Схема работы реактивного двигателя. Реактивный двигатель

Еще в начале XX в. российский ученый К.Э. Циолковский предсказал, что вслед за эрой винтовых аэропланов наступит эра аэропланов реактивных. Он считал, что только с реактивным двигателем можно достичь сверхзвуковых скоростей.

В 1937 г. молодой и талантливый конструктор A.M. Люлька предложил проект первого советского турбореактивного двигателя. По его расчетам, такой двигатель мог разогнать самолет до небывалых в ту пору скоростей — 900 км/ч! Это казалось фантастикой, и к предложению молодого конструктора отнеслись настороженно. Но, тем не менее, работы по этому двигателю начались, и к середине 1941 г. он был уже практически готов. Однако началась война, и конструкторское бюро, где работал A.M. Люлька, эвакуировали в глубь СССР, а самого конструктора переключили на работу над танковыми двигателями.

Но A.M. Люлька был не одинок в своем стремлении создать реактивный авиационный двигатель. Перед самой войной инженеры из конструкторского бюро В.Ф. Болховитинова — А.Я. Березняк и А.М. Исаев — предложили проект истребителя-перехватчика «БИ-1» с жидкостным реактивным двигателем.

Проект был одобрен, и конструкторы приступили к работе. Несмотря на все трудности первого периода Великой Отечественной войны, опытный «БИ-1» все же был построен.

15 мая 1942 г. первый в мире ракетный истребитель был поднят в воздух летчиком-испытателем ЕЯ. Бахчиванджи. Испытания продолжались до конца 1943 г. и, к сожалению, закончились катастрофой. В одном из испытательных полетов Бахчиванджи достиг скорости 800 км/ч. Но на этой скорости самолет вдруг вышел из повиновения и устремился к земле. Новая машина и ее отважный испытатель погибли.

Первый самолет с реактивным двигателем «Messer-schmitt Ме-262» появился в небе перед самым концом второй мировой войны. Он производился на хорошо замаскированных заводах, размешенных в лесу. Один из таких заводов в Горгау — в 10 км к запалу от Аугсбурга по автобану — поставлял крылья, носовую и хвостовую секции самолета на другой «лесной» завод неподалеку, который осуществлял финальную сборку и поднимал готовые самолеты прямо с автобана. Крыша строений красилась в зеленый цвет, и обнаружить такой «лесной» завод с воздуха было почти невозможно. Хотя союзникам удалось засечь взлеты «Ме-262» и разбомбить несколько неукрытых самолетов, расположение завода они смогли установить только, после того, как заняли лес.

Первооткрыватель реактивного двигателя англичанин Фрэнк Уитл получил свой патент еще в 7 930 г. Первый реактивный самолет «Gloster» был построен в 1941 г. ив мае прошел испытания. Правительство от него отказалось — недостаточно мощный. Полностью раскрыли потенциал этого изобретения лишь немцы, в 1942 г. собравшие «Messerschmitt Ме-262», на котором и воевали вплоть до конца войны. Первым советским реактивным самолетом был «МиГ-9», а его «потомок» — «МиГ-15» — вписал много славных страниц в боевую историю войны в Корее (1950—1953).

В эти же годы в фашистской Германии, утратившей на советско-германском фронте превосходство в воздухе, все более интенсивно развертываются работы над реактивными самолетами. Гитлер надеялся, что с помощью этих самолетов он снова перехватит инициативу в войне и добьется победы.

В 1944 г. самолет «Messerschmitt Ме-262», оснащенный реактивным двигателем, был запущен в серийное производство и вскоре появился на фронте. Немецкие летчики с большой опаской относились к этой необычной машине, не имеющей привычного винта. Кроме этого на скорости, близкой к 800 км/ч, ее затягивало в пикирование, и вывести машину из этого состояния было невозможно. В авиационных частях далее появилась строжайшая инструкция — ни в коем случае не доводить скорость до 800 км/ч.

Тем не менее, даже с таким ограничением «Ме-262» превосходил по скорости все другие истребители тех лет. Это позволило командующему гитлеровской истребительной авиацией генералу Голланду заявить, что «Ме-262» — «единственный шанс организовать реальное сопротивление противнику».

На Восточном фронте «Ме-262» появились в самом конце войны. В связи с этим конструкторские бюро получили срочное задание создать аппараты для борьбы с немецкими реактивными самолетами.

