Радиоактивность. Активность

Изменение числа радиоактивных ядер во времени. Резерфорд и Содди в 1911 г., обобщая экспериментальные результаты, показали, что атомы некоторых элементов испытывают последовательные превращения, образуя радиоактивные семейства, где каждый член возникает из предыдущего и, в свою очередь, образует последующий.

Это удобно проиллюстрировать на примере образования радона из радия. Если поместить в запаянную ампулу то анализ газа через несколько дней покажет, что в нем появляется гелий и радон. Гелий устойчив, и поэтому он накапливается, радон же сам распадается. Кривая 1 на рис. 29 характеризует закон распада радона в отсутствие радия. При этом на оси ординат отложено отношение числа нераспавшихся ядер радона к их начальному числу Видно, что убывание содержания идет по экспоненциальному закону. Кривая 2 показывает, как изменяется число радиоактивных ядер радона в присутствии радия.

Опыты, проведенные с радиоактивными веществами, показали, что никакие внешние условия (нагревание до высоких температур,

магнитные и электрические поля, большие давления) не могут повлиять на характер и скорость распада.

Радиоактивность является свойством атомного ядра и для данного типа ядер, находящихся в определенном энергетическом состоянии, вероятность радиоактивного распада за единицу времени постоянна.

Рис. 29. Зависимость числа активных ядер радона от времени

Так как процесс распада самопроизвольный (спонтанный), то изменение числа ядер из-за распада за промежуток времени определяется только количеством радиоактивных ядер в момент и пропорционально промежутку времени

где постоянная, характеризующая скорость распада. Интегрируя (37) и считая, что получаем

т. е. число ядер убывает по экспоненциальному закону.

Этот закон относится к статистическим средним величинам и справедлив лишь при достаточно большом числе частиц. Величина X называется постоянной радиоактивного распада, имеет размерность и характеризует вероятность распада одного атома в одну секунду.

Для характеристики радиоактивных элементов вводится также понятие периода полураспада Под ним понимается время, в течение которого распадается половина наличного числа атомов. Подставляя условие в уравнение (38), получим

откуда, логарифмируя, найдем, что

и период полураспада

При экспоненциальном законе радиоактивного распада в любой момент времени имеется отличная от нуля вероятность найти еще не распавшиеся ядра. Время жизни этих ядер превышает

Наоборот, другие ядра, распавшиеся к этому времени, прожили разное время, меньшее Среднее время жизни для данного радиоактивного изотопа определяется как

Обозначив получим

Следовательно, среднее время жизни радиоактивного ядра равно обратной величине от постоянной распада Я. За время первоначальное число ядер уменьшается в раз.

Для обработки экспериментальных результатов удобно представить уравнение (38) в другой форме:

Величина называется активностью данного радиоактивного препарата, она определяет число распадов в секунду. Активность является характеристикой всего распадающегося вещества, а не отдельного ядра. Практической единицей активности является кюри. 1 кюри равно ислу распавшихся ядер содержащихся в радия за 1 сек распадов/сек). Используются и более мелкие единицы - милликюри и микрокюри . В практике физического эксперимента используется иногда другая единица активности - Резерфорд распадов/сек.

Статистический характер радиоактивного распада. Радиоактивный распад - явление принципиально статистическое. Мы не можем сказать, когда именно распадется данное ядро, а можем лишь указать, с какой вероятностью оно распадается за тот или иной промежуток времени.

Радиоактивные ядра не «стареют» в процессе своего существования. К ним вообще неприменимо понятие возраста, а можно лишь говорить о среднем времени их жизни.

Из статистического характера закона радиоактивного распада следует, что он выполняется строго, когда велико, а при небольших должны наблюдаться флуктуации. Число распадающихся ядер в единицу времени должно флуктуировать вокруг среднего значения, харак теризуемого приведенным выше законом. Это подтверждается экспериментальными измерениями числа -частиц, испускаемых радиоактивным веществом в единицу времени.

Рис. 30. Зависимость логарифма активности от времени

Флуктуации подчиняются закону Пуассона. Производя измерения с радиоактивными препаратами, надо всегда это учитывать и определять статистическую точность опытных результатов.

Определение постоянной распада X. При определении постоянной распада X радиоактивного элемента опыт сводится к регистрации числа частиц, вылетающих из препарата за единицу времени, т. е. определяется его активность Затем строится график изменения активности со временем, обычно в полулогарифмическом масштабе. Вид получаемых зависимостей при исследованиях чистого изотопа, смеси изотопов или радиоактивного семейства оказывается различным.

Рассмотрим в качестве примера несколько случаев.

