Типы химических реакций их классификация. Химические реакции

Департамент образования Ивановской области

Областное государственное бюджетное профессиональное образовательное учреждение

Южский технологический колледж

МЕТОДИЧЕСКАЯ РАЗРАБОТКА

ОТКРЫТОГО УРОКА ПО ХИМИИ

На тему:

«Классификация химических реакций »

Преподаватель: Вдовин Ю.А.

Курс: I

Группа: 39-40

Южа - 2017 г.

Тема урока:

Классификация химических реакций

Цели урока:

Расширить и углубить знания о химических реакциях, сравнить их с другими видами явлений. Научиться выделять существенные признаки, которые могут быть положены в основу классификации химических реакций. Рассмотреть классификацию химических реакций по различным признакам.

Задачи урока:

1. Образовательная - систематизировать, обобщить и углубить знания обучающихся о химических реакциях и их классификации, развить навыки самостоятельной работы, умения записывать уравнения реакций и расставлять коэффициенты, указывать типы реакций, делать выводы и обобщения.

2. Развивающая - развить культуру речи с применением химических терминов и формул, развитие познавательных способностей, мышления, внимания.

3. Воспитательная - воспитание самостоятельности, усидчивости, внимательности, толерантности.

Тип урока:

Комбинированный

Оборудование и реактивы:

Реактивы:

Нитрат аммония, гидроксид натрия, гидроксид аммония, сульфат меди (II), карбонат натрия, соляная кислота, гексацианоферрат (III) калия, хлорид железа (III), перманганат калия, серная кислота, этанол.

Оборудование:

Пробирки, склянки с растворами, пипетки, штативы, чашка Петри, фарфоровая чашка для выпаривания, стеклянная палочка, вата, металлический противень.

Методы обучения

Словесные (беседа, объяснение)

Методы проблемного обучения, лабораторный опыт.

Формы работы:

индивидуальная, фронтальная.

План урока:

Ход урока:

1. Организационный момент (1 мин)

А) Приветствие;

Б) Техника безопасности;

2. Мотивация (2 мин)

Вступительное слово:

В окружающем нас мире протекает огромное число реакций. Вот мы просто сидим, стоим, идем куда-либо, а в каждой клеточке нашего тела каждую секунду происходят десятки и сотни тысяч превращений одних веществ в другие.

Почти не уступает живому организму и неодушевленная материя. Где то сейчас, именно в данный момент, происходит химический круговорот: одни молекулы исчезают, другие возникают, и эти процессы никогда не останавливаются.

Если бы в одночасье все они прекратились, то мир стал бы безмолвным. Как же удержать в памяти многообразие химических процессов, как практически ориентироваться в них? Как биологам удается ориентироваться в многообразии живых организмов? (создание проблемной ситуации).

Предполагаемый ответ: В любой науке применяется прием классификации, позволяющий по общим признакам разделить все множество объектов на группы.

Сформулируем тему занятия: Классификация химических реакций.

Любой урок должен преследовать цели.

Давайте сформулируем цели сегодняшнего урока?

Что мы должны рассмотреть?

Чему стоит научиться?

Рассмотреть возможные классификации химических реакций.

Научиться выделять признаки, по которым производится классификация реакций.

А в чем польза классификации химических реакций?

Предполагаемый ответ: Она помогает обобщить, структурировать знания о химических процессах, выделить что-либо общее и предсказать на основе имеющихся знаний что-либо еще неведомое, но схожее с известным.

А где знание классификации химических реакций может быть применено в вашей практике?

Предполагаемый ответ: некоторые классы химических реакций могут быть полезны нам в практической деятельности. Например, на окислительно-восстановительных процессах основано такое важное для вас явление, как гальванотехника. Думаю, понятие «Гальванические элементы» вам до боли знакомы!

Кроме того, знание класса химической реакции того или иного процесса может помочь в управлении этим процессом.

3. Актуализация знаний (6 мин)

А) Задание с карточками на отличие физических процессов от химических реакций (2 мин).

Задание выполняется студентом на магнитной доске и параллельно группой с презентацией.

Вглядитесь в эти известные всем Вам явления. Разделите их на группы. Укажите название группам и дайте определение каждой группе.

Б) Повтор техники безопасности

Проведение лабораторных опытов (3 мин)

А как можно узнать, что у нас идет химическая реакция?

Предполагаемый ответ №1: по критериям.

Предполагаемый ответ №2: По выпадению осадка, выделению газа и т.д.

А теперь я предлагаю Вам погрузиться в атмосферу эмпиризма и побыть экспериментаторами. Перед Вами стоят пробирки и склянки с реактивами. В рабочем поле, в задании №2 указаны методики опыта. Проделайте эти опыты. Результаты ваших экспериментов занесите в таблицу «Признаки протекания химических реакций».

