За что отвечает гиппокамп и миндалевидное тело в головном мозге. Строение и функции гиппокампа

Сегодня вторник, а это значит, что мы продолжаем наш цикл материалов об устройстве такого неизученного и неповторимого человеческого мозга. И в нынешней статье речь пойдет об одной из самых загадочных его областей гиппокампе.

Название с древнегреческого переводится, как «морской конёк» (ἱππόκαμπος), поскольку считается, что гиппокамп на него похож. Так что этот загадочный отдел мозга в родстве и с ипподромом, и с гиппопотамом. Конечно же, в этимологическом родстве.

На самом деле, это скорее две параллельно расположенные дуги, охватывающие поясом ствол головного мозга. Собственно, гиппокамп — это часть лимбической системы, расположенной на лимбе (крае) верхней части ствола мозга.

Эти дуги связаны комиссуральными нервными волокнами (так называют нервные волокна соединяющие структуры правого и левого полушарий). Гиппокамп одна из старейших систем мозга с точки зрения эволюции, но именно он остается одной из самых неизученных областей. Его по-прежнему окутывают тайны и гипотезы, и исследователи до сих пор во многом могут только предполагать, как работает гиппокамп.

Некоторые исследования показывали, что он отвечает за кратковременную память (подобно ОЗУ компьютера), и при удалении обеих частей гиппокампа у человека остается «неповрежденной» долговременная память, но он не способен запоминать новую информацию. Отсюда исследователи предположили, что «морской конек» так же участвует в «кодировании» краткосрочной памяти в долгосрочную во время сна. Опять же, пока не до конца понятно, как происходит это кодирование, и по какому принципу отбирается информация «достойная» долговременного хранения. Интересно также и то, что при удалении одной из частей гиппокампа способность к запоминанию не нарушается.

Существует гипотеза, что гиппокамп является «архиватором» воспоминаний, и работает примерно так же как мы на компьютере раскладываем файлы по папкам, называем их и запоминаем, как до них можно быстрее всего добраться. Поэтому зачастую, чтобы вспомнить какой-либо день, мы ориентируемся по деталям, которые замечали, так соединяются две функции гиппокампа: формирование воспоминаний и пространственно-временная ориентация. Впрочем, постепенно появляются работы , которые проливают свет на то, как работает гиппокамп во время запоминания нового. Более того, есть исследования , которые показывают, куда деваются из гиппокампа воспоминания при болезни Альцгеймера и как их можно вернуть.

Именно в этой области мозга находятся так называемые пространственные клетки (place cells) или клетки-решётки (grid cells). Часть из них возбуждается при определении человеком своего положения в пространстве, другие чувствительны к направлению движения и положению головы. За это открытие британо-американец Джон О’Киф и его бывшие аспиранты из Норвегии, Мэй-Бритт и Эдвард Мозеры получили в 2014 году Нобелевскую премию по физиологии или медицине.

Джон О"Киф

Также гиппокамп помогает не сбиться с пути, и даже « вычислить » короткий путь. Любопытно, что исследование, проведенное в Лондоне в 2003 году, показало, что гиппокамп лондонских таксистов больше, чем у обычного человека, но до сих пор непонятно: крупный гиппокамп помогает стать таксистом или он развивается при постоянном поиске пути (про эту работу можно услышать в лекции Марии Фаликман на нашем портале). Это заставляет задуматься: стоит ли так часто пользоваться навигаторами, и не деградирует ли наш гиппокамп при этом?

Кроме того, стимуляция различных областей гиппокампа может привести к практически любой поведенческой реакции: удовольствию, ярости, пассивности, половому возбуждению. Больные при гиппокампальных приступах страдают от психомоторных эффектов, включая обонятельные, зрительные, слуховые, тактильные и прочие галлюцинации, которые невозможно подавить.

А повреждение гиппокампа ведет к сни-жению эмоциональности, инициативности, замедлению скорости ос-новных нервных процессов, повышаются пороги вызова эмоциональ-ных реакций.

Возможно, такой «букет» функций гиппокамп приобрел на ранних стадиях развития, когда ему приходилось отвечать за множество необходимых для выживания реакций.

Анастасия Шешукова

Отдел мозга, отвечающий за такие важнейшие функции, как память, эмоции и обучение, называется гиппокамп. Без него мы потеряли бы возможность вспоминать и испытывать эмоции, связанные с этими воспоминаниями. Хотите узнать больше? Нейропсихолог Майрена Васкес расскажет вам о том, что такое гиппокамп и почему такая крохотная мозговая структура имеет такое большое значение.

