Клонирование: старт к долголетию. Стволовые клетки и клонирование по-восточному Клонирование стволовых клеток

Клонирование стволовых клеток человека впервые. Почти два десятилетия назад, ученые смогли клонировать милую овечку Долли. Теперь тот же самый процесс, чтобы позволить им клонировать эмбриональные стволовые клетки человеческих зародышей в первый раз. Это революционное достижение было совершено Шукратом Малиповым в университете штата Орегон и использует метод, называемый перенос ядра. Проще говоря, это включает в себя прием клетки – в этом случае стволовые клетки вводятся в специальную яйцеклетку, чья ДНК была удалена.

Затем эта клетка стимулируется, чтобы начать делится. В результате растущей массы из стволовых клеток, которые если начали расти, могут стать клоном. Это метод, с помощью которого клонировали овцу Долли в 1996 году. Интересно, что этот метод до сих пор не сработал с человеческой клеткой.


Согласно сообщению в журнале Cell, его команда смогли повторить процедуру, используя человеческие стволовые клетки из кожи зародыша, чтобы “подкормить“ клетки-яйца. Успех эксперимента может привести к клонированию целого человека, хотя этические и моральные нормы принципиально вступают в конфликт с аналогичной идеей.

Именно по этой причине, Малипов и его команда не планируют производить клонов, а клонированные стволовые клетки будут предназначены исключительно для медицинских целей. Стволовые клетки являются панацеей в современной медицине и используется практически для лечения раковых заболеваний, пораженных нервных тканей и сердечно-сосудистых заболеваний.


Малипов придает успеху большое значение и определяет два фактора. Во-первых, для клетки-яйца используются здоровые клетки от донора, а в предыдущих попытках, это было сделано с остатками гинекологической клиники. Во-вторых, имеет немного другой подход к передаче ядра, с небольшими улучшениями здесь и там, в том числе использование кофеина в данный момент.

Ожидания Малипова продолжались долгие годы экспериментов и попыток, чтобы оптимизировать процесс клонирования так, что он работает с человеческими клетками, но при первой попытке его команда получила линии клонированных клеток всего за несколько месяцев. Это действительно огромный шаг в медицине, который может значительно уменьшить стоимость лечения стволовыми клетками и помочь ряду пациентов с дегенеративными и потенциально неизлечимыми заболеваниями. Кроме того, это дает надежду, чтобы обрести бессмертие путем постоянного клонирования тканей и жизненно важных органов. Но это уже научная фантастика. По крайней мере пока.















1 из 14

Презентация на тему: Стволовые клетки

№ слайда 1

Описание слайда:

№ слайда 2

Описание слайда:

№ слайда 3

Описание слайда:

Определение стволовых клеток Пуповинная кровь содержит стволовые клетки новорожденного. Стволовые клетки- это стержень жизни, источник, из которого образуются все остальные клетки организма. Они способны к преобразованию в клетки любых органов и тканей организма. Клетки обеспечивают восстановление поврежденных участков органов и тканей. Из стволовых клеток можно создать любую ткань, вырастить любой орган. Столь необычные их свойства были открыты не так давно, однако прорыв в этой области за последние несколько лет был уникальным.

№ слайда 4

Описание слайда:

Применение в медицине Ученые уже успешно применяют стволовые клетки для лечения различных недугов. Недавно медики заявили, что готовы выращивать на основе стволовых клеток новые здоровые зубы. И уж совсем невероятная метаморфоза-стволовые клетки могут настолько «забыть» о своем костномозговом происхождении, что под влиянием определенных факторов превращаются даже в нервные клетки (нейроны). Через две недели после добавления специального сигнального вещества в культуру стволовых клеток они уже на 80% состоят из нейронов. Это пока лишь «пробирочное» достижение,но оно вселяет надежду на излечение больных с тяжелыми поражениями спинного и головного мозга.При введении собственных стволовых клеток костного мозга в спинномозговой канал человека они равномерно распределяются по всем отделам головного мозга, не нарушая его структуры. Стволовые клетки превращаются в печеночные. Установлено,что при повреждении печени новые печеночные клетки (гепатоциты) и их предшественники формируются в основном из донорских стволовых клеток костного мозга.