1. Исследуется один радиоактивный элемент, при распаде которого образуются стабильные ядра. Логарифмируя выражение (41), получим

Следовательно, в этом случае логарифм активности является линейной функцией времени. График этой зависимости имеет вид прямой, тангенс угла наклона которой (рис. 30)

2. Исследуется радиоактивное семейство, в котором происходит целая цепь радиоактивных превращений. Ядра, получающиеся после распада, в свою очередь сами оказываются радиоактивными:

Примером такой цепочки может служить распад:

Найдем закон, описывающий в этом случае изменение числа радиоактивных атомов во времени. Для простоты выделим всего два элемента: считая А исходным, а В промежуточным.

Тогда изменение числа ядер А и ядер В определится из системы уравнений

Количество ядер А убывает за счет их распада, а количество ядер В убывает из-за распада ядер В и возрастает за счет распада ядер А.

Если при имеется ядер А, а ядер В нет, то начальные условия запишутся в виде

Решение уравнений (43) имеет вид

и полная активность источника, состоящего из ядер А и В:

Рассмотрим теперь зависимость логарифма радиоактивности от времени при разных соотношениях между и

1. Первый элемент короткоживущий, второй - долгоживущий, т. е. . В этом случае кривая, показывающая изменение суммарной активности источника, имеет вид, представленный на рис. 31, а. В начале ход кривой определяется в основном быстрым уменьшением числа активных ядер ядра В тоже распадаются, но медленно, и поэтому их распад не очень сильно влияет на наклон кривой на участке . В дальнейшем ядер типа А остается в смеси изотопов мало, и наклон кривой определяется постоянной распада Если нужно найти и то по наклону кривой при большом значении времени находят (в выражении (45) первый экспоненциальный член в этом случае может быть отброшен). Для определения величины надо учесть также влияние распада долгоживущего элемента на наклон первой части кривой. Для этого экстраполируют прямую в область малых времен, в нескольких точках вычитают из суммарной активности активность, определяемую элементом В, по полученным значениям

строят прямую для элемента А и по углу находят (при этом надо переходить от логарифмов к антилогарифмам и обратно).

Рис. 31. Зависимость логарифма активности смеси двух радиоактивных веществ от времени: а - при при

2. Первый элемент долгоживущий, а второй короткоживущий: Зависимость в этом случае имеет вид, представленный на рис. 31,б. В начале активность препарата увеличивается за счет накопления ядер В. Затем наступает радиоактивное равновесие, при котором отношение числа ядер А к числу ядер В становится постоянным. Этот тип равновесия называется переходным. Спустя некоторое время, оба вещества начинают убывать со скоростью распада материнского элемента.

3. Период полураспада первого изотопа много больше второго (следует заметить, что период полураспада некоторых изотопов измеряется миллионами лет). В этом случае через время устанавливается так называемое вековое равновесие, при котором количество ядер каждого изотопа пропорционально периоду полураспада этого изотопа. Соотношение

Был сформулирован после того, как в 1896 году Беккерелем было открыто явление радиоактивности. Оно заключается в непредсказуемом переходе одних видов ядер в другие, при этом они выделяют различные и частиц элементов. Процесс бывает естественным, когда проявляется у существующих в природе изотопов, и искусственным, в случаях получения оных в То ядро, которое распадается, считается материнским, а получившееся - дочерним. Другими словами, основной закон радиоактивного распада включает в себя произвольный естественный процесс превращения одного ядра в другое.

Исследование Беккереля показало наличие в солях урана неизвестного ранее излучения, которое оказывало воздействие на фотопластинку, наполняло воздух ионами и имело свойство проходить через тонкие пластинки из металла. Опыты М. и П. Кюри с радием и полонием подтвердили вывод, описанный выше, и в науке появилось новое понятие, получившее название учения

Данная теория, отражающая закон радиоактивного распада, основана на предположении спонтанного процесса, который подчиняется статистике. Так как отдельные ядра распадаются независимо друг от друга, то считается, что в среднем число распавшихся за определенный промежуток времени пропорционально нераспавшимся к моменту окончания процесса. Если следовать экспоненциальному закону, то количество последних убывает значительно.

Интенсивность явления характеризуют два основных свойства излучения: период так называемого полураспада и среднерасчитанный промежуток жизни радиоактивного ядра. Первый колеблется между миллионными долями секунды и миллиардами лет. Ученые считают, что такие ядра не стареют, и для них не существует понятия возраста.

Закон радиоактивного распада основан на так называемых правилах смещения, а они, в свою очередь, являются следствием теории о сохранении и числа массы. Экспериментальным путем установлено, что действие магнитного поля действует по-разному: а) отклонение лучей происходит как положительно заряженных частиц; б) как отрицательных; в) не проявляют никакой реакции. Из этого следует, что излучение бывает трех видов.