А.И. Микоян и П.О. Сухой в помощь обычному поршневому мотору, расположенному в носовой части аппарата, добавили мотокомпрессорный мотор конструкции К.В. Холщевникова, установив его в хвосте самолета. Дополнительный двигатель должен был запускаться, когда самолету требовалось придать значительное ускорение. Это было продиктовано тем обстоятельством, что двигатель К.В. Холщевникова работал не более трех-пяти минут.

Первым закончил работу над скоростным истребителем А.И. Микоян. Его самолет «И-250» совершил полет в марте 1945 г. В ходе испытаний этой машины была зарегистрирована рекордная скорость 820 км/ч, впервые достигнутая в СССР. Истребитель П.О. Сухого «Су-5» поступил на испытания в апреле 1945 г., и на нем после включения дополнительного хвостового двигателя была получена скорость, превышающая 800 км/ч.

Однако обстоятельства тех лет не позволили запустить новые скоростные истребители в серийное производство. Во-первых, война закончилась, даже хваленый «Ме-262» не помог вернуть фашистам утраченное превосходство в воздухе.

Во-вторых, мастерство советских пилотов позволило доказать всему миру, что даже реактивные самолеты можно сбивать, управляя обыкновенным серийным истребителем.

Параллельно с разработкой самолета, оснащенного «толкающим» мотокомпрессорным двигателем, в конструкторском бюро П.О. Сухого был создан истребитель «Су-7», в котором совместно с поршневым мотором работал жидкостно-реактивный «РД-1», разработанный конструктором В.П. Глушко.

Полеты на «Су-7» начались в 1945 г. Испытывал его пилот Г. Комаров. При включении «РД-1» скорость самолета увеличивалась в среднем на 115 км/ч. Это был неплохой результат, однако вскоре испытания пришлось прекратить из-за частого выхода из строя реактивного двигателя.

Аналогичная ситуация сложилась в конструкторских бюро С.А. Лавочкина и АС. Яковлева. На одном из опытных самолетов «Ла-7Р» ускоритель взорвался в полете, летчику-испытателю чудом удалось спастись. А вот при испытании «Як-3» с ускорителем «РД-1» самолет взорвался и его пилот погиб. Участившиеся катастрофы привели к тому, что испытания самолетов с «РД-1» были прекращены. К тому же стало ясно, на смену поршневым должны были прийти новые двигатели — реактивные.

После поражения Германии в качестве трофеев СССР достались немецкие реактивные самолеты с двигателями. Западным же союзникам попали не только образцы реактивных самолетов и их двигателей, но и их разработчики и оборудование фашистских заводов.

Для накопления опыта в реактивном самолетостроении было принято решение использовать немецкие двигатели «JUMO-004» и «BMW-003», а затем на их основе создать собственные. Эти двигатели получили наименование «РД-10» и «РД-20». Кроме этого конструкторам A.M. Люльке, А.А. Микулину, В.Я. Климову было поручено создать «полностью советский» авиационный реактивный двигатель.

Пока у «двигателистов» шла работа, П.О. Сухой разработал реактивный истребитель «Су-9». Его конструкция была выполнена по схеме двухмоторных самолетов — два трофейных двигателя «JUMO-004» («РД-10») размещались под крыльями.

Наземные испытания реактивного мотора «РА- 7» проводились на летном поле аэродрома в Тушино. Во время работы он издавал страшный шум и выбрасывал из своего сопла клубы дыма и огня. Грохот и зарево от пламени были заметны даже у московской станции метро «Сокол». Не обошлось и без курьеза. Однажды на аэродром примчалось несколько пожарных машин, вызванных москвичами тушить пожар.

Самолет «Су-9» трудно было назвать просто истребителем. Летчики обычно называли его «тяжелым истребителем», так как более точное название — истребитель-бомбардировщик — появилось только к середине 50-х гг. Но по своему мощному пушечному и бомбовому вооружению «Су-9» вполне можно было считать прототипом такого самолета.

У такого размещения моторов были как недостатки, так и преимущества. К недостаткам можно отнести большое лобовое сопротивление, создаваемое расположенными под крыльями моторами. Но с другой стороны, размещение двигателей в специальных подвесных мотогондолах открывало к ним беспрепятственный доступ, что было немаловажно при ремонте и регулировке.

