; питание – комбинированное.

Основные эксплуатационные характеристики: возможность работы в условиях воздействия ЭП частотой 50 Гц (при Е < 50 кВ/м); допустимая температура окружающей среды – 10 – 30 °С; относительная влажность воздуха – не более 90 %.

Измеритель магнитной индукции промышленной частоты ИМП-50 измеряет действующее значение индукции переменного МП; датчик трехкоординатный; частотный диапазон – 50±1 Гц; диапазон измерений – 0.01 мкТл – 10 мТл; погрешность измерения – < 10 %; относительная влажность – до 98 %; питание – автономное.

Для измерения напряженности постоянного магнитного поля используются также приборы Ш1-8 и Ф4355 , имеющие диапазон измерений 0 – 1600 кА/м, а также прибор Г-79 с диапазоном измерений 0 – 15 кА/м в частотном диапазоне 0.02 – 20 кГц.

После проведения измерений необходимо оформлять протокол. В протокол вносятся следующие данные:

– наименование объекта;

– реквизиты организации, проводящей измерения;

– дата проведения измерений;

– характеристика средства измерения (тип, заводской номер, пределы измерений, основная погрешность, дата последней поверки);

– Ф.И.О., должность представителя организации – владельца электроустановки;

– план размещения оборудования с указанием расположения рабочих мест и точек измерения;

– рабочий ток в источнике МП во время проведения измерений;

– сведения о методике измерений;

– температура и относительная влажность воздуха;

– результаты измерений;

– заключение (выводы) с оценкой соответствия измеренных уровней МП предельно допустимым уровням;

– фамилии и должности лиц, производивших измерения;

Вектор напряжённости магнитного поля как вспомогательный вектор для описания поля в магнетиках

Когда мы рассматриваем магнитное поле в вакууме при отсутствии магнетиков, магнитное поле порождается токами проводимости и выполняется равенство:

где $\overrightarrow{j}$ -- вектор плотности токов проводимости.

В магнетиках поле возникает благодаря токам проводимости и молекулярным токам ($\overrightarrow{j_m}$), что необходимо учитывать. Для молекулярных токов имеет место векторное равенство:

где $\overrightarrow{j_m}$ -- объемная плотность молекулярных токов, $\overrightarrow{J\ }$ - вектор намагниченности. Так, при наличии магнетиков выражение (1) с учетом равенства (2) примет вид:

Выразим ток проводимости из уравнения (3), получим:

Определение вектора напряженности магнитного поля

Вектором напряженности магнитного поля называют вектор, равный:

Напряженность магнитного поля не является чисто полевой величиной, так как включает вектор $\overrightarrow{J\ },\ $который является характеристикой намагниченности среды. По своему значению $\overrightarrow{H}$ является вспомогательным вектором и играет роль подобную вектору электрического смещения $\overrightarrow{D\ }\ $в электричестве.

Основные уравнения для вектора напряженности

Из определения вектора $\overrightarrow{H}$ и уравнения (4), следует весьма удобное уравнение для вычисления поля в магнетиках:

Закон полного тока при наличии магнетиков имеет вид:

Формула (7) выражает теорему о циркуляции вектора напряженности магнитного поля, которая гласит:

Теорема

«Циркуляция вектора напряженности магнитного поля по некоторому контуру равна алгебраической сумме макроскопических токов, которые охвачены заданным контуром».

В вакууме $\overrightarrow{J\ }=0$, тогда:

\[\overrightarrow{H}=\frac{\overrightarrow{B}}{{\mu }_0}\left(8\right).\]

Напряженность поля прямолинейного бесконечного проводника в вакууме определяется формулой:

где $b$ -- расстояние от проводника до точки, где рассматривается поле. Из формулы (9) определяется размерность напряженности магнитного поля. Основная единица напряженности в системе СИ -- ампер деленный на метр ($\frac{А}{м}$).

Связь и вектора напряженности магнитного поля с намагниченностью и вектором магнитной индукции

Обычно вектор намагниченности ($\overrightarrow{J}$) связывают с вектором напряженности в каждой точке магнетика:

\[\overrightarrow{J}=\varkappa \overrightarrow{H}\left(10\right),\]

где $\varkappa $ -- магнитная восприимчивость, безразмерная величина. Для неферромагнитных веществ и в не больших полях $\varkappa $ не зависит от напряженности. В анизотропных средах $\varkappa $ является тензором и направления $\overrightarrow{J}$ и $\overrightarrow{H}$ не совпадают.

Помимо магнитной восприимчивости в магнетиках используют другую безразмерную физическую величину, которая характеризует магнитные свойства вещества -- это относительная магнитная проницаемость (или просто магнитная проницаемость ($\mu $)) вещества. Причем:

\[\mu =1+\varkappa \ \left(11\right).\]

Тогда между индукцией магнитного поля в магнетике и напряженностью магнитного поля существует следующая связь:

\[\overrightarrow{B}=\mu {\mu }_0\overrightarrow{H}\left(12\right).\]

Формула (12) показывает, что в изотропных средах векторы $\overrightarrow{B}$ и $\overrightarrow{H}$ имею одинаковое направление, однако по модулю напряженность поля в $\mu {\mu }_0$ раз меньше.

Пример 1

Задание: По оси бесконечного прямого круглого цилиндра радиуса R течет ток силы I. Магнитная проницаемость вещества цилиндра равна $\mu $. Вне цилиндра вакуум (${\mu }_v=1$). Найдите формулу для вычисления напряженности во всех точках пространства.

Пусть ток течет в направлении оси Z. Линиями напряженности такого цилиндра являются концентрические окружности с центрами, которые лежат на оси цилиндра.

В качестве контура интегрирования (L) возьмем окружность радиусом r, центр окружности лежит на оси цилиндра, плоскость окружности перпендикулярна току. По закону полного тока для напряженности магнитного поля имеем:

\[\oint\limits_L{\overrightarrow{H\ }\overrightarrow{dl}}=H_{\varphi }2\pi r=I\left(1.1\right).\]

Из (1.1) выразим напряженность поле, получим:

где $H_{\varphi }$ -- напряжённость магнитного поля, касательная к окружности. В таком случае индукция магнитного поля равна:

На границе цилиндра индукция магнитного поля терпит разрыв.

Ответ: $B_{\varphi }=\left\{ \begin{array}{c} \mu {\mu }_0H_{\varphi }=\mu {\mu }_0\frac{I}{2\pi r}\ (при\ 0\le r\le R) \\ {\mu }_0H_{\varphi }={\mu }_0\frac{I}{2\pi r}\left(при\ r\ge R\right). \end{array} \right.$.

Пример 2

Задание: Найдите намагниченность меди и магнитную индукцию поля, если удельная магнитная восприимчивость вещества ${\varkappa }_u=-1,1\cdot {10}^{-9}\frac{м^3}{кг}.$ Напряженность магнитного поля равна ${10}^6\frac{А}{м}$.

Магнитная восприимчивость ($\varkappa $) связана с удельной магнитной восприимчивостью (${\varkappa }_u$) соотношением:

\[\varkappa =\rho {\varkappa }_u\left(2.1\right),\]

где $\rho =8930\frac{кг}{м^3}$ -- массовая плотность меди.

Намагниченность имеет связь с напряженностью магнитного поля, которая имеет вид (считаем медь изотропной):

Индукция магнитного поля, также связана с напряженностью:

Так как все величины даны в СИ, проведем вычисления:

\ \

Ответ: $J=-9,823\frac{А}{м},\ B=1,26\ Тл.$