Признак протекания

Схема реакции

Появление запаха

Выпадение осадка

Растворение осадка

Выделение газа

Изменение цвета

Излучение света

Выделение

или поглощение тепла

4 . Изучение нового материала (15 мин)

Мы увидели, что химические реакции зачастую сопровождаются эффектами. Некоторые подобные эффекты берутся за основу различным типам классификации…

Да, химические реакции классифицируются по разным типам, поэтому одну и ту же химическую реакцию можно рассматривать и классифицировать по разному.

А) Классификация по числу и составу реагентов и их продуктов:

Соединения

Разложния

Замещения

На одном слайде представлены примеры химических реакций.

Ребята сравнивают уравнения реакций и формулируют определения классов на основе данного сравнительного анализа. Аналогично происходит и с другими типами.

Б) По тепловому эффекту

Экзотермические

Эндотермические

В) По изменению степени окисления

Окислительно-восстановительные

Без изменения степени окисления

Г) По фазовому составу

Гомогенные

Гетерогенные

Д) По использованию катализатора

Каталитические

Некаталитические

Е) По направлению:

Обратимые

Не обратимые

5. Применение и закрепление знаний (15 мин)

А теперь пришло время применить наши знания.

Ребята выполняют задания 3-5 рабочего поля.

3. Напротив каждого термина, относящегося к классу химических реакций, вклейте нужное определение.

Реакции соединения

Реакции, в результате которых из двух и более веществ образуется одно сложное вещество

Реакции разложения

Реакции, в результате которых из сложного вещества образуется несколько новых веществ.

Реакции замещения

Реакции, в результате которых атомы простого вещества замещают атомы одного из элементов в сложном веществе.

Реакции обмена

Реакции, в которых два сложных вещества обмениваются своими составными частями.

Экзотермические реакции

Реакции, протекающие с выделением теплоты.

Эндотермические реакции

Реакции, протекающие с поглощением теплоты.

Каталитические реакции

Реакции, идущие с участием катализатора.

Некаталитические реакции

Реакции, идущие без катализатора.

Окислительно-восстановительные

Реакции, протекающие с изменением степеней окисления элементов, образующих вещества, участвующие в реакции.

Обратимые реакции

Химические реакции, которые протекают одновременно в двух противоположных направлениях-прямом и обратном.

Необратимые реакции

Химические реакции, в результате которых исходные вещества практически полностью превращаются в конечные продукты.

Гомогенные реакции

Реакции, которые протекают в однородной среде, например в смеси газов или в растворах.

Гетерогенные реакции

Реакции, которые протекают между веществами в неоднородной среде.

Проверка работы происходит по слайду презентации.

4. Соотнесите химические реакции с их классом:

Реакции соединения

Реакции разложения

Реакции замещения

Реакции обмена

Экзотермические реакции

Химическая реакция, или химическое превращение, - это процесс, во время которого из одних веществ образуются другие вещества, отличающиеся по химическому составу и строению.


Химические реакции классифицируются по следующим признакам:

1) изменение или отсутствие изменения количества реагентов и продуктов реакции. По этому признаку реакции подразделяются на реакции соединения, разложения, замещения, обмена.

Реакция соединения - это реакция, в ходе которой из двух или нескольких веществ образуется одно новое вещество. Например, Fe + S → FeS.

Реакция разложения - это реакция, при которой из одного вещества образуется два или несколько новых веществ. Например, CaCO3 → CaO + CO2.

Реакция замещения - это реакция между простой и сложной веществами, в процессе которой атомы простого вещества замещают атомы одного из элементов в сложной веществе, в результате чего образуются новая простая и новая сложная вещества. Например, Fe + CuCl2 → Cu + FeCl2.

Реакция обмена - это реакция, в процессе которой две сложные вещества обмениваются своими составными частями. Например, NaOH + HCl → NaCl + H2O.

2) Вторым признаком классификации химических реакций изменение или отсутствие изменения степеней окисления элементов, входящих в состав веществ, которые реагируют. По этому признаку реакции подразделяются на окислительно-восстановительные и такие, которые происходят без изменения степеней окисления элементов. Например, Zn + S → ZnS (цинк плюс эс образуется цинк-эс). Это окислительно-восстановительная реакция, во время которой Цинк отдает два электрона и приобретает степень окисления +2: Zn0 - 2 → Zn +2, а Сера принимает 2 электрона и приобретает степень окисления -2: S0 + 2 → S-2.

Процесс отдачи электронов веществами называется окислением, а процесс приема электронов - восстановлением.

3) Третьим признаком классификации химических реакций выделения или поглощения энергии в процессе реакции. По этому признаку реакции подразделяются на экзотермические (что сопровождается выделением теплоты) и эндотермические (сопровождающиеся поглощением тепла).