Столько же насчитывается и разновидностей самого процесса распада: с выбросом электрона; позитрона; поглощение одного электрона ядром. Доказано, что ядра, соответствующие своим строением свинцу, переживают распад с испусканием. Теория получила название альфа-распада и была сформулирована Г. в 1928 году. Вторая разновидность была сформулирована в 1931 году Э. Ферми. Его исследования показали, что вместо электронов некоторые виды ядер испускают противоположные частицы - позитроны, и это всегда сопровождается излучением частицы с нулевым электрическим зарядом и массой покоя, нейрино. Простейшим примером бета-распада считается переход нейрона в протон с временным периодом в 12 минут.

Эти теории, рассматривающие законы радиоактивного распада, являлись основными до 1940 года 19 века, пока советские физики Г. Н. Флеров и К. А. Петржак не открыли еще один вид, во время которого ядра урана самопроизвольно делятся две равные частицы. В 1960 году была предсказана радиоактивность двухпротонная и двухнейтронная. Но до наших дней этот вид распада подтверждения экспериментальным путем не получил и обнаружен не был. Было открыто только протонное излучение, при котором происходит выброс из ядра протона.

Разобраться со всеми этими вопросами довольно сложно, хотя сам закон радиоактивного распада прост. Нелегко уяснить его физический смысл и, конечно, изложение этой теории выходит далеко за пределы программы физики как предмета в школе.

ЛАБОРАТОРНАЯ РАБОТА № 19

ИЗУЧЕНИЕ ЗАКОНА РАДИОАКТИВНОГО РАСПАДА

И СПОСОБОВ ЗАЩИТЫ ОТ РАДИОАКТИВНОГО ИЗЛУЧЕНИЯ

Цель работы : 1)изучение закона радиоактивного распада; 2)исследование закона поглощения g- и b- лучей веществом.

Задачи работы : 1) определение линейных коэффициентов поглощения радиоактивного излучения различных материалов; 2) определение толщины слоя половинного ослабления этих материалов; 3) определение периода полураспада и постоянной распада химического элемента.

Обеспечивающие средства : компьютер с Windows.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Введение

Состав атомного ядра

Ядро любого атома состоит из частиц двух типов – протонов и нейтронов. Протон представляет собой ядро простейшего атома – водорода . Он имеет положительный заряд, по величине равный за­ряду электрона, и массу 1,67×10-27 кг. Нейтрон, существование кото­рого было установлено только в 1932 году англичанином Джеймсом Чедвиком, электрически нейтрален, а масса почти совпадает с мас­сой протона . Нейтроны и протоны, представляющие собой два со­ставных элемента атомного ядра, объединяют общим наименова­нием нуклонов. Число протонов в ядре (или в нуклиде) называется атомным номером и обозначается буквой Z. Общее число нуклонов, т.е. нейтронов и протонов, обозначается буквой А и называется мас­совым числом. Обычно химические элементы принято обозначать символом или , где Х – символ химического элемента.

Радиоактивность

Явление радиоактивности состоит в спонтанном (самопроиз­вольном) превращении ядер одних химических элементов в ядра других элементов с испусканием радиоактивных излучений .

Ядра, подверженные такому распаду, называются радиоактивными. Ядра, не испытывающие радиоактивного распада, называются ста­бильными. В процессе распада у ядра может изменяться как атом­ный номер Z, так и массовое число А.

Радиоактивные превращения протекают самопроизвольно. На скорость их течения не оказывают никакого воздействия изменения температуры и давления, наличие электрического и магнитного по­лей, вид химического соединения данного радиоактивного элемента и его агрегатное состояние.

Радиоактивный распад характеризуется временем его проте­кания, сортом и энергиями испускаемых частиц, а при вылете из ядра нескольких частиц еще и относительными углами между на­правлениями вылета частиц. Исторически радиоактивность является первым ядерным процессом, обнаруженным человеком (А. Бекке­рель, 1896).

Различают радиоактивность естественную и искусственную.

Естественная радиоактивность встречается у неустойчивых ядер, существующих в природных условиях. Искусственной называют радиоактивность ядер, образованных в результате различных ядерных реакций. Принципиального различия между искусственной и естественной радиоактивностями нет. Им присущи общие закономерности.

В атомных ядрах возможны и действительно наблюдаются че­тыре основных типа радиоактивности: a-распад, b-распад, g-распад и спонтанное деление.

Явление a-распада состоит в том, что тяжелые ядра самопро­извольно испускают a-частицы (ядра гелия 2 Н 4). При этом массовое число ядра уменьшается на четыре единицы, а атомный номер – на две:

Z Х А ® Z -2 Y А-4 + 2 Н 4 .

a-частица состоит из четырех нуклонов: двух нейтронов и двух протонов.