Кроме реактивных двигателей самолет «Су-9» содержал много «свежих» конструкторских решений. Так, например, П.О. Сухой установил на свой самолет стабилизатор, управляемый специальным электромеханизмом, стартовые пороховые ускорители, катапультируемое сиденье летчика и устройство по аварийному сбросу фонаря, прикрывающего кабину летчика, воздушные тормоза с посадочным щитком, тормозной парашют. Можно сказать, что «Су-9» был целиком создан из новшеств.

Вскоре опытный вариант истребителя «Су-9» был построен. Однако было обращено внимание на то, что выполнение виражей на нем для летчика физически тяжелое.

Стало очевидным, что с возрастанием скоростей и высоты полета летчику все труднее будет справляться с управлением, и тогда в систему управления самолетом было введено новое устройство — бустер-усилитель, наподобие гидроусилителя руля. Но в те годы применение сложного гидравлического устройства на самолете вызвало споры. Даже опытные авиаконструкторы отнеслись к нему скептически.

И все же бустер установили на «Су-9». Сухой первым полностью переложил усилия с ручки управления самолетом на гидросистему. Положительная реакция пилотов не заставила себя ждать. Управление самолетом стало более приятным и неутомительным. Маневр упростился и стал возможен на всех скоростях полета.

Следует добавить, что добиваясь совершенства конструкции, П.О. Сухой «проиграл» в соревновании бюро Микояна и Яковлева. Первые реактивные истребители СССР — «МиГ-9» и «Як-15» взлетели в воздух в один день — 26 апреля 1946 г. Они приняли участие в воздушном параде в Тушино и тут же были запущены в серию. А «Су-9» появился в воздухе только в ноябре 1946 г. Однако он очень понравился военным и в 1947 г. был рекомендован для серийного производства. Но в серию он не пошел — авиационные заводы уже были загружены работой по выпуску реактивных «МиГов» и «Яков». Да и П.О. Сухой к тому времени уже заканчивал работу над новой, более совершенной машиной — истребителем «Су-11».

Такое название для этой главы выбрано не случайно. Именно так, опираясь крыльями на воздух, как это делают птицы, взлетели в небо первые самолеты, открыв новую эру на земле — эру авиации. И не случайно слово «авиация» в переводе с латинского обозначает — птица. Ведь именно мечта людей летать, как птицы, и послужила толчком к зарождению…

Еще в 1914 г. норвежский исследователь Фритьоф Нансен в своей книге «В страну будущего» высказался о том, что авиация будет играть важную роль в освоении Севера, в частности в развитии судоходства через Карское море и устья рек Обь и Енисей. Почти в то же время русскими летчиками были предприняты первые попытки пролететь над Северным морским…

В один из осенних дней 1797 г. французский воздухоплаватель Жак Гарнерен поднялся на воздушном шаре над парком Монсо близ Парижа, затем оставил шар и опустился на землю на парашюте собственной конструкции. Считается, что именно в этот день впервые в истории человек доверил этому необычному приспособлению свою жизнь. Возможно, это так, но сама идея спуска с…

Летом 1936 г. технический департамент Германии подготовил задание на новый двухместный гидросамолет. Заказ на его разработку осенью 1936 г. получили две немецкие авиастроительные компании «Arado» и «Focke-Wulf». Традиционно считалось, что для создания небольшого поплавкового самолета требуется использование схемы биплана. По такому пути пошел и Курт Танк при разработке своего «Fw-62». Конструкторское бюро «Arado», не отличавшееся…

Ничто в мире не случается вдруг. Каждому явлению предшествует длительная подготовка. Так и историческому полету аппарата братьев Райт предшествовали многолетние опыты и эксперименты других людей, порой весьма далеких от авиации. Об одном из таких людей, летательный аппарат которого молено считать переходной моделью между аппаратами авиации и воздухоплавания, пойдет этот рассказ. В 1897 г. в небо…

Пожалуй, именно в 20—40-х гг. XX в. воздухоплавание во всем мире получило наибольшее развитие. В СССР еще до появления ЦАГИ, 23 марта 1918 г. была создана «Летучая лаборатория». В ее задачи входили всесторонние экспериментальные исследования в области воздухоплавания и авиации. Летучая лаборатория, руководимая Н.Е. Жуковским, стала первым советским научным авиационным институтом. В 1919 г. было…