№ слайда 5

Описание слайда:

Стволовые клетки в клинической практике В терапевтическом применении стволовых клеток сегодня, без сомнения, лидирует ортопедия.Дело в том, что в руках у медиков имеются уникальные вещества: особые белки,так называемые bone morphogenic proteins (BMP), вызывающие перерождение стволовых клеток в клетке костной ткани (остеобласты). В США уже проходят последнюю стадию испытаний и скоро начнут широко применяться в клиниках специальные пористые губки, наполненные одновременно и стволовыми клетками и ВМР.Помещая такие чудо-губки в поврежденное место (зону перелома или пустоту после удаления остеосаркомы),можно уже в течение двух месяцев заполнить недостающий промежуток до 25 сантиметров длиной. Более того, сейчас ведется работа по встраиванию гена ВМР в стволовые клетки. Это означает, что, переродившись в костные клетки, они смогут сами по себе вырабатывать белок – ВМР, инициирующих процесс превращения стволовых клеток в костные.

№ слайда 6

Описание слайда:

Источники стволовых клеток для восстановительной терапии В здоровом организме существует универсальный механизм залечивания повреждений с использованием внутреннего клеточного резерва – стволовых клеток костного мозга. Эти клетки могут превратиться в какие угодно другие клетки, попав в соответствующий отдел организма. Стволовые клетки начинают поступать в поврежденный участок, когда получают соответствующий сигнал из центральной нервной системы. Достигнув места повреждения, они под действием определенных сигнальных молекул превращаются в недостающие клетки поврежденной ткани. Но хранилище стволовых клеток не может быть неисчерпаемым. После залечивания обширных повреждений костный мозг «пустеет», да и с возрастом запас стволовых клеток значительно уменьшается. Когда мы рождаемся, у нас в костном мозге на 10 тысяч кроветворных клеток приходится одна стволовая клетка. У подростков стволовых клеток уже в 10 раз меньше. К 50-ти годам на полмиллиона кроветворных клеток одна стволовая клетка, а в 70 лет отбирать пробу костного мозга просто бессмысленно- там всего лишь одна стволовая клетка на миллион кроветворных клеток. То есть сдавать костный мозг имеет смысл только в молодом возрасте, старикам придется использовать чужие культуры стволовых клеток. При чем донорские стволовые клетки удобнее всего получать прямо при рождении из пуповины и плаценты, где они тоже содержатся в достаточном количестве.

№ слайда 7

Описание слайда:

Применение ростовых дифференцирующих факторов стволовых клеток в стоматологии Ростовые факторы стволовых клеток вводят в дозе 10 мкг ежедневно, в течение 3-5 дней больным с генерализованным пародонтитом различной степени тяжести в область переходной складки преддверия рта. После применения ростовых факторов стволовых клеток у 80% пациентов отмечается положительный эффект:Улучшилось самочувствие, исчезли зуд и боли (100%);Кровоточивость десен (71%);Нормализовались плотность и цвет десны (66,7%);Проба Шиллера-Писарева была отрицательной в 81% случаев. Ростовые факторы клеток способствовали восстановлению показателей иммунитета, неспецифической резистентности и гемостаза преимущественно при легкой и средней степени тяжести пародонтита. Через 8-10 месяцев у больных пародонтитом получавших ростовые факторы стволовых клеток, отсутствовало обострение процесса, исчезли неприятные ощущения в деснах, укрепились подвижные зубы. На рентгенограммах не было выявлено прогрессирование деструкции костной ткани, а число очагов остеопороза уменьшилось.