4) Четвертым признаком классификации химических реакций тип одного из реагентов. По этому признаку реакции подразделяются на реакции галогенов (взаимодействие с хлором, бромом), гидрирования (присоединение молекул водорода), гидратации (присоединения молекул воды), гидролиза, нитрования.

5) Пятой признаком классификации химических реакций является наличие катализатора. По этому признаку реакции подразделяются на каталитические (которые происходят только при наличии катализатора) и некаталитического (происходящих без катализатора).

6) Еще одним признаком классификации химических реакций протекание реакции до конца. По этому признаку реакции подразделяются на обратимые и необратимые.

Существуют и другие классификации химических реакций. Все зависит от того, какой критерий положен в их основу.

Лекция 2.

Химические реакции. Классификация химических реакций.

Окислительно-восстановительные реакции

Вещества, взаимодействуя друг с другом подвергаются различным изменениям и превращениям. Например, уголь, сгорая образует углекислый газ. Бериллий, взаимодействуя с кислородом воздуха превращается в оксид бериллия.

Явления, при которых одни вещества превращаются в другие, отличающихся от исходных составом и свойствами и при этом не происходит изменения состава ядер атомов называются химическими . Окисление железа, горение, получение металлов из руд ­ – все это химические явления.

Следует различать химические и физические явления.

При физических явлениях изменяется форма или физическое состояние вещества или образуются новые вещества за счет изменения состава ядер атомов . Например, при взаимодействии газообразного аммиакам с жидким азотом, аммиак переходит вначале в жидкое, а затем в твердое состояние. Это не химическое, а физическое явление, т.к. состав вещества не меняется. Некоторые явления, приводящие к образованию. Новых веществ относятся к физическим. Таковы например, ядерные реакции в результате которых из ядер одних элементов образуются атомы других.

Физические явления, т.к. и химические широко распространены: протекание электрического тока по металлическому проводнику, ковка и плаваление металла, выделение теплоты, превращение воды в лед или пар. И т.д.

Химические явления всегда сопровождаются физическими. Например, при сгорании магния выделяется теплота и свет, в гальваническом элементе в результате химической реакции возникает электрический ток.

В соответствии с атомно-молекулярным учением и законом сохранения массы вещества из атомов вступивших в реакцию веществ, образуются новые вещества как простые так и сложные, причем общее число атомов каждого элемента всегда остается постоянным.

Химические явления возникают благодаря протеканию химических реакций.

Химические реакции классифицируют по различным признакам.

1.По признаку выделения или поглощения теплоты. Реакции, протекающие с выделением теплоты называются экзотермическими. Например, реакция образования хлористого водорода из водорода и хлора:

Н 2 +СI 2 =2HCI+184,6 кДж

Реакции, протекающие с поглощением теплоты из окружающей среды, называются эндотермическими. Например, реакция образования оксида азота (II) из азота и кислорода, которая протекает при высокой температуре:

N 2 +O 2 =2NO – 180,8кДж

Количество, выделенной или поглощенной в результате реакции теплоты называют тепловым эффектом реакции. Раздел химии, изучающий тепловые эффекты химических реакций называется термохимией. Об этом мы подробно поговорим при изучении раздела «Энергетика химических реакций».

2. По признаку изменения числа исходных и конечных веществ реакции подразделяют на следующие типы: соединения, разложения и обмена .

Реакции в результате которых из двух или нескольких веществ образуется одно новое вещество называются реакциями соединения :

Например, взаимодействие хлористого водорода с аммиаком:

HCI + NH 3 = NH 4 CI

Или горение магния:

2Mg + O2 = 2MgO

Реакции в результате которых из одного вещества образуется несколько новых веществ называются реакциями разложения .

Например реакция разложения иодида водорода

2HI = H 2 + I 2

Или разложение перманганата калия:

2KmnO 4 = K2mnO 4 + mnO 2 + O 2

Реакции между простыми и сложными веществами, в результате которых атомы простого вещества замещают атомы одного из элементов сложного вещества называются реакциями замещения.

Например, замещение свинца цинком в нитрате свинца (II):

Pb(NO 3) 2 + Zn =Zn(NO 3) 2 + Pb

Или вытеснение брома хлором:

2NaBr + CI 2 = 2NaCI + Br 2

Реакции в результате которых два вещества обмениваются своими составными частями, образуя два новых вещества называются реакциями обмена . Например, взаимодействие оксида алюминия с серной кислотой:

AI2O3 + 3H3SO4 = AI2(SO4)3 + 3H3O

Или взаимодействие хлорида кальция с нитратом серебра:

CaCI 2 + AgNO 3 = Ca(NO 3) 2 + AgCI

3. По признаку обратимости реакции делятся на обратимые и необратимые.

