Округление до 3 знака. Как округлить до десятых

Предположим, что вы хотите округлить число до ближайшего целого, так как десятичные значения вам не важны, или представить число в виде степени 10, чтобы упростить приблизительные вычисления. Существует несколько способов округления чисел.

Изменение количества знаков после запятой без изменения значения

На листе

Во встроенном числовом формате

Округление числа вверх

Округление числа до ближайшего значения

Округление числа до ближайшего дробного значения

Округление числа до указанного количества значимых разрядов

Значимые разряды - это разряды, которые влияют на точность числа.

В примерах этого раздела используются функции ОКРУГЛ , ОКРУГЛВВЕРХ и ОКРУГЛВНИЗ . Они показывают способы округления положительных, отрицательных, целых и дробных чисел, но приведенные примеры охватывают лишь небольшую часть возможных ситуаций.

В приведенном ниже списке содержатся общие правила, которые необходимо учитывать при округлении чисел до указанного количества значимых разрядов. Вы можете поэкспериментировать с функциями округления и подставить собственные числа и параметры, чтобы получить число с нужным количеством значимых разрядов.

    Округляемые отрицательные числа прежде всего преобразуются в абсолютные значения (значения без знака "минус"). После округления знак "минус" применяется повторно. Хотя это может показаться нелогичным, именно так выполняется округление. Например, при использовании функции ОКРУГЛВНИЗ для округления числа -889 до двух значимых разрядов результатом является число -880. Сначала -889 преобразуется в абсолютное значение (889). Затем это значение округляется до двух значимых разрядов (880). После этого повторно применяется знак "минус", что дает в результате -880.

    При применении к положительному числу функции ОКРУГЛВНИЗ оно всегда округляется вниз, а при применении функции ОКРУГЛВВЕРХ - вверх.

    Функция ОКРУГЛ округляет дробные числа следующим образом: если дробная часть больше или равна 0,5, число округляется вверх. Если дробная часть меньше 0,5, число округляется вниз.

    Функция ОКРУГЛ округляет целые числа вверх или вниз аналогичным образом, при этом вместо делителя 0,5 используется 5.

    В общем при округлении числа без дробной части (целого числа) необходимо вычесть длину числа из нужного количества значимых разрядов. Например, чтобы округлить 2345678 вниз до 3 значимых разрядов, используется функция ОКРУГЛВНИЗ с параметром -4: = ОКРУГЛВНИЗ(2345678,-4) . При этом число округляется до значения 2340000, где часть "234" представляет собой значимые разряды.

Округление числа до заданного кратного

Иногда может потребоваться округлить значение до кратного заданному числу. Например, допустим, что компания поставляет товары в ящиках по 18 единиц. С помощью функции ОКРУГЛТ можно определить, сколько ящиков потребуется для поставки 204 единиц товара. В данном случае ответом является 12, так как число 204 при делении на 18 дает значение 11,333, которое необходимо округлить вверх. В 12-м ящике будет только 6 единиц товара.

Может также потребоваться округлить отрицательное значение до кратного отрицательному или дробное - до кратного дробному. Для этого также можно применять функцию ОКРУГЛТ .

Округление мы часто используем в повседневной жизни. Если расстояние от дома до школы будет 503 метра. Мы можем сказать, округлив значение, что расстояние от дома до школы 500 метров. То есть мы приблизили число 503 к более легко воспринимающемуся числу 500. Например, булка хлеба весит 498 грамм, то можно сказать округлив результат, что булка хлеба весит 500 грамм.

Округление – это приближение числа к более “легкому” числу для восприятия человека.

В итоге округления получается приближенное число. Округление обозначается символом ≈, такой символ читается “приближённо равно”.

Можно записать 503≈500 или 498≈500.

Читается такая запись, как “пятьсот три приближенно равно пятистам” или “четыреста девяносто восемь приближенно равно пятистам”.

Разберем еще пример:

44 71≈4000 45 71≈5000

43 71≈4000 46 71≈5000

42 71≈4000 47 71≈5000

41 71≈4000 48 71≈5000

40 71≈4000 49 71≈5000

В данном примере было произведено округление чисел до разряда тысяч. Если посмотреть закономерность округления, то увидим, что в одном случае числа округляются в меньшую сторону, а в другом – в большую. После округления все остальные числа после разряда тысяч заменили на нули.

Правила округления чисел:

1) Если округляемая цифра равна 0, 1, 2, 3, 4, то цифра разряда до которого идет округление не меняется, а остальные числа заменяются нулями.

2) Если округляемая цифра равна 5, 6, 7, 8, 9, то цифра разряда до которого идет округление становиться на 1 больше, а остальные числа заменяются нулями.