Сейчас речь пойдет о самолетах гражданской авиации. Такие самолеты используются для перевозок пассажиров, багажа, почты и других грузов, а также в сельском хозяйстве, строительстве, для охраны лесов, обслуживания экспедиций, оказания медицинской помощи населению и проведения санитарных мероприятий, экспериментальных и научно-исследовательских работ, учебных, культурно-просветительных и спортивных мероприятий, поисково-спасательных и аварийно-спасательных работ и оказания помощи в случае…

Поплавковый патрульный бомбардировщик-торпедоносец «N-3PB» стал первым серийным самолетом, разработанным американской фирмой «Northrop Aircraft Inc». Самолет строился по заказу норвежских ВМС, нуждающихся в поплавковом патрульном самолете. Работы над самолетом были начаты в 1939 г., и уже 1 ноября 1940 г. первый самолет совершил полет на озере Эльсинор в Калифорнии. Несмотря на достаточно мощное вооружение, состоящее из…

Задолго до того дня, когда в свой первый полет отправился самолет братьев Райт, «воздухоплавательный снаряд», построенный российским изобретателем Александром Федоровичем Можайским (1825—1890), оторвался от поверхности земли. Этот аппарат, на который конструктором был получен патент, имел все основные черты современного самолета. Как же случилось, что американские, а не российские изобретатели стали «крестными отцами» авиации? Александр Федорович…

Война — это всегда горе и слезы, но люди слишком быстро забывают об этом. Прошло каких-нибудь два десятка лет со времени окончания первой мировой, а на пороге уже стояла новая война — вторая мировая. 1 сентября 1939 г. немецкие войска вторглись в Польшу, и весь мир оказался втянутым в новую кровопролитную войну. В 1937 г….

Широкое применение реактивные двигатели в настоящее время получили в связи с освоением космического пространства. Применяются они также для метеорологических и военных ракет различного радиуса действия. Кроме того, все современные скоростные самолёты оснащены воздушно-реактивными двигателям

В космическом пространстве использовать какие-либо другие двигатели, кроме реактивных, невозможно: нет опоры (твёрдой жидкой или газообразной), отталкиваясь от которой космический корабль мог бы получить ускорение. Применение же реактивных двигателей для самолётов и ракет, не выходящих за пределы атмосферы, связано стем, что именно реактивные двигатели могут обеспечить максимальную скорость полёта.

Устройство реактивного двигателя.


Просто по принципу действия: забортный воздух (в ракетных двигателях - жидкий кислород) засасывается в турбину , там смешивается с топливом и сгорая, в конце турбины образует т.н. “рабочее тело” (реактивная струя), которое и дви­гает машину.

В начале турбины стоит вентилятор , который засасывает воздух из внешней среды в турбины. Основных задач две - первичный забор воздуха и охлаждение всего дв игателя в целом, путем прокачивания воздуха между внешней оболочкой двигателя и внутренними деталями. Это охлаждает камеры смешивания и сгорания и не дает им разрушится.

За вентилятором стоит мощный компрессор , который нагнетает воздух под большим давлением в камеру сгорания.

Камера сгорания смешивает топливо с воздухом. После образования топливо-воздушной смеси, она поджигается. В процессе возгорания происходит значительный разогрев смеси и окружающих деталей, а также объемное расширение. Фактически, реактивный двигатель использует для движения управляемый взрыв. Камера сгорания реактивного двигателя - одна из самых горячих его частей. Ей необходимо постоянное интенсивное охлаждение . Но и этого недостаточно. Температура в ней достигает 2700 градусов, поэтому её часто делают из керамики.

После камеры сгорания, горящая топливо-воздушная смесь направляется непосредственно в турбину . Турбина состоит из сотен лопаток, на которые давит реактивный поток, приводя турбину во вращение. Турбина в свою очередь вращает вал , на котором находятся вентиллятор и компрессор . Таким образом система замыкается и требует лишь подвода топлива и воздуха для своего функционироваия.


Существует два основных класса реактивных двига телей:


Воздушно-реактивные двигатели - реактивный двигатель, в котором атмосферный воздух применяется как основное рабочее тело в термодинамическом цикле, а также при создании реактивной тяги двигателя. Такие двигатели используют энергию окисления горючего кислородом воздуха, забираемого из атмосферы. Рабочее тело этих двигателей представляет собой смесь продуктов горения с остальными компонентами забранного воздуха.

Ракетные двигатели - содержат все компоненты рабочего тела на борту и способны работать в любой среде , в том числе и в безвоздушном пространстве.


Виды реактивных двигателей.

- Классический реактивный двигатель - используется в основном на истребителях в различных модификациях.