В процессе радиоактивного распада ядро может испускать не только частицы, входящие в его состав, но и новые частицы, рож­дающиеся в процессе распада. Процессами такого рода являются b- и g- распады.

Понятие b-распада объединяет три вида ядерных пре­вращений: электронный (b -) распад, позитронный (b +) распад и элек­тронный захват.

Явление b - -распада состоит в том, что ядро самопроизвольно испускают электрон е - и легчайшую электрически нейтральную час­тицу антинейтрино , переходя при этом в ядро с тем же массовым числом А, но с атомным номером Z, но единицу большим:

Z Х А ® Z +1 Y А + е - + .

Необходимо подчеркнуть, что испускаемый при b - -распаде электрон не имеет отношения к орбитальным электронам. Он рождается внутри самого ядра: один из нейтронов превращается в протон и при этом испускает электрон.

Другим типом b-распада является процесс, в котором ядро ис­пускает позитрон е + и другую легчайшую электрически нейтраль­ную частицу – нейтрино n. При этом один из протонов превращается в нейтрон:

Z Х А ® Z -1 Y А + е + +n.

Этот распад называют позитронным или b + -распадом.

В круг b-распадных явлений входит также электронный захват (часто называемый также К-захватом), при котором ядро поглощает один из электронов атомной оболочки (обычно из К-оболочки), ис­пуская нейтрино. При этом, как и в позитронном распаде, один из протонов превращается в нейтрон:

е - + Z Х А ® Z -1 Y А +n.

К g- излучению относят электромагнитные волны, длина которых значительно меньше межатомных расстояний:

где d - имеет порядок 10 -8 см. В корпускулярной картине это излучение представляет собой поток частиц, называемых g- квантами. Нижний предел энергии g- квантов

Е = 2p с/l

имеет порядок десятков кэВ. Естественного верхнего предела нет. В современных ускорителях получаются кванты с энергией вплоть до 20 ГэВ.

Распад ядра с испусканием g - излучения во многом напоми­нает испускание фотонов возбужденными атомами. Подобно атому, ядро может находиться в возбужденном состоянии. При переходе в состояние с более низкой энергией, или основное состояние, ядро испускает фотон. Так как g-излучение не несет заряда, при g - распаде не происходит превращения одного химического элемента в другой.

Основной закон радиоактивного распада

Радиоактивный распад – это статистическое явление: невозможно предсказать, когда распадается данное нестабильное ядро, можно лишь сделать некоторые вероятностные суждения об этом событии. Для большой совокупности радиоактивных ядер можно получить статистический закон, выражающий зависимость не распавшихся ядер от времени.

Пусть за достаточно малый интервал времени распадается ядер. Это число пропорционально интервалу времени, а так же общему числу радиоактивных ядер:

, (1)

где – постоянная распада, пропорциональная вероятности распада радиоактивного ядра и различная для разных радиоактивных веществ. Знак «-» поставлен в связи с тем, что < 0, так как число не распавшихся радиоактивных ядер убывает со временем.

Разделим переменные и проинтегрируем (1) с учётом того, что нижние пределы интегрирования соответствует начальным условиям (при , где – начальное число радиоактивных ядер), а верхние – текущим значениям и :

(2)

Потенцируя выражение (3), имеем

Это и есть основной закон радиоактивного распада : число не распавшихся радиоактивных ядер убывает со временем по экспоненциальному закону.

На рис.1 изображены кривые распада 1 и 2, соответствующие веществам с разными постоянными распада (λ 1 > λ 2), но с одинаковым начальным числом радиоактивных ядер. Линия 1 соответствует более активному элементу.

На практике вместо постоянной распада чаще используют другую характеристику радиоактивного изотопа – период полураспада . Это время, в течение которого распадается половина радиоактивных ядер. Естественно, что это определение справедливо для достаточно большого числа ядер. На рис.1 показано, как с помощью кривых 1 и 2 можно найти периоды полураспада ядер: проводится прямая, параллельная оси абсцисс через точку с ординатой , до пересечения с кривыми. Абсциссы точек пересечения прямой и линий 1 и 2 дают периоды полураспада Т 1 и Т 2.

    Понятие радиоактивности

    Закон радиоактивного распада

    Количественная оценка радиоактивности и ее единицы

    Ионизирующие излучения, их характеристики.

    Источники ИИ

  1. Понятие радиоактивности

Радиоактивностью называется спонтанный процесс превращения (распада) атомных ядер, сопровождающегося испусканием особого вида излучения, называемым радиоактивным .

При этом происходит превращение атомов одних элементов в атомы других.

Радиоактивные превращения свойственны лишь отдельным веществам.

Вещество считается радиоактивным, если оно содержит радионуклиды, и в нем идет процесс радиоактивного распада.