№ слайда 8

Описание слайда:

Гемабанк стволовых клеток Гемабанк- это хранилище стволовых клеток. Его назначение – сохранение при сверхнизкой температуре в течение многих лет стволовых клеток, выделенных из пуповинной крови. В банке стволовые клетки каждого новорожденного хранятся совершенно отдельно и могут быть использованы только в его интересах или интересах его семьи. Гемабанк был создан в ноябре 2003года. Центр стволовых клеток будет находится в графстве Хартфордшир на юге Англии. Банк основан Советом медицинских исследований и Советом по биотехнологиям и биологическими исследованиям Британии. Над проектом его трудились ученые из Лондонского Кингс колледжа и Научного центра жизни в Ньюкасле. Он использует многолетний опыт работы банка костного мозга Российского Онкологического Научного Центра РАМН им. Н.Н.Блохина, а также опыт, накопленный многочисленными банками пуповинной крови, существующих в США и многих европейских странах. Банк будет использовать стволовые клетки, взятые из эмбрионов и других человеческих тканей, а затем будет создавать условия для их бесконечного размножения и выращивать из них различные специфические клетки. Банк также займется хранением и поставкой стволовых клеток, необходимых для изучения и лечения диабета, рака, болезни Паркинсона и других заболеваний.

№ слайда 9

Описание слайда:

Стволовые клетки. «ЗА» и «ПРОТИВ» – позиции зарубежных стран Во многих странах Европейского Союза законов по поводу стволовых клеток нет вообще, там же, где они есть, их диапазон – от абсолютного запрещения исследований на эмбрионах (Франция, Германия, Ирландия) до разрешения создавать эмбрионы в исследовательских целях (Великобритания). Разнообразие мнений отражает существующие культурные и религиозные различия. В большинстве стран обнаруживается параллель между допустимостью абортов. Ирландия – единственная страна Европейского Союза (ЕС), чья конституция подтверждает право на жизнь еще не рожденных людей, и это право приравнивается к праву матери на жизнь. Несмотря на это,аборт законен, если жизни матери угрожает прямая опасность. Изнасилование, кровосмешение или аномалии зародыша не являются оправданием. Бельгия и Нидерланды проводят исследования на эмбрионах при отсутствии законодательных рамок. В Португалии, где аборт незаконен, кроме случаев изнасилования или по серьезным медицинским причинам, и безоговорочно запрещен после 12-й недели беременности, нет законодательства, но нет и исследований. Они запрещены в Австрии, Германии и даже во Франции, но последняя позволяет изучение эмбрионов без нанесения ущерба их целостности и преимплантационную диагностику.

№ слайда 10

Описание слайда:

Стволовые клетки. «ЗА» и «ПРОТИВ» - позиции зарубежных стран Испанская конституция предлагает защиту только для жизнеспособных эмбрионов in vitro, образующиеся при оплодотворении in vitro. Исследования на эмбрионах при тех же условиях допустимы в Финляндии, Испании и Швеции. Еще в девяти европейских странах законодательство либо пересматривается, либо исправляется. Эти страны, как и те, где законодательство вообще отсутствует, могут руководствоваться международными правилами. Соединенные Штаты, подобно Германии, проявляют лицемерие и нерешительность. Десять штатов ввели у себя законы,регулирующие или ограничивающее исследования на человеческих эмбрионах, зародышах или еще не рожденных детях. На федеральном уровне запрещена финансовая поддержка любого исследования, в котором эмбрионы разрушаются.