К лассический реактивный двигатель

- Турбовинтовой двигатель.

Такие двигатели позволяют большим самолетам летать на приемлемых скоростях и тратить меньше горючего

Двухлопастной турбовинтовой двигатель


- Турбовентиляторный реактивный двигатель.

Этот тип двигателя является более экономичным родственником классического типа. главное отличие в том, что на входе ставится вентилятор большего диаметра , который подает воздух не только в турбину, но и создает достаточно мощный поток вне её . Таким образом достигается повышенная экономичность, за счет улучшения КПД.

Реактивный двигатель был изобретен Гансом фон Охайном (Dr. Hans von Ohain) , выдающимся немецким инженером-конструкторм и Фрэнком Уиттлом (Sir Frank Whittle) . Первый патент на работающий газотурбинный двигатель, был получен в 1930 году Фрэнк Уиттлом. Однако первую рабочую модель собрал именно Охайн.

2 августа 1939 года в небо поднялся первый реактивный самолет – He 178 (Хейнкель 178), снаряженный двигателем HeS 3, разработанный Охайном.

Достаточно просто и одновременно крайне сложно. Просто по принципу действия: забортный воздух (в ракетных двигателях – жидкий кислород) засасывается в турбину, там смешивается с топливом и сгорая, в конце турбины образует т.н. “рабочее тело” (реактивная струя), которое и двигает машину.

Так все просто, но на деле – это целая область науки, ибо в таких двигателях рабочая температура достигает тысяч градусов по Цельсию. Одна из самых главных проблем турбореактивного двигателестроения – создание не плавящихся деталей, из плавящихся металлов. Но для того, что бы понять проблемы конструкторов и изобретателей нужно сначала более детально изучить принципиальное устройство двигателя.

Устройство реактивного двигателя

основные детали реактивного двигателя

В начале турбины всегда стоит вентилятор , который засасывает воздух из внешней среды в турбины. Вентилятор обладает большой площадью и огромным количеством лопастей специальной формы, сделанных из титана. Основных задач две – первичный забор воздуха и охлаждение всего двигателя в целом, путем прокачивание воздуха между внешней оболочкой двигателя и внутренними деталями. Это охлаждает камеры смешивания и сгорания и не дает им разрушится.

Сразу за вентилятором стоит мощный компрессор , который нагнетает воздух под большим давлением в камеру сгорания.

Камера сгорания выполняет еще и роль карбюратора, смешивая топливо с воздухом. После образования топливо воздушной смеси она поджигается. В процессе возгорания происходит значительный разогрев смеси и окружающих деталей, а также объемное расширение. Фактически реактивный двигатель использует для движения управляемый взрыв.

Камера сгорания реактивного двигателя одна из самых горячих его частей – её необходимо постоянно интенсивное охлаждение. Но и этого недостаточно. Температура в ней достигает 2700 градусов, поэтому её часто делают из керамики.

После камеры сгорания горящая топливо-воздушная смесь направляется непосредственно в турбину.

Турбина состоит из сотен лопаток, на которые давит реактивный поток, приводя турбину во вращение. Турбина в свою очередь вращает вал, на котором “сидят” вентиллятор и компрессор. Таким образом система замыкается и требует лишь подвода топлива и воздуха для своего функционироваия.

После турбины поток направляется в сопло. Сопло реактивного двигателя – последняя, но далеко не по значению часть реактивного двигателя. Оно формирует непосредственно реактивную струю. В сопло направляется холодный воздух, нагнетаемый вентиллятором для охлаждения внутренних деталей двигателя. Этот поток ограничивает манжету сопла от сверхгорячего реактивного потока и ее дает ей расплавится.

Отклоняемый вектор тяги

Сопла у реактивных двигателей бывают самые разные. Самым передовым считает подвижное сопло, стоящее на двигателях с отклоняемым вектором тяги. Оно может сжиматься и расширятся, а также отклонятся на значительные углы, регулируя и направляя непосредственно реактивный поток . Это делает самолеты с двигателями с отклоняемым вектором тяги очень маневренными, т.к. маневрирование происходит не только благодаря механизмам крыла, но и непосредственно двигателем.

Типы реактивных двигателей

Существует несколько основных типом реактивных двигателей.

Классический реактивный двигатель самолета F-15

Классический реактивный двигатель – принципиальное устройство которого мы описыали выше. Используется в основном на истребителях в различных модификациях.