4.По признаку изменения степени окисления атомов, входящих в состав реагирующих веществ, различают реакции протекающие без изменения степени окисления атомов и окислительно-восстановительные (с изменением степени окисления атомов).

Окислительно-восстновительные реакции. Важнейшие окислители и восстановители. Методы подбора коэффициентов в реакциях

окисления-восстановления

Все химические реакции можно разделить на два типа. К первому типу относятся реакции протекающие без изменения степеней окисления атомов, входящих в состав реагирующих веществ.

Например

HNO 3 + NaOH = NaNO 3 + H3O

BaCI 2 + K 2 SO4 = BaSO 4 + 2KCI

Ко второму типу относятся химические реакции, протекающие с изменением степеней окисления всех или некоторых элементов:

2KCIO 3 = 2KICI+3O2

2KBr+CI2=Br 2 +2KCI

Здесь в первой реакции атомы хлора и кислорода меняют степень окисления, а во второй атомы брома и хлора.

Реакции, протекающие с изменением степени окисления атомов входящих в состав реагирующих веществ называются окислительно-восстановительными.

Изменение степени окисления связано с оттягиванием или перемещением электронов.

Основные положения теории окислительно-восстановительных

реакций:

1.Окислением называется процесс отдачи электронов атомом, молекулой или ионом.

AI - 3e – = AI 3+ H 2 - 2e – = 2H +

2.Восстановлением называется процесс присоединения электронов атомом, молекулой или ионом.

S + 2e – = S 2- CI 2 +2e – = 2CI -

3.Атомы, молекулы или ионы отдающие электроны называются восстановителями. Во время реакции они окисляются

4.Атомы, молекулы или ионы присоединяющие электроны называются окислителями. Во время реакции они восстанавливаются.

Окисление всегда сопровождается восстановлением и наоборот восстановление всегда связано с окислением, что можно выразить уравнением:

Восстановитель – e – = Окислитель

Окислитель + e – = Восстановитель

Поэтому окислительно-восстановительные реакции представляют собой единство двух противоположных процессов окисления и восстановления.

Число электронов отдаваемых восстановителем всегда равно числу электронов, присоединяемых окислителем.

Восстановители и окислители могут быть как простыми веществами, т.е. состоящими из одного элемента или сложными. Типичными восстановителями являются атомы на внешнем энергетическом уровне которых имеются от одного до трех электронов. К этой группе относятся металлы. Восстановительные свойства могут проявлять и неметаллы, например водород, углерод, бор и др.

В химических реакциях они отдают электроны по схеме:

Э – ne – = Э n+

В периодах с повышением порядкового номера элемента восстановительные свойства простых веществ понижаются а окислительные возрастают и становятся максимальными у галогенов. Например, в третьем периоде натрий самый активный восстановитель, а хлор – окислитель.

У элементов главных подгрупп усиливаются восстановительные свойства с повышением порядкового номера и ослабевают окислительные. Элементы главных подгрупп 4 - 7 групп (неметаллы) могут как отдавать, так и принимать электроны, т.е. проявлять восстановительные и окислительные свойства. Исключение – фтор, который проявляет только окислительные свойства, т.к. обладает наибольшей электроотрицательностью. Элементы побочных подгрупп имеют металлический характер, т.к. на внешнем уровне их атомов содержится 1-2 электрона. Поэтому их простые вещества являются восстановителями.

Окислительные или восстановительные свойства сложных веществ зависят от степени окисления атома данного элемента.

Например, KMnO 4 , MnO 2 , MnSO 4 ,

В первом соединении марганец имеет максимальную степень окисления и не может больше ее повышать, следовательно он может быть только окислителем.

В третьем соединении у марганца минимальная степень окисления, он может быть только восстановителем.

Важнейшие восстановители : металлы, водород, уголь, монооксид углерода, сероводород, хлорид двухвалентного олова, азотистая кислота, альдегиды, спирты, глюкоза, муравьиная и щавелевая кислоты, соляная кислота, катод при элетролизе.

Важнейшие окислители : галогены, перманганат калия, бихромат каля, кислород, озон, пероксид водорода, азотная, серная, селеновая кислоты, гипохлориты, перхлораты, хлораты, црская водка, смесь концентрированных азотной и плавиковой кислот, анод при электролизе.

Составление уравнений окислительно-восстановительных реакций

1.Метод электронного баланса. В этом методе сравнивают степени окисления атомов в исходных и конечных веществах, руководствуясь правилом число электронов отданных восстановителем равно числу электронов присоединенных окислителем. Для составления уравнения необходимо знать формулы реагирующих веществ и продуктов реакции. Последние определяются либо на основе известных свойств элементов либо опытным путем.