Радионуклиды (изотопы)- ядра атомов способных самопроизвольно распадаться называют радионуклидами.

В качестве характеристики нуклида используют символ химического элемента, указывают атомный номер (число протонов) и массовое число ядра (число нуклонов, т.е. общее число протонов и нейтронов).

Например, 239 94 Pu означает, что ядро атома плутония содержит 94 протона и 145 нейтронов, всего 239 нуклонов.

Существуют следующие виды радиоактивного распада:

Бета-распад;

Альфа распад;

Спонтанное деление атомных ядер (нейтронный распад);

Протонная радиоактивность (протонный синтез);

Двухпротонная и кластерная радиоактивность.

Бета-распад – это процесс превращения в ядре атома протона в нейтрон или нейтрона в протон с выбросом бета частицы (позитрона или электрона)

Альфа-распад – характерен для тяжелых элементов, ядра которых, начиная с номера 82 таблицы Д.И.Менделеева, нестабильны, несмотря на избыток нейтронов и самопроизвольно распадаются. Ядра этих элементов преимущественно выбрасывают ядра атомов гелия.

Спонтанное деление атомных ядер (нейтронный распад) – это самопроизвольное деление некоторых ядер тяжелых элементов (уран-238, калифорний 240,248, 249, 250, кюрий 244, 248 и др.). Вероятность самопроизвольного деления ядер незначительна по сравнению с альфа-распадом. При этом происходит деление ядра на два осколка(ядра), близких по массе.

  1. Закон радиоактивного распада

Устойчивость ядер уменьшается по мере увеличения общего числа нуклонов. Она зависит также от соотношения числа нейтронов и протонов.

Процесс последовательных ядерных превращений, как правило, заканчивается образованием стабильных ядер.

Радиоактивные превращения подчиняются закону радиоактивного распада:

N = N 0 e λ t ,

где N, N 0 – число атомов, нераспавшихся на моменты времени t и t 0 ;

λ – постоянная радиоактивного распада.

Величина λ имеет свое индивидуальное значение для каждого вида радионуклида. Она характеризует скорость распада, т.е. показывает, какое количество ядер распадается в единицу времени.

Согласно уравнения закона радиоактивного распада, его кривая является экспонентой.

  1. Количественная оценка радиоактивности и ее единицы

Время, в течение которого, вследствие самопроизвольных ядерных превращений распадается половина ядер, называется периодом полураспада Т 1/2 . Период полураспада Т 1/2 связан с постоянной распада λ зависимостью:

Т 1/2 = ln2/λ = 0,693/λ.

Период полураспада Т 1/2 у разных радионуклидов различен и колеблется в широких пределах – от долей секунды до сотен и даже тысяч лет.

Периоды полураспада некоторых радионуклидов:

Йод-131 - 8,04 суток

Цезий-134 - 2,06 года

Стронций-90 - 29,12 лет

Цезий-137 - 30 лет

Плутоний-239 - 24065 лет

Уран-235 - 7,038 . 10 8 лет

Калий-40 - 1,4 10 9 лет.

Величина, обратная постоянной распада, называется средним временем жизни радиоактивного атома t :

Cкорость распада определяется активностью вещества А:

А = dN/dt = A 0 e λ t = λ N,

где А и А 0 – активности вещества в моменты времени t и t 0 .

Активность – мера радиоактивности. Она характеризуется числом распадов радиоактивных ядер в единицу времени.

Активность радионуклида прямо пропорциональна общему количеству радиоактивных атомных ядер на момент времени t и обратно пропорциональна периоду полураспада:

А = 0,693 N/T 1/2 .

В системе СИ за единицу активности принят беккерель (Бк). Один беккерель равен одному распаду в секунду. Внесистемная единица активности – кюри (Кu).

1 Кu = 3,7 10 10 Бк

1Бк = 2,7 10 -11 Кu.

Единица активности кюри соответствует активности 1 г радия. В практике измерений пользуются также понятиями объемной A v (Бк/м 3 , Кu/м 3), поверхностной А s (Бк/м 2 , Кu/м 2), удельной А m (Бк/м, Кu/м) активности.

Модели ядра.

В теории ядра используется модельный подход, основанный на аналогии свойств атомных ядер со свойствами, например, жидкой капли, электронной оболочки атома и т.д.: соответственно модели ядер называют капельной, оболочечной и т.д. Каждая из моделей описывает только определенную совокупность свойств ядра и не может дать его полного описания.

Капельная модель (Н.Бор, Я.И. Френкель, 1936) базируется на аналогии в поведении нуклонов в ядре и молекул в капле жидкости. В обоих случаях силы являются короткодействующими и им свойственно насыщение. Капельная модель объяснила механизм ядерных реакций и особенно реакций деления ядер, но не смогла объяснить повышенную устойчивость некоторых ядер.