Турбовинтовой двигатель . В этом типе двигателя мощность турбины через понижающий редуктор направляется на вращение классического винта. Такие двигатели позволят большим самолетам летать на приемлемых скоростях и тратить меньше горючего. Нормальной крейсерской скоростью турбовинтового самолета считается 600-800 км/ч.

Этот тип двигателя является более экономичным родственником классического типа. главное отличие в том, что на входе ставится вентилятор большего диаметра, который подает воздух не только в турбину, но и создает достаточно мощный поток вне её. Таким образом достигается повышенная экономичность, за счет улучшения КПД.

Используется на лайнерах и больших самолетах.

Прямоточный воздушно-реактивный двигатель (Ramjet)

Работает без подвижных деталей. Воздух нагнетается в камеру сгорания естественным способом, за счет торможения потока об обтекатель входного отверстия.

Использовался на поездах, самолетах, БЛА, и в боевых ракетах, а также на велосипедах и скутерах.

И напоследок – видео работы реактивного двигателя:

Картинки взяты из различных источников. Русификация картинок – Лаборатори 37.

Реактивный двигатель

Реакти́вный дви́гатель

двигатель, тяга которого создаётся реакцией (отдачей) вытекающей из него струи рабочего тела. Под рабочим телом применительно к двигателям понимают вещество (газ, жидкость, тв ёрдое тело), с помощью которого тепловая , выделяющаяся при сгорании топлива, преобразуется в полезную механическую работу. Основа реактивного двигателя – , где сжигается (источник первичной энергии) и генерируется – раскалённые газы (продукты сгорания топлива).

По способу генерирования рабочего тела реактивные двигатели подразделяются на воздушно-реактивные (ВРД) и ракетные двигатели (РД). В воздушно-реактивных двигателях топливо сгорает в воздушном потоке (окисляется кислородом воздуха), превращаясь в тепловую энергию раскалённых газов, которая в свою очередь переходит в кинетическую энергию движения реактивной струи. В зависимости от способа подачи воздуха в камеру сгорания различают турбокомпрессорные, прямоточные и пульсирующие воздушно-реактивные двигатели.

В турбокомпрессорном двигателе воздух в камеру сгорания нагнетается компрессором. Такие двигатели являются основным типом авиационного двигателя. Они подразделяются на турбовинтовые, турбореактивные и пульсирующие воздушно-реактивные двигатели.

Турбовинтовой двигатель (ТВД) – турбокомпрессорный , в котором тяга в основном создаётся воздушным винтом, приводимым во вращение газовой турбиной, и частично прямой реакцией потока газов, вытекающих из реактивного сопла.

1 – воздух; 2 – компрессор; 3 – газовая ; 4 – сопло; 5 – горячие газы; 6 – камера сгорания; 7 – жидкое топливо; 8 – форсунки

Турбореактивный двигатель (ТРД) – турбокомпрессорный двигатель, в котором тяга создаётся прямой реакцией потока сжатых газов, вытекающих из сопла. Пульсирующий воздушно-реактивный двигатель – реактивный двигатель, в котором периодически поступающий в камеру сгорания воздух сжимается под действием скоростного напора. Имеет небольшую тягу; использовался в основном на до-звуковых летательных аппаратах. Прямоточный воздушно-реактивный двигатель (ПВРД) – реактивный двигатель, в котором непрерывно поступающий в камеру сгорания воздух сжимается под действием скоростного напора. Имеет большую тягу при сверхзвуковых скоростях полёта; отсутствует статичная тяга, поэтому для ПВРД необходим принудительный старт.

Энциклопедия «Техника». - М.: Росмэн . 2006 .