Гиппокамп отвечает за память и эмоции

Что такое гиппокамп?

Гиппокамп обязан своим названием анатому Джулио Чезаре Аранцио, также известному как Арантиус или Юлий Цезарь Аранци, который ещё в XVI веке обратил внимание на то, что эта часть мозга внешне очень напоминает морского конька. Слово “гиппокамп” происходит от греческого Hippos (конь) и Kampe (изогнутый). Сделав научное открытие этой мозговой структуры, Арантиус связал её с обонянием, выдвинув идею о том, что основной функцией гиппокампа является обработка обонятельных стимулов (запахов). Эта теория поддерживалась вплоть до 1890 года - до тех пор, пока академик Владимир Бехтерев не доказал, что в действительности гиппокамп отвечает за память и когнитивные процессы.

Гиппокамп - один из важнейших отделов человеческого мозга, тесно связанный с памятью и эмоциями. Он расположен в височной доле (за каждым виском) и сообщается с различными отделами коры головного мозга. Гиппокамп считается основной структурой памяти.

Это небольшой парный орган удлинённой и извилистой формы, расположенный в обоих полушариях головного мозга (т.е. по одному гиппокампу в правом и левом полушарии).

Гиппокамп получил своё название из-за схожести с морским коньком

Где находится гиппокамп?

Гиппокамп находится в медиальной височной доле и соединён с различными областями головного мозга. Гиппокамп, а также миндалина и гипоталамус формируют лимбическую систему и отвечают за управление примитивными физиологическими реакциями. Эти отделы относятся к самой “древней, глубокой и примитивной” части мозга, известной как “архикортекс” (старая кора) или “аллокортекс” (наиболее древняя область человеческого мозга), появившаяся миллионы лет назад для обеспечения основных потребностей предков млекопитающих.

Гиппокамп расположен в височной доле и является частью лимбической системы. Рис. Википедия

Зачем нужен гиппокамп?

Каковы функции гиппокампа? Какую роль он играет? За что отвечает? Среди основных функций гиппокампа - умственные процессы, связанные с консолидацией памяти и процессом обучения, а также процессы возникновения и регулирования эмоциональных состояний и обеспечение ориентации в пространстве. Ряд исследователей также обнаружили связь гиппокампа с ингибицией или ингибиторным контролем поведения, но это достаточно новая информация, которая пока ещё изучается.

Гиппокамп и память

Гиппокамп отвечает, в первую очередь, за эмоциональную и декларативную память. С его помощью мы можем узнавать лица, описывать предметы и события, а также связывать позитивные или негативные переживания и ощущения с воспоминаниями о прожитых событиях. Гиппокамп участвует в формировании как эпизодических, так и автобиографических воспоминаний, основываясь на нашем пройденном опыте. Мозгу необходимо место, чтобы хранить весь этот объём информации долгие годы, поэтому гиппокамп передаёт эти временные воспоминания в другие области мозга, где они сохраняются в долговременной памяти.

Именно поэтому самые старые воспоминания лучше хранятся. При повреждении гиппокампа мы потеряли бы способность к обучению и удержанию информации в памяти. Кроме способности превращать воспоминания в долговременную память, гиппокамп связывает их содержимое с позитивными или негативными эмоциями в зависимости от того, связаны ли эти воспоминания с положительным или отрицательным опытом.

Существует множество видов памяти: семантическая память, эпизодическая память, процедурная память, имплицитная или скрытая память, декларативная память и т.д. Гиппокамп отвечает за декларативную память (включает наш личный опыт и знания об окружающем мире), управляя её содержимым, которое можно выразить в вербальной форме (словами). Различные виды памяти не регулируются исключительно гиппокампом, задействованы и другие отделы мозга. Гиппокамп ответственен за большую часть процессов, связанных с потерей памяти, однако не за все.

Гиппокамп и обучение

Гиппокамп является одной из немногих областей мозга, способных к нейрогенезу на протяжении всей жизни, в связи с чем он отвечает за обучаемость и удержание информации. Другими словами, гиппокамп способен создавать новые нейроны и связи между ними в течение всего жизненного цикла. Знания приобретаются постепенно после многих усилий, и это напрямую связано с гиппокампом. Для сохранения в нашем мозге новой информации жизненно важно формирование новых нейронных связей. Поэтому гиппокамп играет основную роль в обучении.

