Объем пирамиды треугольной прямоугольной. Как найти объем прямоугольной пирамиды

Здесь разберём примеры связанные с понятием объёма. Для решения подобных заданий обязательно нужно знать формулу объёма пирамиды:

S

h – высота пирамиды

Основанием может быть любой многоугольник. Но в большинстве задач на ЕГЭ речь в условии, как правило, идёт о правильных пирамидах. Напомню одно из её свойств:

Вершина правильной пирамиды проецируется в центр её основания

Посмотрите на проекцию правильной треугольной, четырёхугольной и шестиугольной пирамид (ВИД СВЕРХУ):


Можете на блоге, где разбирались задачи связанные с нахождением объёма пирамиды. Рассмотрим задачи:

27087. Найдите объем правильной треугольной пирамиды, стороны основания которой равны 1, а высота равна корню из трёх.

S – площадь основания пирамиды

h – высота пирамиды

Найдём площадь основания пирамиды, это правильный треугольник. Воспользуемся формулой – площадь треугольника равна половине произведения соседних сторон на синус угла между ними, значит:

Ответ: 0,25

27088. Найдите высоту правильной треугольной пирамиды, стороны основания которой равны 2, а объем равен корню из трёх.

Такие понятия как высота пирамиды и характеристики её основания связаны формулой объёма:

S – площадь основания пирамиды

h – высота пирамиды

Сам объём нам известен, площадь основания можем найти, так как известны стороны треугольника, который является основанием. Зная указанные величины без труда найдём высоту.

Для нахождения площади основания воспользуемся формулой – площадь треугольника равна половине произведения соседних сторон на синус угла между ними, значит:

Таким образом, подставив данные значения в формулу объема можем вычислить высоту пирамиды:

Высота равна трём.

Ответ: 3

27109. В правильной четырехугольной пирамиде высота равна 6, боковое ребро равно 10. Найдите ее объем.

Объём пирамиды вычисляется по формуле:

S – площадь основания пирамиды

h – высота пирамиды

Высота нам известна. Необходимо найти площадь основания. Напомню, что вершина правильной пирамиды проецируется в центр её основания. Основанием правильной четырёхугольной пирамиды является квадрат. Мы можем найти его диагональ. Рассмотрим прямоугольный треугольник (выделен синим):

Отрезок соединяющий центр квадрата с точкой В это катет, который равен половине диагонали квадрата. Этот катет можем вычислить по теореме Пифагора:

Значит BD = 16. Вычислим площадь квадрата воспользовавшись формулой площади четырёхугольника:

Следовательно:

Таким образом, объём пирамиды равен:

Ответ: 256

27178. В правильной четырехугольной пирамиде высота равна 12, объем равен 200. Найдите боковое ребро этой пирамиды.

Высота пирамиды и её и объём известны, значит можем найти площадь квадрата, который является основанием. Зная площадь квадрата, мы сможем найти его диагональ. Далее рассмотрев прямоугольный треугольник по теореме Пифагора вычислим боковое ребро:

Найдём площадь квадрата (основания пирамиды):

Вычислим диагональ квадрата. Так как его площадь равна 50, то сторона будет равна корню из пятидесяти и по теореме Пифагора:

Точка О делит диагональ BD пополам, значит катет прямоугольного треугольника ОВ = 5.

Таким образом, можем вычислить чему равно боковое ребро пирамиды:

Ответ: 13

245353. Найдите объем пирамиды, изображенной на рисунке. Ее основанием является многоугольник, соседние стороны которого перпендикулярны, а одно из боковых ребер перпендикулярно плоскости основания и равно 3.

Как уже неоднократно было сказано – объём пирамиды вычисляется по формуле:

S – площадь основания пирамиды

h – высота пирамиды

Боковое ребро перпендикулярное основанию равно трём, это означает, что высота пирамиды равна трём. Основания пирамиды – это многоугольник, площадь которого равна:

Таким образом:

Ответ: 27

27086. Основанием пирамиды является прямоугольник со сторонами 3 и 4. Ее объем равен 16. Найдите высоту этой пирамиды.

На этом всё. Успеха Вам!

С уважением, Александр Крутицких.

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

Прямоугольной называется пирамида, одно из ребер которой перпендикулярно ее основанию, то есть стоит под углом 90˚. Это ребро является одновременно и высотой прямоугольной пирамиды. Формулу объема пирамиды впервые вывел Архимед.

Вам понадобится

  • - ручка;
  • - бумага;
  • - калькулятор.