Например:

1) Выполните округление до разряда десятков числа 364.

Разряд десятков в данном примере это число 6. После шестерки стоит число 4. По правилу округления цифра 4 разряд десятков не меняет. Записываем вместо 4 нуль. Получаем:

36 4 ≈360

2) Выполните округление до разряда сотен числа 4 781.

Разряд сотен в данном примере это число 7. После семерки стоит цифра 8, которая влияет на то измениться ли разряд сотен или нет. По правилу округления цифра 8 увеличивает разряд сотен на 1, а остальные цифры заменяем нулями. Получаем:

47 8 1≈48 00

3) Выполните округление до разряда тысяч числа 215 936.

Разряд тысяч в данном примере это число 5. После пятерки стоит цифра 9, которая влияет на то измениться ли разряд тысяч или нет. По правилу округления цифра 9 увеличивает разряд тысяч на 1, а остальные цифры заменяются нулями. Получаем:

215 9 36≈216 000

4) Выполните округление до разряда десятков тысяч числа 1 302 894.

Разряд тысяч в данном примере это число 0. После нуля стоит цифра 2, которая влияет на то измениться ли разряд десятков тысяч или нет. По правилу округления цифра 2 разряд десятков тысяч не меняет, заменяем на нуль этот разряд и все разряды младшие разряды. Получаем:

130 2 894≈130 0000

Если точное значение числа неважно, то значение числа округляют и можно выполнять вычислительные операции с приближенными значениями . Результат вычисления называют прикидкой результата действий .

Например: 598⋅23≈600⋅20≈12000 сравним с 598⋅23=13754

Прикидкой результата действий пользуются для того, чтобы быстро посчитать ответ.

Примеры на задания по теме округление:

Пример №1:
Определите до какого разряда сделано округление:
а) 3457987≈3500000 б)4573426≈4573000 в)16784≈17000
Вспомним какие бывают разряды на числе 3457987.

7 – разряд единиц,

8 – разряд десятков,

9 – разряд сотен,

7 – разряд тысяч,

5 – разряд десятков тысяч,

4 – разряд сотен тысяч,
3 – разряд миллионов.
Ответ: а) 3 4 57 987≈3 5 00 000 разряд сотен тысяч б) 4 573 426≈4 573 000 разряд тысяч в)16 7 841≈17 0 000 разряд десятков тысяч.

Пример №2:
Округлите число до разрядов 5 999 994: а) десятков б) сотен в) миллионов.
Ответ: а) 5 999 994 ≈5 999 990 б) 5 999 99 4≈6 000 000 (т.к. разряды сотен, тысяч, десятков тысяч, сотен тысяч цифра 9, каждый разряд увеличился на 1) 5 9 99 994≈6 000 000.

Чтобы рассмотреть особенность округления того или иного числа, необходимо проанализировать конкретные примеры и некоторую основную информацию.

Как округлять числа до сотых

  • Для округления числа до сотых необходимо оставлять после запятой две цифры, остальные, конечно же, отбрасываются. Если первая цифра, которая отбрасывается, это 0, 1, 2, 3 или 4, то предыдущая цифра остается неизменной.
  • Если же отбрасываемая цифра – это 5, 6, 7, 8 или 9, то нужно увеличить предыдущую цифру на единицу.
  • К примеру, если нужно округлить число 75,748 , то после округления мы получаем 75,75 . Если мы имеем 19,912 , то в результате округления, а точнее, в отсутствии необходимости его использования, мы получаем 19,91 . В случае с 19,912 цифра, которая идет после сотых, не округляется, поэтому она просто отбрасывается.
  • Если речь идет о числе 18,4893 , то округление до сотых происходит следующим образом: первая цифра, которую нужно отбросить, это 3, поэтому никаких изменений не происходит. Получается 18,48 .
  • В случае с числом 0,2254 мы имеем первую цифру, которая отбрасывается при округлении до сотых. Это пятерка, которая указывает на то, что предыдущее число нужно увеличить на единицу. То есть, мы получаем 0,23 .
  • Бывают и случаи, когда округления изменяет все цифры в числе. К примеру, чтобы округлить до сотых число 64,9972 , мы видим, что число 7 округляет предыдущие. Получаем 65,00 .

Как округлять числа до целых

При округлении чисел до целых ситуация такая же. Если мы имеем, к примеру, 25,5 , то после округления мы получаем 26 . В случае с достаточным количеством цифр после запятой округление происходит таким образом: после округления 4,371251 мы получаем 4 .

Округление до десятых происходит таким же образом, как и в случае с сотыми. К примеру, если нужно округлить число 45,21618 , то мы получаем 45,2 . Если вторая цифра после десятой – это 5 или больше, то предыдущая цифра увеличивается на единицу. В качестве примера можно округлить 13,6734 , и в итоге получится 13,7 .