Любопытный факт: правда ли то, что у лондонских таксистов гиппокамп больше и развит лучше? Почему? Чтобы получить лицензию, таксисты Лондона должны сдать сложный экзамен, для которого необходимо выучить наизусть огромное количество улиц и мест. В 2000 году Элеонор Магир провела исследование лондонских таксистов, которое показало, что задняя часть их гиппокампа больше. Также она обнаружила, что размер гиппокампа прямо пропорционален рабочему стажу водителя. Таким образом, тренировка, обучение и опыт меняют и моделируют мозг.

Влияние обучения на мозг и гиппокамп у лондонских таксистов. Рис. frontiersin.org

Ориентация в пространстве и гиппокамп

Одной из важных функций, в которой гиппокамп играет значимую роль, является пространственная ориентация.

Пространственная ориентация или навигация позволяет нам удерживать разум и тело в трёхмерном пространстве, двигаться и взаимодействовать с окружающим миром.

Были проведены различные исследования на грызунах, которые показали, что важнейшей функцией гиппокампа является способность к ориентированию и пространственная память. Благодаря гиппокампу мы можем ориентироваться в незнакомых городах и местности и т.д. Однако эти данные пока ещё мало изучены на людях и требуют дополнительного исследования.

Что происходит при повреждении гиппокампа?

Повреждение гиппокампа приводит к невозможности запоминать новые события. Т.е. возникает антероградная амнезия, при которой человек не может вспомнить события, произошедшие после нарушения памяти. При этом знания и память о том, что происходило до начала заболевания, сохраняются.

Поражения гиппокампа могут спровоцировать возникновение антероградной или ретроградной амнезии в зависимости от теряемых воспоминаний, связанных с декларативной памятью. При этом недекларативная память не затрагивается и остаётся неповреждённой. Например, человек с поражением гиппокампа может научиться кататься на велосипеде после начала заболевания, однако не будет помнить, что когда-либо в своей жизни видел велосипед ранее. Т.е. человек с повреждённым гиппокампом способен приобретать навыки, но не может вспомнить сам процесс.

Антероградная амнезия - это потеря памяти на события, произошедшие после начала заболевания или травмы. Ретроградная амнезия, наоборот, приводит к забыванию событий и воспоминаний, предшествующих заболеванию или травме.

Почему при амнезии повреждается гиппокамп? Объясняя простыми словами, эта часть мозга представляет собой подобие двери для нейронных паттернов, которые спорадически удерживают информацию до того, как она попадает в лобную долю. Можно сказать, что гиппокамп является ключом к консолидации памяти, превращая Кратковременную память в Долговременную. Если эта дверь повреждена и не позволяет сохранять информацию, будет невозможно создавать долговременные воспоминания. Кроме того, при повреждении гиппокампа теряется не только способность к воспоминаниям, но способность испытывать связанные с этими воспоминаниями эмоции, поскольку человек не может связать события и чувства, которые они вызвали.

Из-за чего повреждается гиппокамп?

В основном поражения гиппокампа происходят вследствие старения и нейродегенеративных заболеваний, стресса, цереброваскулярных болезней, эпилепсии, аневризмы, энцефалита, шизофрении и т.д.

Старение и деменции

При старении в целом и деменциях (таких, как болезнь Альцгеймера) в частности, гиппокамп является одной из наиболее уязвимых частей мозга. Нарушается способность формировать новые воспоминания или воссоздавать в памяти свежие факты автобиографии. В данном случае причиной проблем с памятью является гибель нейронов гиппокампа. Большинство из нас сталкивались с людьми, страдающими каким-либо видом деменции или потерявшими память.

Любопытно, но у таких людей дольше всего сохраняются детские воспоминания или память об очень давних событиях. Почему так происходит если повреждён гиппокамп? Дело в том, что даже при сильном поражении гиппокампа (вследствие деменции или другого заболевания) лучше всего сохраняются наиболее старые и важные для человека воспоминания из-за того, что с течением времени эти воспоминания, как мы упомянули выше, “отделились” от гиппокампа, став частью других мозговых структур, связанных с долговременной памятью.

Гиппокамп и стресс

Этот отдел мозга очень страдает при стрессе, поскольку стресс ингибирует и атрофирует нейроны. Вы обратили внимание на то, что в состоянии стресса, когда вам нужно сделать множество самых разных дел, иногда начинаются проблемы с памятью? Стресс, и, в частности, кортизол (вид гормона, который высвобождается в ответ на стресс), повреждает наши мозговые структуры, зачастую вызывая гибель нейронов. Поэтому очень важно научиться сохранять спокойствие и управлять своими эмоциями для того, чтобы сохранить здоровье гиппокампа и помочь ему оптимально выполнять свои функции.