Согласно оболочечной модели , нуклоны в ядре распределены по дискретным энергетическим уровням (оболочкам), заполняемым нуклонами согласно принципу Паули, а устойчивость ядер связывается с заполнением этих уровней. Считается, что ядра с полностью заполненными оболочками являются наиболее устойчивыми, их называют магическими – это ядра, содержащие 2, 8, 20, 28, 50, 82, 126 протонов или нейтронов. Существуют также и дважды магические ядра , в которых магическим является как число протонов, так и число нейтронов – это , и они являются особенно устойчивыми. Оболочечная модель ядра позволила объяснить спины и магнитные моменты ядер, различную устойчивость атомных ядер и периодичность их свойств.



По мере накопления экспериментальных данных возникли: обобщенная модель ядра (синтез капельной и оболочечной моделей), оптическая модель ядра (объясняет взаимодействие ядер с налетающими частицами) и т.д.

z:\Program Files\Physicon\Open Physics 2.5 part 2\design\images\Fwd_h.gifz:\Program Files\Physicon\Open Physics 2.5 part 2\design\images\Bwd_h.gifРадиоактивность

Почти 90 % из известных 2500 атомных ядер нестабильны. Нестабильное ядро самопроизвольно превращается в другие ядра с испусканием частиц. Это свойство ядер называется радиоактивностью . Таким образом, радиоактивность – это способность некоторых атомных ядер самопроизвольно (спонтанно) превращаться в другие ядра с испусканием различных видов радиоактивных излучений и элементарных частиц . Явление радиоактивности было открыто в 1896 году французским физиком Анри Беккерелем, который обнаружил, что соли урана испускают неизвестное излучение, способное проникать через непрозрачные для света преграды и вызывать почернение фотоэмульсии. Через два года французские физики Мария и Пьер Кюри обнаружили радиоактивность тория и открыли два новых радиоактивных элемента – полоний и радий .

Различают естественную радиоактивность (наблюдается у неустойчивых изотопов, существующих в природе) и искусственную (наблюдается у изотопов, синтезированных посредством ядерных реакций в лабораторных условиях). Принципиального различия между ними нет.

Радиоактивное излучение бывает трех видов: α -, β - и γ -излучения. α - и β -лучи в магнитном поле испытывают отклонения в противоположные стороны, причем β -лучи отклоняются значительно больше. γ -лучи в магнитном поле вообще не отклоняются (рис.1).

Рисунок 1.

Схема опыта по обнаружению α-, β- и γ-излучений. К – свинцовый контейнер, П – радиоактивный препарат, Ф – фотопластинка, В – магнитное поле.

α -излучение – это поток α-частиц – ядер гелия обладает наименьшей проникающей способностью (0,05мм) и высокой ионизирующей способностью;

β-лучи – это поток электронов, обладают меньшей ионизирующей способностью, но большей проникающей (≈ 2мм);

γ-лучи представляют собой коротковолновое электромагнитное излучение с чрезвычайно малой длиной волны λ < 10 –10 м является потоком частиц – γ-квантов. Обладают наибольшей проникающей способностью. Они способны проходить через слой свинца толщиной 5–10 см.

Закон радиоактивного распада

Теория радиоактивного распада строится на предположении о том, что радиоактивный распад является спонтанным процессом, подчиняющимся законам статистики. Вероятность распада ядра за единицу времени, равная доле ядер, распадающихся за 1с, называется постоянной радиоактивного распада λ. Число ядер dN распавшихся за очень короткий промежуток времени dt пропорционально полному числу радиоактивных ядер N (нераспавшихся ядер) и промежутку времени dt :

Величину λN называют активностью (скоростью распада) : А = λN = . Единица активности в СИ – беккерель (Бк). До сих пор в ядерной физике применяется и внесистемная единица активности – кюри (Ки): 1Ки = 3,7·10 10 Бк.

Знак «–» указывает, что общее число радиоактивных ядер в процессе распада уменьшается. Разделив переменные и проинтегрировав,

где N 0 – начальное число нераспавшихся ядер (в момент времени t = 0); N – число нераспавшихся ядер в момент времени t . Можно видеть, что число нераспавшихся ядер убывает со временем экспоненциально. За время τ = 1/λ количество нераспавшихся ядер уменьшится в e ≈ 2,7 раза. Величину τ называют средним временем жизни радиоактивного ядра.

Еще одной величиной, характеризующей интенсивность радиоактивного распада является период полураспада Т – это промежуток времени, за который в среднем число нераспавшихся ядер уменьшается вдвое.

Период полураспада – основная величина, характеризующая скорость радиоактивного распада. Чем меньше период полураспада, тем интенсивнее протекает распад.