Медь, образуя ион меди отдает два электрона., ее степень окисления возрастает от 0 до +2. Ион палладия присоединяя два электрона изменяет степень окисления от +2 до 0. Следовательно нитрат палладия – окислитель.

Если установлены как исходные вещества, так и продукты их взаимодействия, то написание уравнения реакции сводится, как правило, к нахождению и расстановке коэффициентов. Коэффициенты определяют методом электронного баланса с помощью электронных уравнений. Вычисляем, как изменяют свою степень окисления восстановитель и окислитель, и отражаем это в электронных уравнениях:

Сu 0 -2e - = Сu 2+ 1

Pd +2 +2e - =Pd 0 1

Из приведенных электронных уравнений видно, что при восстановителе и окислителе коэффициенты равны 1.

Окончательное уравнение реакции:

Cu + Pd(NO 3) 2 = Cu(NO 3) 2 + Pd

Для проверки правильности составленного уравнения подсчитываем число атомов в правой и левой части уравнения. Последним проверяем по кислороду.

восстановительной реакции, идущей по схеме:

KМnO 4 + H 3 PO 3 + H 2 SO 4 → MnSO 4 + H 3 PO 4 + K 2 SO 4 + H 2 O

Решение Если в условии задачи даны как исходные вещества, так и продукты их взаимодействия, то написание уравнения реакции сводится, как правило, к нахождению и расстановке коэффициентов. Коэффициенты определяют методом электронного баланса с помощью электронных уравнений. Вычисляем, как изменяют свою степень окисления восстановитель и окислитель, и отражаем это в электронных уравнениях:

восстановитель 5 │ Р 3+ - 2ē ═ Р 5+ процесс окисления

окислитель 2 │Mn +7 + 5 ē ═ Mn 2+ процесс восстановления

Общее число электронов, отданных восстановлением, должно быть равно числу электронов, которое присоединяет окислитель. Общее наименьшее кратное для отданных и принятых электронов 10. Разделив это число на 5, получаем коэффициент 2 для окислителя и продукта его восстановления. Коэффициенты перед веществами, атомы которых не меняют свою степень окисления, находят подбором. Уравнение реакции будет иметь вид

2KМnO 4 + 5H 3 PO 3 + 3H 2 SO 4 ═ 2MnSO 4 + 5H 3 PO 4 + K 2 SO 4 + 3H 2 O.

Метод полуреакций или ионно-электронный метод . Как показывает само название этот метод основан на составлении ионных уравнений для процесса окисления и процесса восстановления.

При пропускании сероводорода через подкисленный раствор перманганата калия малиновая окраска исчезает и раствор мутнеет.

Опыт показывает, что помутнение раствора происходит в результате образования серы:

Н 2 S  S + 2H +

Эта схема уравнена по числу атомов. Для уравнивания по числу зарядов надо от левой части отнять два электрона после чего можно стрелку заменить на знак равенства

Н 2 S – 2е – = S + 2H +

Это первая полуреакция – процесс окисления восстановителя сероводорода.

Обесцвечивание раствора связано с переходом MnO 4 - (малиновая окраска) в Mn 2+ (слабо розовая окраска). Это можно выразить схемой

MnO 4 – Mn 2+

В кислом растворе кислород, входящий в состав MnO 4 - вместе с ионами водорода в конечном итоге образует воду. Поэтому процесс перехода записываем так

MnO 4 – +8Н + Mn 2+ + 4Н 2 О

Чтобы стрелку заменить на знак равенства надо уравнять и заряды. Поскольку исходные вещества имеют семь положительных зарядов, то а конечные два положительных заряда, то для выполнения условий равенства надо к левой части схемы прибавить пять электронов

MnO 4 – +8Н + +5е – Mn 2+ + 4Н 2 О

Это полуреакция – процесс восстановления окислителя, т.е. перманганат-иона.

Для составления общего уравнения реакции надо уравнения полуреакций почленно сложить, предварительно, уравняв числа отданных и полученных электронов. В этом случае по правилу нахождения наименьшего кратного определяют соответствующие множители на которые умножают уравнения пол

Н 2 S – 2е – = S + 2H + 5

MnO 4 – +8Н + +5е – Mn 2+ + 4Н 2 О 2

5Н 2 S +2MnO 4 – +16Н + = 5S+10H + + 2Mn 2+ + 8Н 2 О

После сокращения на 10H + получаем

5Н 2 S +2MnO 4 – +6Н + = 5S + 2Mn 2+ + 8Н 2 О или в молекулярной форме

2к + + 3SO 4 2- = 2к + + 3SO 4 2-

5Н 2 S +2KMnO 4 +3Н 2 SO 4 = 5S + 2MnSO 4 + K 2 SO 4 +8Н 2 О

Сопоставим оба метода. Достоинство метод полуреакций по сравнению с методом электронного баланса заключается в том, что в нем применяются не гипотетические ионы, а реально существующие. В самом деле в растворе нет ионов Mn +7 , Cr +6 , S +6 , S +4 ; MnO 4– , Cr 2 O 7 2– , CrO 4 2– , SO 4 2– . При методе полуреакций не нужно знать все образующиеся вещества; они появляются в уравнении реакции при выводе его.