Мнение, изложенное в статье, может не совпадать с мнением редакции.

Склероз гиппокампа [СГ] и мезиальный темпоральный склероз (МТС) - являются наиболее распространенными гистопатологическими аномалиями, обнаруженными у взрослых больных с фармакорезистентной формой височной эпилепсии (мезиальная височная эпилепсия является самой трудно поддающейся лечению формой эпилепсии у взрослых и у детей старше 12 лет).

СГ - потеря более 30% клеток в CA1 и CA3 областях гиппокампа с относительным утолщением CA2 области. Термин «МТС» отражает то обстоятельство, что наряду с гиппокампом атрофические и глиотические изменения наблюдаются в амигдале и крючке (см. рисунок).

СГ имеет две принципиальные патологические характеристики: [1 ] резкое снижение числа нейронов, [2 ] гипервозбудимость оставшейся нервной ткани. Одну из ключевых ролей в эпилептогенезе при СГ играет спрутинг мшистых волокон: аномальные аксоны гранулярных клеток вместо иннервации гиппокампа (аммонова рога - cornu Ammonis) реиннервируют молекулярные нейроны зубчатой извилины через возбуждающие синапсы, создавая таким образом локальные электрические цепи, способные к синхронизации и генерации эпиприступа. Увеличение количества астроцитов, глиоз также могут играть роль в эпилептогенезе, так как измененные астроциты не могут в достаточной мере осуществлять обратный захват глутамата и калия.

У пациентов с височной эпилепсией (вследствие СГ/МТС) часто в анамнезе присутствует указание на перенесенную в детстве (как правило, до 5 лет) острую патологию ЦНС (преципитирующие повреждения): статус фебрильных судорог, нейроинфекцию, черепно- мозговую травму. Стереотипные приступы начинаются в период от 6 до 16 лет, при этом может иметь место так называемый латентный период, который приходится на время между начальным преципитирующим повреждением и развитием первого эпилептического приступа. Также нередки ситуации, когда между первым приступом и развитием фармако-резистентности длится так называемый «молчащий» период. Такая особенность течения заболевания указывает на его прогрессирующий характер. Также к СГ могут приводить: острые нарушения кровообращения в бассейне конечных и боковых ветвей задней мозговой артерии (которые вызывают базальную ишемию височной доли, гибель нейронов, глиоз и атрофия) и нарушение развития височной доли во время эмбриогенеза. Не менее актуальных проблема, получившая название двойной патологии, которая впервые описана M.L. Levesque и соавт. (1991) - сочетание экстра-гиппокампальных поражений (как височных, так и экстратемпоральных) со СГ. Частота встречаемости данной патологии высока: от 8% при опухолях до 70% при кортикальных дисплазиях.

СГ часто определяется у пациентов со сложными парциальными приступами (другими вариантами являются вторично генерализованные приступы). Говоря о клинической картине приступа при височной эпилепсии, связанной с СГ, необходимо помнить, что [1 ] каждый из симптомов в отдельности не является специфичным, хотя и существует типичная закономерность протекания приступа; [2 ] симптомы во время приступа появляются при распространении эпилептической активности в отделы мозга, связанные с гиппокампом, который сам по себе не дает клинических проявлений (сама по себе скальповая ЭЭГ не выявляет эпиактивность в гиппокампе, что было продемонстрировано в многочисленных исследованиях с применением внутримозговых электродов; для появления эпиактивности в височном регионе на скальповой ЭЭГ требуется ее распространение из гиппокампа на прилежащую кору височной доли).

Мезиальная височная эпилепсия имеет 3 пика возрастного дебюта - в 6, 15 и, реже, в 27 лет. Характерным началом височного приступа является аура в виде восходящего ощущения в животе (связано с возбуждением островка). Также возможен страх или тревога при вовлечении в начале приступа амигдалы. В начале приступа может отмечаться ощущение «уже виденного» (déjà vu, связано с возбуждением энторинальной коры). Настораживающей в плане диагностики является аура в виде головокружения или шума, что может говорить об экстрагиппокампальном начале приступа. Сохранная способность называть предметы и говорить во время приступа является важным латерализующим признаком поражения недоминантного полушария. Изменение сознания сопровождается остановкой действий, при этом пациент имеет застывший взгляд с широко открытыми глазами (таращение - starring). За аурой и остановкой действий следуют ороалиментарные автоматизмы с жеванием, чмоканьем губами (связаны с возбуждением островка и лобного оперкулума). Также нередко возникает дистония контра-латеральной стороны склерозированного гиппокампа руки (что связано с распространением эпиактивности в базальные ганглии) и появляющиеся при этом мануальные автоматизмы в виде перебирания предметов пальцами ипсилатеральной руки. Среди латерализующих симптомов важное значение имеют постиктальный парез, который указывает на вовлечение контралатерального полушария, и постиктальная афазия при поражении доминантного полушария. Указанные симптомы должны рассматриваться в контексте данных ЭЭГ. Характерным когнитивным дефицитом при СГ может быть снижение памяти, особенно при неконтролируемых приступах.