Реактивный двигатель

двигатель прямой реакции, - условное наименование большого класса двигателей для летательных аппаратов различного назначения. В отличие от силовой установки с поршневым двигателем внутреннего сгорания и воздушным винтом, где тяговое усилие создаётся в результате взаимодействия винта с внешней средой, Р. д. создаёт движущую силу, называемую реактивной силой или тягой, в результате истечения из него струи рабочего тела, обладающей кинетической энергией. Эта сила направлена противоположно истечению рабочего тела. Движителем при этом является сам Р. д. Первичная энергия, необходимая для работы Р. д., как правило, содержится в самом рабочем теле (химическая энергия сжигаемого топлива, потенциальная энергия сжатого газа).
Р. д. делятся на две основные группы. Первую группу составляют ракетные двигатели - двигатели, создающие тяговое усилие только за счёт рабочего тела, запасённого на борту летательного аппарата. К их числу относятся жидкостные ракетные двигатели, ракетные двигатели твёрдого топлива, электрические ракетные двигатели и др. Применяются в ракетах различного назначения, в том числе и в мощных бустерах, служащих для вывода космических кораблей на орбиту.
Ко второй группе относятся воздушно-реактивные двигатели, в которых основным компонентом рабочего тела является воздух, забираемый в двигатель из окружающей среды. В воздушно-ракетных двигателях - турбореактивных двигателях, прямоточных воздушно-реактивных двигателях, пульсирующих воздушно-реактивных двигателях - всё тяговое усилие создаётся за счёт прямой реакции. По рабочему процессу и конструктивным особенностям к воздушно-ракетным двигателям примыкают некоторые авиационные газотурбинные двигатели непрямой реакции - турбовинтовые двигатели и их разновидности (турбовинтовентиляторные двигатели и турбовальные двигатели), у которых доля тягового усилия за счёт прямой реакции незначительна или она практически отсутствует. Турбореактивные двухконтурные двигатели с различным значением степени двухконтурности занимают в этом смысле промежуточное положение между турбореактивными двигателями и турбовинтовыми двигателями. Воздушно-ракетные двигатели применяются главным образом в авиации в составе силовой установки самолётов военного и гражданского назначения. Используя в качестве окислителя окружающий воздух, воздушно-ракетные двигатели обеспечивают существенно большую топливную экономичность, чем ракетные двигатели, так как на борту самолёта необходимо иметь только горючее. В то же время возможность осуществления рабочего процесса с использованием окружающего воздуха ограничивает область использования воздушно-ракетных двигателей атмосферой.
Основное преимущество ракетного двигателя перед воздушно-ракетным двигателем состоит в его способности работать при любых скоростях и высотах полёта (тяга ракетного двигателя не зависит от скорости полёта и возрастает с высотой). В некоторых случаях применяются комбинированные двигатели, сочетающие в себе признаки ракетных и воздушно-ракетных двигателей. В комбинированных двигателях для улучшения экономичности воздух используется на начальном этапе разгона с переходом на ракетный режим на больших высотах полёта.

Авиация: Энциклопедия. - М.: Большая Российская Энциклопедия . Главный редактор Г.П. Свищев . 1994 .


Смотреть что такое "реактивный двигатель" в других словарях:

    РЕАКТИВНЫЙ ДВИГАТЕЛЬ, двигатель, который обеспечивает продвижение вперед, быстро выпуская струю жидкости или газа в направлении, противоположном направлению движения. Чтобы создать высокоскоростной поток газов, в реактивном двигателе горючее… … Научно-технический энциклопедический словарь

    Двигатель, создающий необходимую для движения силу тяги путём преобразования исходной энергии в кинетическую энергию реактивной струи рабочего тела (См. Рабочее тело); в результате истечения рабочего тела из сопла двигателя образуется… … Большая советская энциклопедия

    - (двигатель прямой реакции) двигатель, тяга которого создается реакцией (отдачей) вытекающего из него рабочего тела. Подразделяются на воздушно реактивные и ракетные двигатели … Большой Энциклопедический словарь

    Двигатель, преобразующий какой либо вид первичной энергии в кинетическую энергию рабочего тела (реактивной струи), которая создает реактивную тягу. В реактивном двигателе сочетаются собственно двигатель и движитель. Основной частью любого… … Морской словарь

    РЕАКТИВНЫЙ двигатель, двигатель, тяга которого создается прямой реакцией (отдачей) истекающего из него рабочего тела (например, продуктов сгорания химического топлива). Подразделяются на ракетные двигатели (если запасы рабочего тела размещаются… … Современная энциклопедия

    Реактивный двигатель - РЕАКТИВНЫЙ ДВИГАТЕЛЬ, двигатель, тяга которого создается прямой реакцией (отдачей) истекающего из него рабочего тела (например, продуктов сгорания химического топлива). Подразделяются на ракетные двигатели (если запасы рабочего тела размещаются… … Иллюстрированный энциклопедический словарь

    РЕАКТИВНЫЙ ДВИГАТЕЛЬ - двигатель прямой реакции, реактивная (см.) которого создаётся отдачей вытекающей из него струи рабочего тела. Различают воздушно реактивные и ракетные (см.) … Большая политехническая энциклопедия