Классификация окислительно-восстановительных реакций

Обычно различают три типа окислительно-восстановительных реакций: межмолекулярные, внутримолекулярные и реакции диспропорционирования .

К межмолекулярным относятся реакции в которых окислитель и восстановитель находятся в разных веществах. Сюда же относят и и реакции между разными веществами в которых атомы одного и того же элемента имеют разные степени окисления:

2H 2 S + H 2 SO 3 = 3S + 3H 2 O

5HCI + HCIO 3 = 5CI 2 + 3H 2 O

К внутримолекулярным относятся такие реакции, в которых окислитель и восстановитель находятся в одном и том же веществе. В этом случае атом с более положительной степенью окисления окисляет атом с меньшей степенью окисления. Такими реакциями являются реакции химического разложения. Например:

2NaNO 3 = 2NaNO 2 + O 2

2KCIO 3 = 2KCI + 3O 2

Сюда же относят и разложение веществ в которых атомы одного и того же элемента имеют разные степени окисления:

NH 4 NO 3 = N 2 O + 2H 2 O

Протекание реакций диспропорционирования сопровождается одновременным увеличением и уменьшением степени окисления атомов одного и того же элемента. При этом исходное вещество образует соединения, одно из которых содержит атомы с более высокой, а другое с более низкой степенью окисления. Эти реакции возможны для веществ с промежуточной степенью окисления. Примером может служить превращение манганата калия в котором марганец имеет промежуточную степень окисления +6 (от +7 до +4). Раствор этой соли имеет красивый темно-зеленый цвет (цвет иона МnO 4 химических Химический эксперимент по неорганической химии в системе проблемного обученияДипломная работа >> Химия

Задач» 27. Классификация химических реакций . Реакции , которые идут без изменения состава. 28. Классификация химических реакций , которые идут...

♦ По числу и составу исходных и полученных веществ химические реакции бывают:

  1. Соединения - из двух или нескольких веществ образуется одно сложное вещество:
    Fe + S = FeS
    (при нагревании порошков железа и серы образуется сульфид железа)
  2. Разложения - из одного сложного вещества образуется два или несколько веществ:
    2H 2 O = 2H 2 + O 2
    (вода разлагается на водород и кислород при пропускании электрического тока)
  3. Замещения - атомы простого вещества замещают один из элементов в сложном веществе:
    Fe + CuCl 2 = Cu↓ + FeCl 2
    (железо вытесняет медь из раствора хлорида меди (II))
  4. Обмена - 2 сложных вещества обмениваются составными частями:
    HCl + NaOH = NaCl + H 2 O
    (реакция нейтрализации - соляная кислота реагирует с гидроксидом натрия с образованием хлорида натрия и воды)

♦ Реакции, протекающие с выделением энергии (тепла), называются экзотермическими . К ним относятся реакции горения, например серы:

S + O 2 = SO 2 + Q
Образуется оксид серы (IV), выделение энергии обозначают + Q

Реакции, требующие затрат энергии, т. е. протекающие с поглощением энергии, называются эндотермическими . Эндотермической является реакция разложения воды под действием электрического тока:

2H 2 O = 2H 2 + O 2 − Q

♦ Реакции, сопровождающиеся изменением степеней окисления элементов, т. е. переходом электронов, называются окислительно-восстановительными :

Fe 0 + S 0 = Fe +2 S −2

Противоположностью являются электронно-статичные реакции, часто их называют просто реакции, протекающие без изменения степени окисления . К ним относятся все реакции обмена:

H +1 Cl −1 + Na +1 O −2 H +1 = Na +1 Cl −1 + H 2 +1 O −2

(Напомним, что степень окисления в веществах, состоящих из двух элементов, численно равна валентности, знак ставится перед цифрой)

2. Опыт. Проведение реакций, подтверждающих качественный состав предложенной соли, например сульфата меди (II)

Качественный состав соли доказывают с помощью реакций, сопровождающихся выпадением осадка или выделением газа с характерным запахом или цветом. Образование осадка происходит в случае получения нерастворимых веществ (определяем по таблице растворимости). Газы выделяются при образовании слабых кислот (для многих требуется нагревание) или гидроксида аммония.

