Процентный состав выдыхаемого воздуха. Система дыхания сущность и значение дыхания для организма

Состав вдыхаемого и выдыхаемого воздуха

Наименование параметра Значение
Тема статьи: Состав вдыхаемого и выдыхаемого воздуха
Рубрика (тематическая категория) Спорт

Физиология дыхания

Жизнедеятельность живого организма связана с поглощением им О 2 и выделœением СО 2 . По этой причине в понятие дыхание входят всœе процессы, связанные с доставкой О 2 из внешней среды внутрь клеток и выделœением СО 2 из клетки в окружающую среду.

Под физиологией дыхания понимают следующие процессы: внешнее дыхание, газообмен в легких, транспорт газов кровью, тканевое и клеточное дыхание.

Внешнее дыхание осуществляется дыхательным аппаратом человека. К нему относятся грудная клетка с мышцами, приводящими ее в движение и легкие с воздухоносными путями. Главными дыхательными мышцами являются диафрагма и межреберные мышцы – внутренние и наружные.

При вдохе происходит сокращение мышечных волокон диафрагмы, она уплощается и опускается вниз. При этом грудная клетка увеличивается в вертикальном направлении. Сокращение наружных реберных мышц поднимает ребра и отодвигает их в стороны, а грудину – вперед. При этом грудная клетка расширяется в поперечном и переднезаднем направлениях. При расширении грудной полости пассивно расширяются и легкие за счёт атмосферного давления, действующего через воздухоносные пути на внутреннюю поверхность легких. При расширении легких воздух в них распределяется в большем объёме и давление в полости легких становится ниже атмосферного (на 3-4мм.рт.ст.). Разность давления является причиной того, что атмосферный воздух начинает поступать в легкие – происходит вдох.

Выдох осуществляется в результате расслабления дыхательных мышц. Когда прекращается их сокращение грудная клетка опускается и возвращается в исходное положение. Расслабившаяся диафрагма поднимается вверх и принимает форму купола. Растянутые легкие уменьшаются в объёме. Все вместе взятое приводит к повышению внутрилегочного давления. Воздух выходит из легких наружу – происходит выдох.

Газообмен или вентиляция легких - ϶ᴛᴏ объём воздуха, проходящий через легкие в одну минуту – минутный объём дыхания. В покое он равен – 5-8 л/мин, при мышечной работе увеличивается.

Человек вдыхает атмосферный воздух, в котором содержится 20,94% кислорода, 78,03% азота͵ 0,03% углекислого газа. Выдыхаемый воздух содержит кислорода меньше (16,3%) и 4% углекислого газа. За счёт разности парционального давления О 2 во вдыхаемом и выдыхаемом воздухе, кислород из воздуха поступает в альвеолы легких. Парциональное давление СО 2 в капиллярах венозной крови равно 47мм.рт.ст., а парциональное давление СО 2 в альвеолах равно 40. За счёт разности парционального давления СО 2 из венозной крови выходит в воздух. Азот в газообмене не участвует. Условия газообмена в легких настолько благоприятны, что, не смотря на то, что время прохождения крови через капилляры легких составляет около 1 секунды, напряжение газов в альвеолярной крови, оттекающих от легких таково, каким оно было бы и после длительного контакта.

В случае если вентиляция легких недостаточна и в альвеолах повышается содержание СО 2 ,то повышается уровень СО 2 и в крови, что немедленно приводит к усилению дыхания – одышке.

Перенос газов кровью.

Газы очень слабо растворяются в жидкости: 100мл крови могут физически растворить около 2% кислорода и 3-4% углекислого газа. Но в эритроцитах крови содержится гемоглобин, который способен химически связывать О 2 и СО 2 . Соединœение гемоглобина с кислородом принято называть оксигемоглобин Hb+О 2 ®HbО 2 , который содержится в артериальной крови. Оксигемоглобин – не прочное соединœение если учесть, что в крови человека содержится около 15% гемоглобина, то 100мл крови могут принœести до 21мл О 2 . Это так называемая кислородная емкость крови. Оксигемоглобин с артериальной кровью направляется к тканям и клеткам, где в результате непрерывно идущих окислительных процессов потребляется О 2 . Гемоглобин подхватывает выделившийся из тканей углекислый газ и образуется непрочное соединœение HbСО 2 – карбгемоглобин. В такое соединœение вступает около 10% выделившегося углекислого газа. Остальная часть соединяется с водой и превращается в угольную кислоту. Эта реакция ускоряется в тысячи раз особым ферментом – карбоангидразой, находящийся в эритроцитах. Далее угольная кислота в тканевых капиллярах реагирует с ионами натрия и калия, образуя бикарбонаты (NaHСО 3 , KHСО 3). Все эти соединœения транспортируются к легким.