Диагностика эпилепсии, обусловленной СГ, базируется на трех основных принципах:

[1 ] детальный анализ последовательности симптомов в эпилептическом приступе, или семиологии, которая зависит от того, в какие участки мозга распространяется эпилептическая активность (см. выше);

[2 ] анализ данных ЭЭГ и сопоставление их с семиологией приступа; эпилептическая активность на ЭЭГ при мезиальной височной эпилепсии (МВЭ) может отсутствовать или могут регистрироваться только косвенные условно-эпилептиформные элементы (ритмическая медленноволновая [дельта-тета] активность); исследование биоэлектрической активности головного мозга при ЭЭГ-мониторинге сна значительно увеличивает вероятность диагностики патологической эпилептиформной активности (регионарная спайк-волновая активность); однако, для правильной интерпретации ЭЭГ сна при МВЭ необходим высококвалифицированный невролог-эпилептолог, который сможет оценить комплекс клинических и ЭЭГ симптомов и установить правильный диагноз; точная диагностика МВЭ возможна при применении интрацеребральных, субдуральных и интрацистернальных (имплантируемых через овальное отверстие) электродов.

[3 ] выявление эпилептогенного поражения при МРТ (должна выполняться по эпилептологическому протоколу, среди основных характеристик которого можно выделить небольшую толщину срезов и высокую силу магнитного поля): уменьшение объема гиппокампа и нарушение структуры его слоев, гиперинтенсивный сигнал в режиме Т2 и FLAIR; нередко выявляются атрофические изменения в ипсилатеральных амигдале, полюсе височной доли, форниксе, мамиллярном теле.

Стандартом оказания медицинской помощи больным с фармакорезистентной МВЭ является направление пациента в специализированный центр для предхирургического обследования и оперативного лечения. Хирургия при височной эпилепсии преследует две очевидные цели: [1 ] избавление пациента от приступов; [2 ] отмена лекарственной терапии или уменьшение дозы препарата. В задачу хирургического лечения височной эпилепсии входит полное удаление эпилептогенной коры головного мозга с максимальным сохранением функциональных участков мозга и минимизацией нейропсихологического дефицита. В этом отношении существует два хирургических подхода: височная лобэктомия и селективная амигдалогиппокампэктомия. удаление крючка, амигдалы и гиппокампа. Хирургия височной эпилепсии при СГ при достаточном опыте хирурга имеет минимальные риски неврологического дефицита (стойкий гемипарез, полная гемианопсия).

Литература :

статья «Склероз гиппокампа: патогенез, клиника, диагностика, лечение» Д.Н. Копачев, Л.В. Шишкина, В.Г. Быченко, А.М. Шкатова, А.Л. Головтеев, А.А. Троицкий, О.А. Гриненко; ФГАУ «НИИ нейрохирургии им. акад. Н.Н. Бурденко» Минздрава России, Москва, Россия; ФГБУ «Научный центр акушерства, гинекологии и перинатологии им. акад. В.И. Кулакова» Минздрава России, Москва, Россия (журнал «Вопросы нейро-хирургии» №4, 2016) [читать ];

статья «Мезиальный височный склероз. Современное состояние проблемы» Федин А.И., Алиханов А.А., Генералов В.О.; Российский государственный медицинский университет, Москва (журнал «Альманах клинической медицины» №13, 2006) [читать ];

статья «Гистологическая классификация мезиального темпорального склероза» Дмитренко Д.В., Строганова М.А., Шнайдер Н.А., Мартынова Г.П., Газенкампф К.А., Дюжакова А.В., Панина Ю.С.; ГБОУ ВПО «Красноярский государственный медицинский университет им. проф. В.Ф. Войно-Ясенецкого» Минздрава России, Красноярск (журнал «Неврология, нейропсихиатрия, психосоматика» №8(2), 2016) [читать ];