Наличие иона меди можно доказать добавлением гидроксида натрия, выпадает синий осадок гидроксида меди (II):

CuSO 4 + 2NaOH = Cu(OH) 2 ↓ + Na 2 SO 4

Дополнительно можно провести разложение гидроксида меди (II) при нагревании, образуется черный оксид меди (II):

Cu(OH) 2 = CuO + H 2 O

Наличие сульфат-иона доказывается выпадением белого кристаллического осадка, нерастворимого в концентрированной азотной кислоте, при добавлении растворимой соли бария:

CuSO 4 + BaCl 2 = BaSO 4 ↓ + CuCl 2

Введение

1. Общее понятие о химической реакции

2. Классификация химических реакций

Заключение

Список используемой литературы


Введение

Самое интересное в окружающем мире состоит в том, что он постоянно изменяется.

Понятие « химическая реакция» - второе главное понятие химии. Каждую секунду в мире происходит неисчислимое множество реакций, в результате которых одни вещества превращаются в другие. Некоторые реакции мы можем наблюдать непосредственно, например ржавление железных предметов, свертывание крови, сгорание автомобильного топлива.

В то же время, подавляющее большинство реакций остаются невидимыми, но именно они определяют свойства окружающего нас мира.

Для того, чтобы осознать свое место в мире и научиться им управлять, человек должен глубоко понять природу этих реакций и те законы, которым они подчиняются. Задача современной химии состоит в изучении функций веществ в сложных химических и биологических системах, анализе связи структуры вещества с его функциями и синтезе веществ с заданными функциями.

Итак, химических реакций протекающих вокруг человека очень много, они протекают постоянно. Что же необходимо сделать, чтобы не запутаться во всём многообразии химических реакций? Научиться их классифицировать и выявлять существенные признаки классов.

Цель данной работы: рассмотреть понятие «химическая реакция» и систематизировать и обобщить знания о классификации химических реакций.

Работа состоит из введения, двух глав, заключения и списка литературы. Общий объем работы 14 страниц.


1. Общее понятие о химической реакции

Химическая реакция - это превращение одних веществ в другие. Однако, такое определение нуждается в существенном дополнении.

Так, например, в ядерном реакторе или в ускорителе тоже одни вещества превращаются в другие, но такие превращения химическими не называют. В чем же здесь дело? В ядерном реакторе происходят ядерные реакции. Они заключаются в том, что ядра элементов при столкновении с частицами высокой энергии (ими могут быть нейтроны, протоны и ядра иных элементов) - разбиваются на осколки, представляющие собой ядра других элементов. Возможно и слияние ядер между собой. Эти новые ядра затем получают электроны из окружающей среды и, таким образом, завершается образование двух или нескольких новых веществ. Все эти вещества являются какими-либо элементами Периодической системы. В отличие от ядерных реакций, в химических реакциях не затрагиваются ядра атомов. Все изменения происходят только во внешних электронных оболочках. Разрываются одни химические связи и образуются другие.

Таким образом, химическими реакциями называются явления, при которых одни вещества, обладающие определенным составом и свойствами, превращаются в другие вещества - с другим составом и другими свойствами. При этом в составе атомных ядер изменений не происходит.

Выделим признаки и условия химических реакций (рис.1, 2).

Рисунок 1 – Признаки химических реакций



Рисунок 2 – Условия проведения химических реакций

Рассмотрим типичную химическую реакцию: сгорание природного газа (метана) в кислороде воздуха (данную реакцию можно наблюдать дома, у кого есть газовая плита) на рисунке 3.


Рисунок 3 - Сгорание природного газа (метана) в кислороде воздуха

Метан СН 4 и кислород О 2 реагируют между собой с образованием диоксида углерода СО 2 и воды Н 2 О. При этом разрываются связи между атомами С и Н в молекуле метана и между атомами кислорода в молекуле О 2 . На их месте возникают новые связи между атомами С и О, Н и О.

На рисунке 3 хорошо видно, что для успешного осуществления реакции на одну молекулу метана надо взять две молекулы кислорода. Однако записывать химическую реакцию с помощью рисунков молекул не слишком удобно, поэтому для записи химических реакций используют сокращенные формулы веществ - такая запись называется уравнением химической реакции.


Рисунок 4 – Уравнение реакции

Уравнение химической реакции показанной на рисунке 3 выглядит следующим образом

CH 4 +2O 2 = CO 2 + 2H 2 O

Количество атомов разных элементов в левой и правой частях уравнения одинаково. В левой части один атом углерода в составе молекулы метана (СН 4), и в правой - тот же атом углерода мы находим в составе молекулы СО 2 . все четыре водородных атома из левой части уравнения мы обязательно найдем и в правой - в составе молекул воды.