Важно обращать внимание на цифру, которая расположена перед той, которая отсекается. К примеру, если мы имеет число 1,450 , то после округления получаем 1,4 . Однако в случае с 4,851 целесообразно округлять до 4,9 , так как после пятерки еще идет единица.

Поймите значения цифр в десятичных долях. В любом числе различные цифры представляют собой различные разряды. Например, в числе 1872 единица представляет тысячи, восьмерка – сотни, семерка – десятки, двойка – единицы. Если в числе имеется десятичная запятая, то цифры справа от нее отражают дроби от целого числа .

  • Определите разряд десятичной дроби, до которого хотите ее округлить. Первым шагом в округлении десятичных дробей является определение места, до которого требуется округлить число . Если вы делаете домашнюю работу, то это обычно определено условием задания. Зачастую в условии может быть указана необходимость округлить ответ до десятых, сотых или тысячных знаков после запятой.

    • Например, если стоит задача округления числа 12, 9889 до тысячных долей, начать следует с выявления расположения этих тысячных долей. Отсчитайте знаки от запятой как десятые, сотые, тысячные, после которых идут десятитысячные . Вторая восьмерка будет как раз тем, что вам необходимо (12,988 9).
    • Иногда в условии может указываться конкретное место для округления (например, "округление до третьего знака после запятой" означает то же самое, что и "округление до тысячных").
  • Посмотрите на цифру справа от необходимого места округления. Теперь следует узнать цифру, которая стоит справа от места, до которого вы производите округление. В зависимости от этой цифры вы будете производить округление в большую или в меньшую сторону (вверх или вниз).

    • Во взятом ранее примере числа (12,9889) необходимо произвести округление до тысячных (12,988 9), поэтому теперь следует посмотреть на цифру справа от тысячной доли, а именно на последнюю девятку (12,9889 ).
  • Если эта цифра больше или равна пяти, то производится округление в большую сторону. Для большей ясности, если справа от места округления стоит цифра 5, 6, 7, 8 или 9, то производится округление в большую сторону. Другими словами, необходимо увеличить цифру на округляемом месте на единицу, а остальные цифры справа от нее отбросить.

    • Во взятом примере (12,9889) последняя девятка больше пятерки, поэтому мы будем округлять тысячные в большую сторону. Округленное число предстанет в виде 12,989 . Обратите внимание, что после места округления цифры отброшены.
  • Если эта цифра меньше пяти, то производится округление в меньшую сторону. То есть, если справа от места округления стоит цифра 4, 3, 2, 1 или 0, то производится округление в меньшую сторону. Что означает необходимость оставить цифру на месте округления в том виде, в каком она есть, и отбросить цифры справа от нее.

    • Вы не можете округлить число 12,9889 в меньшую сторону, так как последняя девятка не представляет собой четверку или меньшую цифру. Однако, если бы рассматриваемым числом было 12,9884 , то его можно бы было округлить до 12,988 .
    • Процедура кажется знакомой? Это связано с тем, таким же образом округляются и целые числа, а наличие запятой ничего не меняет.
  • Пользуйтесь тем же методом для округления десятичных дробей до целых цифр. Зачастую задачей устанавливается необходимость округления ответа до целых. В этом случае необходимо воспользоваться вышеуказанным способом.

    • Другими словами, найдите место расположения целых единиц числа, посмотрите на цифру справа. Если она больше или равна пяти, то округлите целое число в большую сторону. Если она меньше или равна четырем, то округлите целое число в меньшую сторону. Наличие запятой между целой частью числа и его десятичной дробью ничего не меняет.
    • Например, если вам требуется округлить вышеприведенное число (12,9889) до целых, то вы начнете с определения места расположения целых единиц числа: 12 ,9889. Так как девятка справа от этого места больше пяти, то производим округление вверх до 13 целых. Так как ответ представлен целым числом, то писать запятую больше нет необходимости.
  • Обращайте внимание на указания к округлению. Вышеупомянутые инструкции к округлению являются общепринятыми. Однако бывают ситуации, когда даются особые требования к округлению, не забывайте их прочесть, прежде чем сразу же прибегать к общепринятым правилам округления.

    • Например, если в требованиях сказано производить округление до десятых в меньшую сторону, то в числе 4,59 вы оставите пятерку, несмотря на то, что девятка справа от нее обычно должна приводить к округлению в большую сторону. Это даст вам результатом 4,5 .
    • Аналогичным образом, если вам сказано округлить число 180,1 до целых в большую сторону , то у вас получится 181 .