Гемоглобин особенно легко соединяется с угарным газом СО 2 (оксид углерода) с образованием карбоксигемоглобина, неспособного к переносу кислорода. Его химическая сродство к гемоглобину почти в 300 раз выше, чем к О 2 . Так при концентрации СО в воздухе, равной 0,1%, около 80% гемоглобина крови оказывается в связи не с кислородом, а с угарным газом. Вследствие этого в организме человека возникают симптомы кислородного голодания (рвота͵ головная боль, потеря сознания). Легкая степень отравления угарным газом является обратимым процессом: СО постепенно отщепляется от гемоглобина и выводится при дыхании свежим воздухом. В тяжелых случаях наступает гибель организма.

Состав вдыхаемого и выдыхаемого воздуха - понятие и виды. Классификация и особенности категории "Состав вдыхаемого и выдыхаемого воздуха" 2017, 2018.

Обмен газов в легких происходит путем диффузии. Газы диффундируют изобласти высокого давления в область низкого давления. В связи с этим кислород проникает из альвеол в венозную кровь, а углекислый газ - из венозной крови в альвеолы. В результате этих процессов кровь обогащается кислородом и становится артериальной.

Транспорт газов кровью. Кислород в основном транспортируется к тканям в составе оксигемоглобина. Небольшое количество углекислого газа переносится в составе карбгемоглобина. Большое количество СО 2 соединяясь с водой, образует угольную кислоту. Угольная кислота в тканевых капиллярах реагирует с солями натрия и калия и превращается в бикарбонаты. Перенос углекислого газа происходит в составе бикарбонатов калия эритроцитов (меньшая часть) и бикарбонатов натрия плазмы (большая часть). Большое значение для образования и распада угольной кислоты имеет фермент карбоангидраза.

Газообмен в тканях происходит по тому же принципу, что и в легких. Диффузия газов в тканях происходит следующим образом. Кислород проникает из крови в тканевую жидкость, а углекислый газ - из тканевой жидкости в кровь. В результате этих процессов клетки тканей обогащаются кислородом, а кровь из артериальной превращается в венозную.

Жизненная емкость легких. При спокойном уровне дыхания между легкими и внешней средой курсирует определенный объем воздуха, называемый дыхательным объемом. Он составляет 500 - 600 мл. После спокойного вдоха человек может дополнительно вдохнуть еще 1500 мл воздуха. Этот объем называют дополнительным объемом вдоха. После спокойного выдоха человек может выдохнуть еще примерно 1500 мл воздуха. Этот объем называется резервным объемом выдоха. Совокупность этих трех объемов составляет жизненную емкость легких (около 3500 мл для взрослого человека).

Общая емкость легких превышает жизненную емкость. Даже при самом глубоком выдохе в легких остается еще примерно 1000 мл так называемого остаточного воздуха.

Дыхательные движения осуществляются благодаря дыхательной мускулатуре, к которой относятся наружные и внутренние межреберные мышцы и диафрагма.

Вдох- активный процесс, при котором происходит сокращение наружных межреберных мышц и диафрагмы. При этом ребра приподнимаются, а диафрагма становится более плоской. В результате объем грудной клетки увеличивается. Давление в плевральной полости падает, и легкие растягиваются. Давление воздуха в них становится ниже атмосферного, и воздух входит в легкие.



При усиленном дыхании в акте вдоха принимают участие все мышцы, способные поднимать ребра и грудину, например, большие и малые грудные мышцы, мышцы плечевого пояса и др.

При выдохе наружные межреберные мышцы и диафрагма расслабляются и сокращаются внутренние межреберные мышцы. Вследствие этого объем грудной клетки уменьшается, легкие сжимаются, давление воздуха в них увеличиваются и воздух выходит наружу.

При активном выдохе сокращаются имышцы брюшной стенки (косые, поперечные и прямые), что усиливает поднятие диафрагмы.