статья «Фебрильные приступы как триггер мезиального височного склероза: клинический случай» Н.А. Шнайдер, Г.П. Мартынова, М.А. Строганова, А.В. Дюжакова, Д.В. Дмитренко, Е.А.Шаповалова, Ю.С. Панина; ГБОУ ВПО Красноярский государственный медицинский университет им. проф. В.Ф. Войно-Ясенецкого МЗ РФ, Университетская клиника (журнал «Проблемы женского здоровья» № 1, 2015 [читать ];

статья «Возможности магнитно-резонансной томографии в оценке структурных изменений головного мозга у пациентов с височной эпилепсией» Анна А. Тотолян, Т.Н. Трофимова; ООО «НМЦ-Томография» Российско-финская клиника «Скандинавия», г. Санкт-Петербург (журнал «Российский электронный журнал лучевой диагностики» №1, 2011) [читать ];

статья «Хирургическое лечение симптоматической височной эпилепсии» А.Ю. Степаненко, Кафедра неврологии и нейро-хирургии РГМУ, городская клиническая больница № 12 Департамента здравоохранения г. Москвы (журнал «Нейрохирургия» №2, 2012) [читать ]


© Laesus De Liro


Уважаемые авторы научных материалов, которые я использую в своих сообщениях! Если Вы усматривайте в этом нарушение «Закона РФ об авторском праве» или желаете видеть изложение Вашего материала в ином виде (или в ином контексте), то в этом случае напишите мне (на почтовый адрес: [email protected] ) и я немедленно устраню все нарушения и неточности. Но поскольку мой блог не имеет никакой коммерческой цели (и основы) [лично для меня], а несет сугубо образовательную цель (и, как правило, всегда имеет активную ссылку на автора и его научный труд), поэтому я был бы благодарен Вам за шанс сделать некоторые исключения для моих сообщений (вопреки имеющимся правовым нормам). С уважением, Laesus De Liro.

Posts from This Journal by “эпилепсия” Tag


  • Транзиторная эпилептическая амнезия

    Актуальность. Транзиторная эпилептическая амнезия - редкое, но излечимое нарушение памяти, которое обычно развивается у пожилых людей и может…


  • Эпилептические приступы после нейрохирургических операций

    Симптоматическая (в новой классификации эпилепсий 2017 - структурная) эпилепсия (повторные непровоцируемые приступы, связанные с эпилептогенным…

  • Кавернозная мальформация головного мозга

Гиппокамп – это отдел обонятельного мозга. Основная его задача заключается в консолидации памяти, что означает ее переход в долговременную из кратковременной, а также в формировании эмоций.

Гиппокамп является парным органом, который располагается в височных отделах полушарий. Связь между ними осуществляется благодаря нервным волокнам головного мозга .

Некоторые специалисты считают, что гиппокамп блокирует влияние фоновой информации. Таким образом, он активизируется каждый раз, когда необходимо сфокусироваться на внешних ориентирах.
Современные исследования доказали, что гиппокамп играет важную роль для ориентации в пространстве, а также для хранения и обработки информации. Имеющиеся данные также свидетельствуют, что некоторые нейроны данного органы чувствительны к своему расположению в пространстве, они называются пространственные клетки . Некоторые из них возбуждаются, когда человек осознает себя в определенном месте, что не зависит от направления движения, некоторые же менее чувствительны.

Изучение пространственных клеток привело к теории о том, что гиппокамп играет роль карты: они помогают человеку или животному определить свое местоположение.

Некоторые клетки гиппокампа даже обладают особенностью возбуждаться в зависимости от ожидаемого будущего или прошлого, некоторые задействуются в пути и служат своеобразным «навигатором» в поиске пути. Доказательство таких возможностей были получены после имплантации электродов в мозг, которые используются для лечения эпилепсии хирургическим путем.

В 2003 году в Университете Калифорнии стартовало интересное исследование, направленное на то, чтобы выяснить, можно ли заменить гиппокамп искусственным. Данный опыт проводится на крысах. Так как основная функция гиппокампа заключается в сохранении долговременной памяти, аналог органа был выполнен в виде чипа с аналогичными функциями: она его часть регистрировала сигналы других отделов мозга, а другая – направляла туда электрические импульсы. Таким образом, искусственный орган представляется собой параллельно работающие нейронные сети. В декабре 2010 года специалисты уже воссоздали аналог гиппокампа и протестировали его свойства. В результате крыса даже смогла запомнить некоторую информацию. Более того, такой протез смог улучшить работу естественного органа. Следующий этап исследования ученые планируют провести на обезьяне и только потом перейти к человеку. Схожесть данного отдела мозга у млекопитающих позволяет делать самые смелые прогнозы относительно создания искусственного гиппокампа и для человека.