Закон радиоактивного распада можно записать в другом виде, используя в качестве основания число 2, а не e :

Рис. 2 иллюстрирует закон радиоактивного распада.

Рисунок 2. Закон радиоактивного распада.

Радиоактивность применяется для датирования археологических и геологических находок по концентрации радиоактивных изотопов (радиоуглеродный метод, который заключается в следующем: нестабильный изотоп углерода возникает в атмосфере вследствие ядерных реакций, вызываемых космическими лучами. Небольшой процент этого изотопа содержится в воздухе наряду с обычным стабильным изотопом . Растения и другие организмы потребляют углерод из воздуха, и в них накапливаются оба изотопа в той же пропорции, как и в воздухе. После гибели растений они перестают потреблять углерод и нестабильный изотоп в результате β-распада постепенно превращается в азот с периодом полураспада 5730 лет. Путем точного измерения относительной концентрации радиоактивного углерода в останках древних организмов можно определить время их гибели).

К числу радиоактивных процессов относятся: 1) -распад; 2) β-распад (в том числе и электронный захват); 3) γ- распад; 4) спонтанное деление тяжелых ядер; 5) протонная радиоактивность – ядро испускает один или два протона (Флеров, СССР,1963).

Радиоактивный распад происходит в соответствии с правилами смещения:

Альфа-распад . Альфа-распадом называется самопроизвольное превращение атомного ядра, которое называют материнским в другое (дочернее) ядро, при этом испускается α -частица – ядро атома гелия .

Примером такого процесса может служить α -распад радия:

α -распад ядер во многих случаях сопровождается γ -излучением.

Бета-распад . Если α – распад характерен для тяжелых ядер, то β – распад – практически для всех. При β -распаде зарядовое число Z увеличивается на единицу, а массовое число A остается неизменным.

Известны три разновидности β – распада: 1) электронный

+

Где - антинейтрино – античастица по отношению к нейтрино.

- электронноенейтрино (маленький нейтрон) – частица с нулевыми значениями массы и заряда. Из-за отсутствия у нейтрино заряда и массы эта частица очень слабо взаимодействует с атомами вещества, поэтому ее чрезвычайно трудно обнаружить в эксперименте. Эта частица была обнаружена лишь в 1953 г. В настоящее время известно, что существует несколько разновидностей нейтрино. Участвует (кроме гравитационного) только в слабом взаимодействии.

2) позитронный β + -распад, при котором из ядра вылетают позитрон и нейтрино .

+

Позитрон – это частица-двойник электрона, отличающаяся от него только знаком заряда. (Существование позитрона было предсказано выдающимся физиком П. Дираком в 1928 г. Через несколько лет позитрон был обнаружен в составе космических лучей).

3) Электронный захват (К – захват) – ядро захватывает орбитальный электрон К – оболочки .

+

Гамма-распад . Процесс внутриядерный и испускание происходит не материнским, а дочерним ядром. В отличие от α - и β -распадов γ -распад не связан с изменением внутренней структуры ядра и не сопровождается изменением зарядового или массового чисел.

(Радиоактивное излучение всех видов оказывают очень сильное биологическое воздействие на живые организмы, которое заключается в процессах возбуждения и ионизации атомов и молекул, входящих в состав живых клеток. Под действием ионизирующей радиации разрушаются сложные молекулы и клеточные структуры, что приводит к лучевому поражению организма) .

(Серьезную опасность для здоровья человека может представлять инертный, бесцветный, радиоактивный газ радон . Радон является продуктом α -распада радия и имеет период полураспада T = 3,82 сут. Он может накапливаться в закрытых помещениях. Попадая в легкие, радон испускает α -частицы и превращается в полоний , который не является химически инертным веществом. Далее следует цепь радиоактивных превращений серии урана. Человек в среднем получает 55 % ионизирующей радиации за счет радона и только 11 % за счет медицинских обслуживаний. Вклад космических лучей составляет примерно 8 %).

Ядерные реакции

Ядерная реакция – это процесс взаимодействия атомного ядра с другим ядром или элементарной частицей, сопровождающийся изменением состава и структуры ядра и выделением вторичных частиц или γ-квантов.

Символически можно записать: Х + а → Y + b или Х (а,b) Y , где Х , Y – исходное и конечное ядра; а и b – бомбардирующая и испускаемая частицы.

При ядерных реакциях выполняется несколько законов сохранения : импульса, энергии, момента импульса, заряда, спина. В дополнение к этим классическим законам сохранения при ядерных реакциях выполняется закон сохранения так называемого барионного заряда (т.е. числа нуклонов – протонов и нейтронов). Выполняется также ряд других законов сохранения, специфических для ядерной физики и физики элементарных частиц.