В зависимости от того, в каком направлении изменяются размеры грудной клетки при дыхании, различают грудной, брюшной и смешанный типы дыхания. Диафрагмальное (брюшное) дыхание – дыхание, осуществляемое за счет сокращения диафрагмы и брюшных мышц. Грудное дыхание - дыхание, при котором происходит активное движение грудной клетки: расширение грудной клетки и втягивание живота при вдохе и обратные движения – при выдохе. Грудобрюшное дыхание (смешанное) – дыхание, при котором активны мышцы грудной и брюшной полостей, а также диафрагма.

Частота дыхательных движений у взрослого человека в среднем 16–20 в минуту. Изменение ее зависит от многих причин: от возраста – у новорожденных она составляет 40–55 дыханий в мин., у детей 1–2 лет – 30–40; от пола – у женщин на 2–4 дыхания в мин. больше, чем у мужчин; от положения тела – в лежачем положении происходит 14–16 дыханий в мин., в сидячем – 16–18, в стоячем – 18–20. Физическое напряжение, еда, повышение температуры тела, нервное возбуждение учащают дыхание. У спортсменов в покое частота дыханий может быть 6–8 в мин.

Глубина дыхания определяется по объему вдыхаемого и выдыхаемого воздуха в спокойном состоянии больного. У взрослого человека дыхательный объем в среднем составляет 500 мл.

Дыхание здорового человека осуществляется ритмично, с равными промежутками времени между вдохами и выдохами, с одинаковой глубиной и продолжительностью вдоха и выдоха. У новорожденных и грудных детей дыхание аритмично. Глубокое дыхание сменяется поверхностным. Паузы между вдохом и выдохом неравномерны.

Нервная и гуморальная регуляция дыхания. Регуляция дыхания осуществляется дыхательным центром, который находится в продолговатом мозге. Он состоит из центра вдоха и центра выдоха и обладает автоматией. В дыхательном центре периодически возникает возбуждение, которое передается сначала на нейроны спинного мозга, а затем - к дыхательным мышцам, что приводит к их сокращению.

При вдохе альвеолы растягиваются, что раздражает нервные окончания блуждающего нерва Возникшее возбуждение передается в дыхательный центр, что тормозит центр вдоха; происходит выдох. Альвеолы возвращаются в исходное состояние, возбуждение рецепторов растяжения альвеол прекращается. В центре вдоха вновь возникает возбуждение, и процесс повторяется.

На работу дыхательного центра оказывает влияние кора больших полушарий. Человек может произвольно регулировать дыхание при разговоре, пении, может «держать дыхание или провести гипервентиляцию легких путем усиленного дыхания.

Рефлекторное изменение дыхания происходит при раздражении многих рецепторов: болевых, холодовых и др. Наиболее важным гуморальным фактором регуляции дыхания является изменение напряжение углекислого газа в крови. Чувствительные к содержанию СО 2 хеморецепторы располагаются в области дуги аорты, в месте разветвления сонных артерий. Повышение содержания углекислого газа в крови приводит к углублению и учащению дыхания.

Дыхание возможно только тогда, когда свободны воздухоносные пути. Костные стенки носовой полости, полукольца трахеи и кольца бронхов, состояние из хрящевой ткани, не дают спадаться дыхательным трубкам при дыхании. Воздух свободно проходит от носовых ходов до легочных пузырьков.

Охлаждение ног, сквозняки вызывают рефлекторное расширение кровеносных сосудов в стенке носовой полости и других участках верхних дыхательных путей. Носовые пути становятся узкими, забиваются слизью, и воздух через них пройти не может. Часто то же самое происходит при попадании в верхние дыхательные пути инфекции, а также пыли, веществ, вызывающих сильное раздражение слизистой, например табачного дыма. Изменение слизистой может быть вызвано и аллергией. Возникающие при этом кашель и насморк способствуют выведению слизи наружу и восстановлению нормального дыхания. Правда, бывают случаи, когда эти естественные реакции не дают эффекта и их приходится задерживать специальными препаратами или, наоборот, стимулировать, чтобы накопившаяся в трахее и бронхах слизь выходила скорее. Так, микстуры от кашля делают слизь более жидкой и она легче отделяется.

Для профилактики респираторных заболеваний чрезвычайно важно закаливание, борьба с курением, пылью, загазованностью производственных помещений.

Причины заболеваний сердечно-сосудистой системы и их профилактика отражены в таблице 8.