Инструкция

  • В прямоугольной пирамиде высотой будет ее ребро, которое стоит под углом 90˚ к основанию. Как правило, площадь основания прямоугольной пирамиды обозначают как S, а высоту, которая одновременно является ребром пирамиды, − h. Тогда, чтобы найти объем этой пирамиды, необходимо площадь ее основания умножить на высоту и разделить на 3. Таким образом, объем прямоугольной пирамиды вычисляется с помощью формулы: V=(S*h)/3.
  • Прочитайте условие задачи. Допустим, дана прямоугольная пирамида ABCDES. В ее основании лежит пятиугольник, площадь которого 45 см². Длина высоты SE равна 30 см.

  • Постройте пирамиду, следуя заданным параметрам. Ее основание обозначьте латинскими буквами ABCDE, а вершину пирамиды - S. Так как чертеж получится на плоскости в проекции, то для того, чтобы не запутаться, обозначьте уже известные вам данные: SE=30см; S(ABCDE)=45 см².
  • Вычислите объем прямоугольной пирамиды, используя формулу. Подставив данные и сделав подсчеты, получится, что объем прямоугольной пирамиды будет равен: V=(45*30)/3=см³.
  • Если в условии задачи нет данных о площади основания и высоте пирамиды, то нужно провести дополнительные вычисления для получения этих величин. Площадь основания будет вычисляться в зависимости от того, какой многоугольник лежит в ее основании.
  • Высоту пирамиды узнаете, если известна гипотенуза любого из прямоугольных треугольников EDS или EAS и угол, под которым наклонена боковая грань SD или SA к ее основанию. Вычислите катет SE по теореме синусов. Он и будет являться высотой прямоугольной пирамиды.

Четырехугольной пирамидой называется многогранник, в основании которого лежит квадрат, а все боковые грани являются одинаковыми равнобедренными треугольниками.

У данного многогранника есть множество различных свойств:

  • Его боковые ребра и прилегающие к ним двугранные углы равны между собой;
  • Площади боковых граней одинаковы;
  • В основании правильной четырехугольной пирамиды лежит квадрат;
  • Высота, опущенная из вершины пирамиды, пересекается с точкой пересечения диагоналей основания.

Все эти свойства помогают легко находить . Однако довольно часто помимо нее требуется рассчитать объем многогранника. Для этого применяется формула объема четырехугольной пирамиды:

То есть объем пирамиды равен одной третьей произведения высоты пирамиды на площадь основания. Так как равна произведению его равных сторон, то мы сразу вписываем в выражение объема формулу площади квадрата.
Рассмотрим пример расчета объема четырехугольной пирамиды.

Пусть дана четырехугольная пирамида, в основании которой лежит квадрат со стороной a = 6 см. Боковая грань пирамиды равна b = 8 см. Найдите объем пирамиды.

Чтобы найти объем заданного многогранника, нам потребуется длина его высоты. Поэтому мы найдем ее, применив теорему Пифагора. Для начала рассчитаем длину диагонали. В синем треугольнике она будет гипотенузой. Стоит также помнить, что диагонали квадрата равны между собой и в точке пересечения делятся пополам:


Теперь из красного треугольника найдем необходимую нам высоту h . Она будет равна:

Подставим необходимые значения и найдем высоту пирамиды:

Теперь, зная высоту, можем подставлять все значения в формулу объема пирамиды и рассчитывать необходимую величину:

Вот таким образом, зная несколько простых формул, мы смогли рассчитать объем правильной четырехугольной пирамиды. Не забывайте, что данная величина измеряется в кубических единицах.

h - высота пирамиды

S - площадь основания ABCDE

V - объем пирамиды

В геометрии пирамидой называют тело, которое имеет в основании многоугольник, а все его грани представляют собой треугольники с общей вершиной. В зависимости от того, какая именно фигура лежит в основании, пирамиды подразделяются на треугольные, четырехугольные, пятиугольные и т.д. Кроме того, различают правильные, усеченные, прямоугольные и произвольные пирамиды. Формула для вычисления объема этого тела не отличается сложностью и всем известна из школьного курса геометрии.

Классическим примером использования пирамид в архитектуре являются египетские гробницы фараонов, многие из которых имеют именно такую форму. Следует заметить, что аналогичные сооружения (хотя и несколько видоизмененные) встречаются и в других частях света и странах, например, в Мексике и Китае, причем характерно, что практически везде являются или усыпальницами, или культовыми сооружениями. Конечно, при их проектировании древние архитекторы вряд ли стремились определить объем своих детищ, а вот их «последователям» делать это наверняка приходится.

Современные зодчие также порой создают пирамидальные здания , в которых чаще всего располагаются объекты социально-культурного назначения (торгово-развлекательные комплексы, выставочные галереи и т.п.), и при этом рассчитывать объем этих сооружений необходимо для того, чтобы они соответствовали принятым строительным нормам, правилам и нормативам. Кроме того, точное значение этой величины требуется для того, чтобы наиболее рационально разместить в строении инженерные коммуникации.