    реактивный двигатель - — Тематики нефтегазовая промышленность EN jet engine … Справочник технического переводчика

    Испытания ракетного двигателя Спейс Шаттла … Википедия

    - (двигатель прямой реакции), двигатель, тяга которого создаётся реакцией (отдачей) вытекающего из него рабочего тела. Подразделяются на воздушно реактивные и ракетные двигатели. * * * РЕАКТИВНЫЙ ДВИГАТЕЛЬ РЕАКТИВНЫЙ ДВИГАТЕЛЬ (двигатель прямой… … Энциклопедический словарь

Книги

  • Авиамодельный пульсирующий воздушно-реактивный двигатель , В. А. Бородин. В книге освещаются конструкция, эксплуатация и элементарная теория пульсирующего ВРД. Книга иллюстрирована схемами реактивных летающих моделей самолетов. Воспроизведено в оригинальной…

И каково его значение для современной авиации. С самого своего появления на Земле Человек устремлял свой взор к небу. С какой невероятной легкостью птицы парят в восходящих потоках теплого воздуха! Причем не только маленькие экземпляры, но даже такие крупные, как пеликаны, журавли и многие другие. Попытки подражать им, применяя примитивные основанные на мускульной силе самого летчика, если и приводили к своеобразному «полету», то все равно о массовом внедрении разработки речь идти не могла - уж очень ненадежными были конструкции, слишком много ограничений накладывалось на человека, их использующего.

Затем появились двигатели внутреннего сгорания и пропеллерные моторы. Они оказались настолько успешными, что современный реактивный двигатель и винтово-моторный (пропеллерный) до сих пор параллельно сосуществуют. Конечно, претерпев ряд модификаций.

Как появился реактивный двигатель

Большинство технических решений, изобретение которых приписывается Человеку, на самом деле были подсмотрены у природы. К примеру, созданию дельтаплана предшествовало наблюдение за полетом птиц, парящих в небе. Обтекаемые формы рыб и птиц также были блестяще аргументированы, но уже в рамках технических средств. Подобная история не обошла стороной и реактивный двигатель. Данный принцип движения используют многие морские обитатели - осьминоги, кальмары, медузы и пр. О подобном двигателе высказывался Циолковский. Даже более - он теоретически обосновал возможность создания дирижабля для полетов в межпланетном пространстве.

Лежит в основе А ракеты были известны еще в Древнем Китае. Можно сказать, что идея создания реактивного мотора «витала в воздухе», требовалось лишь увидеть ее и воплотить в технике.

Строение двигателя и принцип работы

В основе любого реактивного мотора лежит камера с выходом, заканчивающимся трубкой-раструбом. Внутрь камеры подается топливная смесь, воспламеняется там, превращаясь в газ высокой температуры. Так как его давление распространяется равномерно во все стороны, давя на стенки, то покинуть камеру газ может только через раструб, ориентированный в противоположную сторону желаемого направления движения. Это создает Сказанное легче понять на примере: на льду стоит человек, держа в руках тяжелый лом. Но стоит ему отбросить лом в сторону, как он получит импульс ускорения и заскользит по льду в противоположную броску сторону. Различие в дальности полета лома и смещения человека объясняется только их массой, сами же силы равны, а векторы противоположны. Проводя аналогию с реактивным двигателем: человек - это летательный аппарат, а лом - перегретый газ из раструба камеры.

При всей своей простоте данная схема обладает несколькими существенными недостатками - большим расходом топлива и огромным давление на стенки камеры. Для снижения потребления используют различные решения: в качестве горючего применяют и окислитель, которые, изменяя свое агрегатное состояние, более предпочтительны, чем жидкое топливо; другой вариант - окисляемый порошок вместо жидкости.

Но наилучшим решением является прямоточный реактивный двигатель. Он представляет собой сквозную камеру, с входом и выходом (условно говоря - цилиндр с раструбом). При движении аппарата в камеру под давлением попадает воздух внешней среды, нагревается и сжимается. Подающаяся топливная смесь воспламеняется и сообщает дополнительную температуру. Далее он вырывается через раструб и создает импульс, как в обычном реактивном моторе. В этой схеме топливо является вспомогательным элементом, поэтому его затраты существенно ниже. Именно такой тип двигателя использован в самолетах, где можно увидеть лопасти турбины, нагнетающей воздух в камеру.