Приведенный в табл. 1.1 состав атмосферного воздуха претерпевает в закрытых помещениях различные изменения. Во-первых, меняется процентное содержание отдельных обязательных компонентов, и, во-вторых, появляются дополнительные, не свойственные чистому воздуху примеси. В настоящем параграфе речь пойдет об изменениях газового состава и о допустимых отклонениях его от нормального.

Важнейшими для жизнедеятельности человека газами являются кислород и углекислый газ, участвующие в газообмене человека с окружающей средой. Этот газообмен осуществляется главным образом в легких человека в процессе дыхания. Газообмен, происходящий через поверхность кожи, примерно в 100 раз меньше, чем через легкие, так как поверхность тела взрослого человека составляет приблизительно 1,75 м2, а поверхность альвеол легких - около 200 м2. Процесс дыхания сопровождается образованием в организме человека теплоты в количестве от 4,69 до 5,047 (в среднем 4,879) ккал на 1 л поглощенного кислорода (перешедшего в углекислоту). Следует заметить, что поглощается только незначительная часть содержащегося во вдыхаемом воздухе кислорода (приблизительно 20%). Так, если в атмосферном воздухе находится примерно 21% кислорода, то в выдыхаемом человеком воздухе его будет около 17%. Обычно количество выдыхаемой углекислоты меньше количества поглощенного кислорода. Отношение объемов выделяемой человеком углекислоты и поглощенного кислорода носит название дыхательного коэффициента (ДК), который обычно колеблется от 0,71 до 1. Однако если человек находится в состоянии сильного возбуждения или выполняет очень тяжелую работу, ДК может быть даже больше единицы.

Количество кислорода, необходимое человеку для поддержания нормальной жизнедеятельности, в основном зависит от интенсивности выполняемой им работы и определяется степенью нервного и мускульного напряжения. Усвоение кровью кислорода происходит лучше всего при парциальном давлении около 160 мм рт. ст., что при атмосферном давлении 760 мм рт. ст. соответствует нормальному процентному содержанию кислорода в атмосферном воздухе, т. е. 21%.

Благодаря способности человеческого организма приспособляться, нормальное дыхание может наблюдаться и при меньших количествах кислорода.

Если сокращение содержания кислорода в воздухе происходит за счет инертных газов (например, азота), то возможно значительное уменьшение количества кислорода - вплоть до 12%.

Однако в закрытых помещениях уменьшение содержания кислорода сопровождается не нарастанием концентрации инертных газов, а накоплением углекислого газа. В этих условиях предельно допустимое минимальное содержание кислорода в воздухе должно быть намного выше. Обычно в качестве нормы такой концентрации принимается содержание кислорода, равное 17% по объему. Вообще говоря, в закрытых помещениях процентное содержание кислорода никогда не снижается до этой нормы, так как гораздо раньше достигает предельного значения концентрация углекислого газа. Поэтому практически важнее установить предельно допустимые нормы содержания в закрытых помещениях не кислорода, а углекислого газа.

Углекислый газ С02 представляет собой бесцветный газ со слабым кислым вкусом и запахом; он в 1,52 раза тяжелее воздуха, слегка ядовит. Накопление углекислого газа в воздухе закрытых помещений приводит к появлению головной боли, головокружению, слабости, потере чувствительности и даже потере сознания.

Считается, что в атмосферном воздухе количество углекислого газа составляет 0,03% по объему. Это справедливо для сельских местностей. В воздухе крупных промышленных центров его содержание обычно больше. Для расчетов принимают концентрацию, равную 0,04%. В воздухе, выдыхаемом человеком, содержится примерно 4% углекислого газа.

Без каких-либо вредных последствий для человеческого организма в воздухе закрытых помещений могут быть допущены концентрации углекислого газа, значительно более высокие, чем 0,04%.

Величина предельно допустимой концентрации углекислого газа зависит от продолжительности пребывания людей в том или ином закрытом помещении и от рода их занятий. Например, для герметизированных убежищ, при размещении в них здоровых людей на срок не более 8 часов, может быть принята в качестве предельно допустимой концентрации С02 норма в 2%. При кратковременном пребывании людей эта норма может быть увеличена. Возможность пребывания человека в среде с повышенными концентрациями углекислого газа обусловлена способностью человеческого организма приспосабливаться к различным условиям. При концентрации С02 выше, чем 1%, человек начинает вдыхать значительно больше воздуха. Так, при концентрации С02 в 3% дыхание удваивается даже в состоянии покоя, что само по себе не вызывает заметных отрицательных последствий при сравнительно кратковременном пребывании в таком воздухе человека. Если же человек будет находиться в помещении с концентрацией С02 в 3% достаточно долго (3 и более суток), ему грозит потеря сознания.