Также имеются доказательства того факта, что гиппокамп может помогать находить кротчайшие пути между известными точками. Примером человека, которому такие навыки необходимы в силу своей работы, может служить таксист из Лондона. Проводимое в 2003 году исследование показало, что у людей такой профессии размер гиппокампа больше, чем у других. В испытании приняло участие более 500 человек, работающих таксистами в столице Великобритании. Таким образом, ученые пришли к выводу, что по мере использования данного отдела мозга, он увеличивается в размерах.

Патологии

В случае поражения гиппокампа может развиваться синдром Корсакова , для которого характерен утрата кратковременной памяти при сохранении долговременной. Уменьшение размеров гиппокампа является одним из симптомов развития , что выявляется при диагностике на ранних стадиях. В тех случаях, когда гиппокамп функционирует неправильно, человек не может решить простейшую задачу, добраться до места назначения, начинает теряться в пространстве. Все это основные симптомы .

Гиппокамп (hippocampus) расположен в глубине височных долей мозга и является основной структурой лимбической системы. Морфологически гиппокамп представлен стереотипно повторяющимися модулями, связанными между собой и с другими структурами.

Модульное строение обусловливает способность гиппокампа генерировать высокоамплитудную ритмическую активность. Связь модулей создает условие циркулирования активности в гиппокампе при обучении. При этом возрастает амплитуда синаптических потенциалов, увеличиваются нейросекреция клеток гиппокампа, число шипиков на дендритах его нейронов, что свидетельствует о переходе потенциальных синапсов в активные. Многочисленные связи гиппокампа со структурами как лимбической системы, так и других отделов мозга определяют его многофункциональность.

Гиппокамп входит в гиппокамповую формацию, включающую, помимо него, зубчатую фасцию, субикулум, пресубикулум и энторинальную кору, и является ключевой структурой лимбической системы мозга.

Собственно гиппокамп (или Аммонов рог) представляет собой плотную ленту клеток, тянущуюся в переднезаднем направлении вдоль медиальной стенки нижнего рога бокового желудочка мозга. Основные нервные клетки гиппокампа представлены пирамидными нейронами и полиморфными клетками, большинство из которых являются вставочными нейронами с отростками, не выходящими за пределы гиппокампа.

Являясь древней корой, гиппокамп состоит из 3 основных слоев: полиморфного слоя (stratum oriens ), слоя пирамидных нейронов (stratum pyramidale ) и молекулярного слоя (stratum radiatum и stratum lacunosum-moleculare )

Слой, лежащий на вентрикулярной поверхности, alveus , состоит в основном из идущих в горизонтальном направлении миелинизированных аксонов пирамидных нейронов гиппокампа. Базальные дендриты и начальные сегменты аксонов находятся в полиморфном слое. Далее следует слой пирамидных нейронов, а затем stratum radiatum , содержащий стволы апикальных дендритов, и stratum lacunosum-moleculare , где располагаются претерминальные и терминальные ветвления апикальных дендритов. Четкая организация цитоархитектоники гиппокампа сохраняется на всем его фронтокаудальном протяжении, что позволяет говорить о его ламинарной организации.

Особенности цитоархитектоники пирамидного слоя гиппокампа послужили основанием для его деления на 4 основных поля, ориентированных в медиолатеральном направлении и обозначаемые как СА1 - СА4. Основными полями собственно гиппокампа считаются поля СА1 и СА3. Поле СА1 отличается небольшими, плотно расположенными в 2 слоя пирамидными нейронами, клетки этого слоя в СА3 области имеют очень крупные размеры, расположены не так плотно. Апикальные дендриты пирамид СА1 идут на значительном расстоянии от клетки в виде единого ствола и не имеют крупных шипиковых выростов. Мощные апикальные дендриты пирамид СА3 области дают бифуркацию недалеко от клеточного тела и покрыты гигантскими шипиковыми выростами. Эти гигантские шипики пирамидных нейронов СА3 образуют синаптические контакты с аксонами гранулярных нейронов зубчатой фасции, мшистыми волокнами. Аксоны пирамидных нейронов СА3 дают так называемые коллатерали Шаффера, контактирующие с апикальными дендритами пирамид СА1. Эти связи являются двумя основными ассоциативными путями гиппокампа, соединяющими воедино его основные элементы, и составляют так называемый трисинаптический путь. Как система мшистых волокон, так и основной афферентный вход зубчатой фасции (перфорантный путь) характеризуются строгой топической организацией. Таким образом, гиппокамп можно представить как набор последовательных морфофункциональных сегментов, которые могут функционировать относительно независимо.