В уравнении химической реакции для выравнивания количества одинаковых атомов в разных частях уравнения используются коэффициенты , которые записываются перед формулами веществ.


Рассмотрим другую реакцию - превращение оксида кальция СаО (негашеной извести) в гидроксид кальция Са(ОН) 2 (гашеную известь) под действием воды (рис.5).



Рисунок 5 - Оксид кальция СаО присоединяет молекулу воды Н 2 О

с образованием гидроксида кальция Са(ОН) 2

В отличие от математических уравнений, в уравнениях химических реакций нельзя переставлять левую и правую части. Вещества в левой части уравнения химической реакции называются реагентами , а в правой - продуктами реакции .

Если сделать перестановку левой и правой части в уравнении из рисунка 5, то получим уравнение совсем другой химической реакции

Ca(OH) 2 = CaO + H 2 O

Если реакция между СаО и Н 2 О (рис. 4) начинается самопроизвольно и идет с выделением большого количества теплоты, то для проведения последней реакции, где реагентом служит Са(ОН) 2 , требуется сильное нагревание. Добавим также, что реагентами и продуктами могут быть не обязательно молекулы, но и атомы - если в реакции участвует какой-нибудь элемент или элементы в чистом виде, например

H 2 + CuO = Cu + H 2 O

Таким образом, мы подошли к классификации химических реакций, которую рассмотрим в следующей главе.

2. Классификация химических реакций

В процессе изучения химии приходится встречаться с классификациями химических реакций по различным признакам (табл.1).

Таблица 1 - Классификация химических реакций

По тепловому эффекту Экзотермические – протекают с выделением энергии 4Р + 5О 2 = 2Р 2 О 5 + Q; CH 4 + 2О 2 → СО 2 + 2H 2 O + Q
Эндотермические – протекают с поглощением энергии Cu(OH) 2 CuO + H 2 O – Q; C 8 H 18 C 8 H 16 + H 2 – Q
По числу и составу исходных и образовавшихся веществ Реакции разложения – из одного сложного вещества образуется несколько более простых: СаСО 3 СаО + СО 2 C 2 H 5 OH → C 2 H 4 + H 2 O
Реакции соединения – из нескольких простых или сложных веществ образуется одно сложное: 2H 2 + О 2 → 2H 2 OC 2 H 4 + H 2 → C 2 H 6
Реакции замещения – атомы простого вещества замещают атомы одного из элементов в сложном веществе: Zn + 2HCl = ZnCl 2 + H 2 CH 4 + Cl 2 → CH 3 Cl + HCl
Реакции обмена – два сложных вещества обмениваются составными частями: AgNO 3 + HCl = AgCl↓ + HNO 3 HCOOH + CH 3 OH → HCOOCH 3 + H 2 O
По агрегатному состоянию реагирующих веществ Гетерогенные – исходные вещества и продукты реакции находятся в разных агрегатных состояниях: Fe (т) + CuCl 2(р-р) → Cu (т) + FeCl 2(р-р) 2Na (т) + 2C 2 H 5 OH (ж) → 2C 2 H 5 ONa (р-р) + H 2(г)
Гомогенные – исходные вещества и продукты реакции находятся в одном агрегатном состоянии: H 2(г) + Cl 2(г) =2HCl (г) C 2 H 5 OH (ж) + CH 3 COOH (ж) → CH 3 COOC 2 H 5(ж) + H 2 O (ж)
По наличию катализатора Каталитические 2H 2 O 2 2H 2 O + О 2 C 2 H 4 + H 2 C 2 H 4
Некаталитические S + О 2 SO 2 C 2 H 2 + 2Cl 2 → C 2 H 2 Cl 4
По направлению Необратимые – протекают в данных условиях только в одном направлении: H 2 SO 4 + BaCl 2 → BaSO 4 + 2HCl CH 4 + 2О 2 → СО 2 + 2H 2 O
Обратимые – протекают в данных условиях одновременно в двух противоположных направлениях: 3H 2 + N 2 ↔ 2NH 3 ; C 2 H 4 + H 2 ↔ C 2 H 6
По изменению степени окисления атомов элементов Окислительно-восстановительные – реакции, идущие с изменением степени окисления: Fe 0 + 2H +1 Cl -1 → Fe 2+ Cl 2 -1 + H 2 0 H +1 C 0 O -2 H +1 + H 2 → C -2 H 3 +1 O -2 H +1
Неокислительно-восстановительные – реакции, идущие без изменения степени окисления: S +4 O 4 -2 + H 2 O → H 2 + S +4 O 4 -2 CH 3 NH 2 + HCl → (CH 3 NH 3)Cl

Как видим, существует различные способы классификации химических реакций, из которых более подробно мы рассмотрим следующие.