При длительном пребывании людей в герметизированных помещениях и при выполнении людьми той или иной работы величина предельно допустимой концентрации углекислого газа должна быть существенно меньше 2%. Допускается колебание ее от 0,1 до 1%. Содержание углекислого газа 0,1% может считаться допустимым и для обычных негерметизированных помещений зданий и сооружений различного назначения. Более низкая концентрация углекислого газа (порядка 0,07-0,08) должна назначаться лишь для помещений лечебных и детских учреждений.

Как будет ясно из дальнейшего, требования в отношении содержания углекислого газа в воздухе помещений наземных зданий обычно легко удовлетворяются, если источниками его выделения являются люди. Иначе стоит вопрос, когда углекислый газ накапливается в производственных помещениях в результате тех или иных технологических процессов, происходящих, например, в дрожжевых, пивоваренных, гидролизных цехах. В этом случае в качестве предельно допустимой концентрации углекислого газа принимают 0,5%.


В отличие от горячих и холодных планет нашей Солнечной системы, на планете Земля существуют условия, которые дают возможность жизни в определенной форме. Одним из главных условий является состав атмосферы, который дает всему живому возможность свободно дышать и защищает от смертельного излучения, царящего в космосе.

Из чего состоит атмосфера

Атмосфера Земли состоит из множества газов. В основном который занимает 77 %. Газ, без которого немыслима жизнь на Земле, занимает гораздо меньший объем, содержание кислорода в воздухе равно 21 % от всего объема атмосферы. Последние 2 % - смесь различных газов, включая аргон, гелий, неон, криптон и другие.

Атмосфера Земли поднимается на высоту 8 тыс. км. Воздух, пригодный для дыхания, есть только в нижнем слое атмосферы, в тропосфере, достигающей на полюсах - 8 км, ввысь, а над экватором - 16 км. С увеличением высоты воздух становится более разреженным и тем больше ощутима нехватка кислорода. Чтобы рассмотреть, какое содержание кислорода в воздухе бывает на разной высоте, приведем пример. На пике Эвереста (высота 8848 м) воздух вмещает этого газа в 3 раза меньше, чем над уровнем моря. Поэтому покорители высокогорных вершин - альпинисты - могут подняться на его вершину только в кислородных масках.

Кислород - главное условие выживания на планете

В начале существования Земли воздух, который ее окружал, не имел этого газа в своем составе. Это вполне подходило для жизни простейших - одноклеточных молекул, которые плавали в океане. Им кислород не был нужен. Процесс начался примерно 2 млн лет назад, когда первые живые организмы в результате реакции фотосинтеза начали выделять малые дозы этого газа, полученного в результате химических реакций, сначала в океан, затем в атмосферу. Жизнь развилась на планете и приняла разнообразные формы, большинство из которых не дожили до наших времен. Некоторые организмы со временем приспособились к жизни с новым газом.

Они научились использовать его силу безопасно внутри клетки, где она выступала в роли электростанции, для того чтобы добывать энергию из еды. Такой способ использования кислорода называется дыханием, и мы это делаем ежесекундно. Именно дыхание дало возможность для появления более сложных организмов и людей. За миллионы лет содержание в воздухе кислорода взлетело до современного уровня - около 21 %. Накопление этого газа в атмосфере способствовало созданию озонового слоя на высоте 8-30 км от поверхности земли. Вместе с этим планета получила защиту от пагубного действия ультрафиолетовых лучей. Дальнейшая эволюция жизненных форм на воде и на суше стремительно возросла в результате увеличения фотосинтеза.

Анаэробная жизнь

Хотя некоторые организмы адаптировались к повышающемуся уровню выделяемого газа, многие из простейших форм жизни, которые существовали на Земле, исчезли. Другие организмы выжили, прячась от кислорода. Некоторые из них сегодня живут в корнях бобовых, используя азот из воздуха для построения аминокислот для растений. Смертельный организм ботулизма - еще один "беженец" от кислорода. Он спокойно выживает в вакуумных упаковках с консервированными продуктами.