Ламинарная организация свойственна также терминальным полям афферентных входов и комиссуральных связей с контралатеральным гиппокампом. Наиболее важные афферентные входы - от септума и энторинальной коры - заканчиваются в основном в СА3 области гиппокампа, тогда как пирамидные нейроны СА1 области получают афферентный вход непосредственно от энторинальной коры. Энторинальная кора в свою очередь получает афферентные входы от лимбической коры и полимодальных ассоциативных зон неокортекса. Были выявлены также прямые эфферентные связи от гиппокампа к височной области неокортекса и префронтальной коре. Септум связан с гиппокампом двусторонними связями и является чрезвычайно важным релейным звеном на путях между гиппокампом и структурами ствола мозга и гипоталамуса. Другие эфферентные пути гиппокампа направляются в основном в структуры лимбического круга. Таким образом, СА3-область гиппокампа является точкой конвергенции потоков информации от ассоциативной коры и филогенетически древних образований ствола мозга.

Основой функционирования нейронных ансамблей гиппокампа считают глутаматергическую нейромедиацию, поскольку и пирамидные нейроны, и гранулярные клетки зубчатой фасции являются глутаматергическими. Однако существенную роль в регуляции функциональной активности гиппокампа играют практически все известные нейротрансмиттерные системы. Важными модулирующими входами от септума являются ГАМК - и холинергические афференты. СА3 область гиппокампа получает прямые входы от норадренергического голубого пятна и серотонинергических ядер шва. Вход от ядер ретикулярной формации ствола мозга осуществляется опосредованно, через холинергические ядра переднего мозга.

Внутри гиппокампа тормозной контроль глутаматергических пирамидных нейронов осуществляют полиморфные вставочные нейроны, большинство из которых являются ГАМК-эргическими. Последние подразделяются на несколько подтипов по содержанию в них кальцийсвязывающих белков: парвальбумин-, калбиндин- и калретинин-содержащие интернейроны. Парвальбуминовые нейроны иннервируют преимущественно (но не исключительно) тела пирамидных нейронов. Особый подкласс парвальбумин-содержащих нейронов, так называемые «канделябровидные клетки», иннервируют начальные сегменты аксонов пирамидных клеток гиппокампа. Калбиндин-содержащие нейроны образуют синаптические контакты преимущественно на проксимальных апикальных дендритах пирамидных клеток. Калретинин-содержащие интернейроны в основном специализируются на тормозном контроле других ГАМК-эргических нейронов.

Как уже говорилось, СА3 область занимает особое место в структурно-функциональной организации гиппокампа, так как именно на нейроны этой области гиппокампа поступают основные потоки информации от высших ассоциативных зон коры, а также от стволовых и подкорковых структур мозга. Функциональная организация нейронных ансамблей в СА3 области гиппокампа имеет ряд специфических особенностей. Пирамидные нейроны СА3 связаны друг с другом посредством множества возвратных связей, в результате чего каждый из них способен влиять на разряд множества других нейронов. ГАМК-ергические интернейроны СА3 также получают возбуждающий глутаматергический вход от пирамидных нейронов этой области и от коллатералей мшистых волокон (аксонов гранулярных нейронов зубчатой фасции), иннервирующих апикальные дендриты пирамидных нейронов. Благодаря такой системе связей тормозные нейроны гиппокампа способны осуществлять как прямое, так и обратное торможение пирамидных нейронов. Эта сложно организованная сеть может контролировать пирамидные нейроны и обеспечивать временную структуру, необходимую для координации активности нейрональных ансамблей гиппокампа. Поскольку тормозные интернейроны модулируют как афферентные входы, так и эфферентную активность и возбудимость пирамидных глутаматергических нейронов, они способны синхронизировать большие клеточные популяции. Считают, что, будучи основной мишенью подкорковых путей, именно тормозные интернейроны способны осуществлять мотивационный, эмоциональный и автономный контроль активности гиппокампа. Тормозной контроль активности глутаматергических пирамидных нейронов является также основой процессов приобретения и воспроизведения памяти.