В последние годы все большую популярность завоевывают теплицы, имеющие форму пирамиды . Чаще всего они возводятся из прозрачного поликарбоната и, как утверждают их разработчики, имеют существенные преимущества перед традиционными. Поскольку при одной и той же общей площади основания объем содержащегося в них воздуха примерно в три раза меньше, то и нагревается он существенно быстрее. К тому же, распределяется он более рационально, поскольку пространства для самого теплого газа, скапливающегося вверху, в пирамидальной теплице также меньше.

Пирамиды часто можно встретить и в обычных квартирах, загородных домах и коттеджах. Их форму нередко имеют раструбы кухонных вытяжек, использующихся для эффективного отвода из помещений горячего воздуха, дыма и гари. В виде усеченных пирамид часто изготавливаются те элементы вентиляционных систем, которые применяются для сочленения воздуховодов, обладающих различным сечением.

Одной из самых популярных головоломок является так называемая «пирамидка Мефферта », которую нередко называют «тетраэдром Рубика », хотя венгерский архитектор и изобретатель не имеет к ней никакого отношения. Каждая из ее граней разделена на девять разноцветных правильных треугольников, и цель играющего состоит в том, чтобы привести игрушку в такой вид, чтобы на каждой отдельной грани все ее элементы имели одинаковый цвет.

Пирамида - это многогранник, в основании которого лежит многоугольник. Все грани в свою очередь образуют треугольники, которые сходятся в одной вершине. Пирамиды бывают треугольными, четырехугольными и так далее. Для того чтобы определить, какая пирамида перед вами, достаточно посчитать количество углов в ее основании. Определение "высота пирамиды" очень часто встречается в задачах по геометрии в школьной программе. В статье попробуем рассмотреть разные способы ее нахождения.

Части пирамиды

Каждая пирамида состоит из следующих элементов:

  • боковые грани, которые имеют по три угла и сходятся в вершине;
  • апофема представляет собой высоту, которая опускается из ее вершины;
  • вершина пирамиды - это точка, которая соединяет боковые ребра, но при этом не лежит в плоскости основания;
  • основание - это многоугольник, на котором не лежит вершина;
  • высота пирамиды представляет собой отрезок, который пересекает вершину пирамиды и образует с ее основанием прямой угол.

Как найти высоту пирамиды, если известен ее объем

Через формулу V = (S*h)/3 (в формуле V - объем, S - площадь основания, h - высота пирамиды) находим, что h = (3*V)/S. Для закрепления материала давайте сразу же решим задачу. В треугольной основания равна 50 см 2 , тогда как ее объем составляет 125 см 3 . Неизвестна высота треугольной пирамиды, которую нам и необходимо найти. Здесь все просто: вставляем данные в нашу формулу. Получаем h = (3*125)/50 = 7,5 см.

Как найти высоту пирамиды, если известна длина диагонали и ее ребра

Как мы помним, высота пирамиды образует с ее основанием прямой угол. А это значит что высота, ребро и половина диагонали вместе образуют Многие, конечно же, помнят теорему Пифагора. Зная два измерения, третью величину найти будет несложно. Вспомним известную теорему a² = b² + c², где а - гипотенуза, а в нашем случае ребро пирамиды; b - первый катет или половина диагонали и с - соответственно, второй катет, или высота пирамиды. Из этой формулы c² = a² - b².

Теперь задачка: в правильной пирамиде диагональ равна 20 см, когда как длина ребра - 30 см. Необходимо найти высоту. Решаем: c² = 30² - 20² = 900-400 = 500. Отсюда с = √ 500 = около 22,4.

Как найти высоту усеченной пирамиды

Она представляет собой многоугольник, который имеет сечение параллельно ее основанию. Высота усеченной пирамиды - это отрезок, который соединяет два ее основания. Высоту можно найти у правильной пирамиды, если будут известны длины диагоналей обоих оснований, а также ребро пирамиды. Пусть диагональ большего основания равна d1, в то время как диагональ меньшего основания - d2, а ребро имеет длину - l. Чтобы найти высоту, можно с двух верхних противоположных точек диаграммы опустить высоты на ее основание. Мы видим, что у нас получились два прямоугольных треугольника, остается найти длины их катетов. Для этого из большей диагонали вычитаем меньшую и делим на 2. Так мы найдем один катет: а = (d1-d2)/2. После чего по теореме Пифагора нам остается лишь найти второй катет, который и является высотой пирамиды.

Теперь рассмотрим все это дело на практике. Перед нами задача. Усеченная пирамида имеет в основании квадрат, длина диагонали большего основания равняется 10 см, в то время как меньшего - 6 см, а ребро равняется 4 см. Требуется найти высоту. Для начала находим один катет: а = (10-6)/2 = 2 см. Один катет равен 2 см, а гипотенуза - 4 см. Получается, что второй катет или высота будет равна 16-4 = 12, то есть h = √12 = около 3,5 см.