Какой кислородный уровень оптимален для жизни

Преждевременно рожденные малыши, легкие которых еще не полностью раскрыты для дыхания, попадают в специальные инкубаторы. В них содержание кислорода в воздухе по объему выше, и вместо обычных 21 % здесь установлен его уровень 30-40 %. Малыши, имеющие серьезные проблемы дыхания, окружаются воздухом со стопроцентным уровнем кислорода, чтобы предотвратить повреждение детского мозга. Нахождение в таких обстоятельствах совершенствует кислородный режим тканей, пребывающих в состоянии гипоксии, приводит в норму их жизненные функции. Но его чрезмерное количество в воздухе так же опасно, как и недостаток. Чрезмерное количество кислорода в крови ребенка может привести к повреждению кровеносных сосудов в глазах и спровоцировать утрату зрения. Это показывает двойственность свойств газа. Мы должны дышать им, чтобы жить, но его избыток иногда может стать отравой для организма.

Процесс окисления

При соединении кислорода с водородом или углеродом, совершается реакция, именуемая окислением. Этот процесс заставляет органические молекулы, являющиеся основанием жизни, распадаться. В человеческом организме окисление проходит следующим образом. Эритроциты крови собирают кислород из легких и разносят его по всему телу. Происходит процесс разрушения молекул еды, которую мы употребляем. Этот процесс освобождает энергию, воду и оставляет диосксид углерода. Последний выводится клетками крови обратно в легкие, и мы выдыхаем его в воздух. Человек может задохнуться, если ему помешать дышать дольше, чем 5 минут.

Дыхание

Рассмотрим содержание кислорода во вдыхаемом воздухе. Атмосферный воздух, попадающий извне в легкие при вдыхании, именуется вдыхаемым, а воздух, который выходит наружу через дыхательную систему при выдохе, - выдыхаемым.

Он представляет собой смесь воздуха, заполнявшего альвеолы, с тем, который находится в дыхательных путях. Химический состав воздуха, который здоровый человек вдыхает и выдыхает в естественных условиях, практически не меняется и выражается такими цифрами.

Кислород - главная для жизни составляющая воздуха. Изменения количества этого газа в атмосфере невелики. Если у моря содержание в воздухе кислорода вмещает до 20,99 %, то даже в очень загрязненном воздухе индустриальных городов его уровень не падает ниже 20,5 %. Такие изменения не выявляют воздействия на человеческий организм. Физиологические нарушения проявляются тогда, когда процентное содержание кислорода в воздухе падает до 16-17 %. При этом наблюдается явная которая ведет к резкому падению жизнедеятельности, а при содержании в воздухе кислорода 7-8 % возможен летальный исход.

Атмосфера в разные эпохи

Состав атмосферы всегда оказывал воздействие на эволюцию. В разные геологические времена из-за природных катаклизмов наблюдались подъемы или падения уровня кислорода, и это влекло за собой изменение биосистемы. Примерно 300 миллионов лет назад содержание его в атмосфере поднялось до 35 %, при этом наблюдалось заселение планеты насекомыми гигантских размеров. Наибольшее вымирание живых существ в истории Земли случилось около 250 миллионов лет назад. Во время него более чем 90 % обитателей океана и 75 % жителей суши погибло. Одна из версий массового вымирания гласит, что виной тому оказалось низкое содержание в воздухе кислорода. Количество этого газа упало до 12 %, и это - в нижнем слое атмосферы до высоты 5300 метров. В нашу эпоху содержание кислорода в атмосферном воздухе доходит до 20,9 %, что на 0,7 % ниже, чем 800 тысяч лет назад. Эти цифры подтверждены учеными из Принстонского университета, которые исследовали пробы Гренландского и Атлантического льда, образовавшегося в то время. Замерзшая вода сберегла пузырьки воздуха, и этот факт помогает вычислить уровень кислорода в атмосфере.

Чему подчиняется уровень его в воздухе

Активное поглощение его из атмосферы может быть вызвано передвижением ледников. Отодвигаясь, они открывают гигантские площади органических пластов, потребляющих кислород. Еще одним поводом может быть остывание вод Мирового океана: его бактерии при пониженной температуре активнее поглощают кислород. Исследователи утверждают, что индустриальный скачок и вместе с ним сжигание огромного количества топлива особенного воздействия при этом не оказывают. Мировой океан охлаждается в течение 15 миллионов лет, и количество жизненно важного в атмосфере уменьшилось независимо от воздействия человека. Вероятно, на Земле совершаются некоторые природные процессы, ведущие к тому, что потребление кислорода становится выше его производства.