Классификация ядерных реакций :

1) по роду участвующих в них частиц – реакции под действием нейтронов; заряженных частиц; γ – квантов;

2) по энергии вызывающих их частиц – реакции при малых, средних и высоких энергиях;

3) по роду участвующих в них ядер;

4) по характеру происходящих ядерных превращений – реакции с испусканием нейтронов; заряженных частиц; реакции захвата.

Ядерные реакции сопровождаются энергетическими превращениями. Энергетическим выходом ядерной реакции называется величина

Q = ()c 2 = ΔMc 2 .

где ∑M i – сумма масс частиц, вступивших в ядерную реакцию;

M к – сумма масс образовавшихся частиц. Величина ΔM называется дефектом масс . Ядерные реакции могут протекать с выделением (Q > 0) - экзотермические или с поглощением энергии (Q < 0) - эндотермические.

Возможны два принципиально различных способа освобождения ядерной энергии.

1. Деление тяжелых ядер . Реакция деления – это процесс, при котором нестабильное ядро делится на два крупных фрагмента сравнимых масс.

В 1939 году немецкими учеными О. Ганом и Ф. Штрассманом было открыто деление ядер урана. Уран встречается в природе в виде двух изотопов: (99,3 %) и (0,7 %).

Основной интерес для ядерной энергетики представляет реакция деления ядра . В результате деления ядра, инициированного нейтроном, возникают новые нейтроны, способные вызвать реакции деления других ядер. При делении ядра урана освобождается энергия порядка 210 МэВ на один атом урана. При полном делении всех ядер, содержащихся в 1 г урана, выделяется такая же энергия, как и при сгорании 3 т угля или 2,5 т нефти.

При делении ядра урана-235, которое вызвано столкновением с нейтроном, освобождается 2 или 3 нейтрона. При благоприятных условиях эти нейтроны могут попасть в другие ядра урана и вызвать их деление. На этом этапе появятся уже от 4 до 9 нейтронов, способных вызвать новые распады ядер урана и т.д. Такой лавинообразный процесс называется цепной реакцией . Схема развития цепной реакции деления ядер урана представлена на рис.3.

Рисунок 2. Схема развития цепной реакции

Для осуществления цепной реакции необходимо, чтобы так называемый коэффициент размножения нейтронов был больше единицы. Другими словами, в каждом последующем поколении нейтронов должно быть больше, чем в предыдущем. Устройство, в котором поддерживается управляемая реакция деления ядер, называется ядерным (или атомным ) реактором .

Первый ядерный реактор был построен в 1942 году в США под руководством Э. Ферми. В нашей стране первый реактор был построен в 1946 году под руководством И.В. Курчатова.

2. Термоядерные реакции . Второй путь освобождения ядерной энергии связан с реакциями синтеза. При слиянии легких ядер и образовании нового ядра должно выделяться большое количество энергии. Реакции слияния легких ядер носят название термоядерных реакций , так как они могут протекать только при очень высоких температурах. Расчет необходимой для этого температуры T приводит к величине порядка 10 8 –10 9 К. При такой температуре вещество находится в полностью ионизированном состоянии, которое называется плазмой .

Осуществление управляемых термоядерных реакций даст человечеству новый экологически чистый и практически неисчерпаемый источник энергии. Однако получение сверхвысоких температур и удержание плазмы, нагретой до миллиарда градусов, представляет собой труднейшую научно-техническую задачу на пути осуществления управляемого термоядерного синтеза. Один из способов ее решения - удержание горячей плазмы в ограниченном объеме сильными магнитными полями. Этот способ предложили наши соотечественники физики-теоретики А.Д. Сахаров (1921-1989), И.Е. Тамм (1895-1971) и др. Для удержания плазмы создаются сложнейшие в техническом исполнении термоядерные реакторы. Один из них - Токамак-10, впервые созданный в 1975 г. в Институте атомной энергии им. И.В. Курчатова. В последнее время сооружаются новые модификации термоядерных реакторов. Управляемый термоядерный синтез - это важнейшая проблема современного естествознания, с решением которой, как предполагается, откроется новый перспективный путь развития энергетики.

На данном этапе развития науки и техники удалось осуществить только неуправляемую реакцию синтеза в водородной бомбе. Высокая температура, необходимая для ядерного синтеза, достигается здесь с помощью взрыва обычной урановой или плутониевой бомбы.

Термоядерные реакции играют чрезвычайно важную роль в эволюции Вселенной. Энергия излучения Солнца и звезд имеет термоядерное происхождение.z:\Program Files\Physicon\Open Physics 2.5 part 2\design\images\buttonModel_h.gifz:\Program Files\Physicon\Open Physics 2.5 part 2\design\images\buttonModel_h.gifz:\Program Files\Physicon\Open Physics 2.5 part 2\design\images\buttonModel_h.gif