Воздействие человека на состав атмосферы

Поговорим о влиянии человека на состав воздуха. Тот уровень, который мы сегодня имеем, идеально подходит для живых существ, содержание кислорода в воздухе составляет 21 %. Баланс его и других газов определяется жизненным циклом в природе: животные выдыхают диоксид углерода, растения используют его и выделяют кислород.

Но не существует гарантии, что такой уровень будет постоянным всегда. Повышается количество диоксида углерода, выбрасываемого в атмосферу. Это происходит из-за использования топлива человечеством. А оно, как известно, образовалось из окаменелостей органического происхождения и в воздух попадает диоксид углерода. А тем временем самые большие растения нашей планеты, деревья, уничтожаются с нарастающей скоростью. За минуту исчезают километры леса. Это значит, что часть кислорода в воздухе постепенно падает и ученые уже сейчас бьют тревогу. Земная атмосфера - не безграничная кладовая и кислород в нее извне не поступает. Он все время вырабатывался вместе с развитием Земли. Нужно постоянно помнить, что этот газ производится растительностью в процессе фотосинтеза за счет потребления углекислого газа. И любое существенное уменьшение растительности в виде уничтожения лесов, неотвратимо снижает попадание кислорода в атмосферу, тем самым, нарушая его баланс.

Атмосферный воздух представляет собой смесь различных газов — кислорода, азота, углекислого газа, водяных паров, озона, инертных газов и др. Наиболее важной частью воздуха является кислород. Во вдыхаемом воздухе содержится 20,7% кислорода. Он необходим для осуществления окислительных процессов в организме. Человек потребляет около 12 л кислорода в час, потребность в нем возрастает при физической работе. Содержание кислорода в закрытых помещениях ниже 17% является неблагоприятным показателем, при 13—14% наступает кислородное голодание, при 7—8% — смерть. В выдыхаемом воздухе количество кислорода составляет 15— 16%.

Углекислота (С02) составляет обычно 0,03—0,04% воздуха. В выдыхаемом воздухе углерода в 100 раз больше, т.е. 3—4%. Предельно допустимым содержанием углекислоты в воздухе помещений является 0,1%. При недостаточной вентиляции помещений, где присутствует много людей, содержание углекислоты достигает 0,8%. При 1 —1,5% С02 отмечается ухудшение самочувствия, более высокий уровень С02 в воздухе может привести к значительным нарушениям здоровья. Снижение концентрации С02 в воздухе не опасно.

Азот (N2) содержится в воздухе на уровне 78,97 — 79,2%. Он не принимает участия в обменных процессах живых организмов и служит разбавителем других газов, в основном кислорода. Азот воздуха принимает участие в кругообороте азота в природе.

Озон (О3) обычно в околоземном воздухе содержится в очень небольших дозах (0,01—0,06 мг/м3). Он образуется при электрических разрядах во время грозы. Чем чище воздух, тем больше озона, это наблюдается в горах, в хвойных лесах. Озон оказывает благотворное влияние на организм человека. Озон применяется для обеззараживания воды и дезодорации воздуха, так как обладает сильным окислительным действием за счет выделения атомарного кислорода.

Инертные газы — аргон, криптон и другие не имеют физиологического значения.
Вредные примеси. Газообразные примеси и взвешенные частицы попадают в воздух в результате деятельности человека. Наиболее распространенными газообразными загрязнителями воздуха являются окись углерода, сернистый газ, аммиак и окислы азота, сероводород. На предприятиях общественного питания загрязнение воздушной среды возможно продуктами неполного сгорания топлива, газовой смесью (в газифицированных кухнях), газами (NH3, H2S), выделяющимися при гниении, аммиаком (при использовании аммиачных холодильных установок). При тепловой обработке пищи возможно выделение высокотоксичного вещества акролеина, а также летучих жирных кислот.

Окись углерода (СО) образуется при неполном сгорании топлива, входит в состав горючих газовых смесей, не имеет запаха и вызывает как острые, так и хронические отравления. В газифицированных кухнях накапливается при утечке газа из сети или неполном его сгорании. Предельная концентрация СО в атмосферном воздухе, которая может быть допущена, 1 мг/м3 (средняя за сутки), тогда как для рабочей зоны допускается содержание 20—100 мг/м3СО в зависимости от длительности работы.