№ слайда 11

Описание слайда:

Этические проблемы Этические аспекты исследования человеческих стволовых клеток затрагивают широкий круг спорных и важных проблем. Многие из них связаны с получением этих клеток, источником которых может быть взрослый организм,кровь из пуповины, ткань зародыша или ткань на различных стадиях его развития. Сегодня общепризнанно, что лучший источник стволовых клеток для терапевтических целей – это эмбрионы. Поэтому встает вопрос, можно ли специально создавать эмбрионы для получения стволовых клеток, для лечения и выживания взрослых людей? Существуют проблемы добровольного информационного согласия как доноров, так и получателей клеток; оценки приемлемого риска; применения этических стандартов в исследованиях на людях; анонимности доноров; охраны и безопасности клеточных банков; конфиденциальность и защиты частного характера генетической информации. Наконец, есть проблемы коммерции и компенсации участникам процесса; защита человеческих тканей, генетического материала и информации при их перемещении через границы как в пределах ЕС, так и по всему миру. Все эти проблемы важны, но большинство из них в последние годы уже обсуждались.

№ слайда 12

Описание слайда:

Этические проблемы В настоящее время, как уже говорилось, наиболее многообещающим источником стволовых клеток для исследовательских и терапевтических целей являются либо абортированные плоды, либо эмбрионы до стадии имплантации. Однако недавно появились перспективные исследования стволовых клеток взрослых людей. Отказ от исследований эмбрионов в надежде на то, что будет достаточно стволовых клеток взрослых, чрезвычайно опасен и проблематичен порядок причин. Во- первых, будут ли взрослые клетки столь же хороши в терапии, как эмбриональные (в настоящее время накоплено гораздо больше данных и просматривается гораздо больше терапевтических перспектив от использования человеческих эмбриональных стволовых клеток (ЭСК). Во – вторых, может оказаться, что взрослые клетки подойдут для одних терапевтических целей, а ЭСК – для других. В – третьих, мы знаем, что можно изменять или замещать практически любой ген в человеческих ЭСК, но верно ли это для взрослых стволовых клеток, еще необходимо установить. Было бы безответственной авантюрой по отношению к человеческим жизням поддерживать только один из двух источников клеток, заставляя людей ждать, а возможно, и умирать, ожидая получения и использования клеток из менее подходящего источника. Таким образом, этические проблемы человеческих ЭСК остры и неотложны, в обозримом будущем их не удастся обойти, сконцентрировавшись на взрослых стволовых клетках.

№ слайда 13

Описание слайда:

Этические проблемы Известно, что из ранних, доимплантационных, эмбрионов можно без ущерба удалять отдельные клетки. Такой способ может быть одним из решений проблемы получения ЭСК. Однако, если удаленные клетки тотипотенты (т. е. способны развиться в любой орган и даже в самостоятельный организм), значит, они по сути дела – отдельные зиготы, «эмбрионы», и по тому должны защищаться в той же мере, что и исходные эмбрионы. Если же такие клетки только плюрипотенты, то их нельзя рассматривать в качестве эмбрионов. К сожалению, пока заранее невозможно сказать, является ли та или иная клетка тоти- или плюрипотентной. С уверенностью это можно установить только ретроспективно, наблюдая, на что способны клетки. Сформулируем две проблемы этических позиций: Согласованность исследований стволовых клеток с тем, что считается приемлемым и этичным в отношении нормального сексуального воспроизводства. Согласованность с позициями и моральными верованиями, касающимися аборта и искусственной репродукции человека. Этический принцип, который в полной мере касается использования эмбрионов при исследовании. Это «принцип избежания ненужных трат», предполагающий, что правильно приносить пользу людям, если это в наших силах, и неправильно вредить им.

№ слайда 14

Описание слайда:

Клонирование сказка или быль Сегодня применение эмбриональных клеток возрождается на новом уровне. Наука смогла понять механизм воздействия эмбриональных тканей на больные органы. Миграция стволовых клеток в организме и их способность восстановить любой орган могут решить многие проблемы медицины и отодвинуть на второй план клонирование, вызывающее столько споров. Как показывают последние исследования, клонирование органов не защищено то ошибок при копировании генетического материала. Так, при клонировании мышей все мыши умирают, начиная с шестого поколения. По-видимому, накопление ошибок в ДНК приводит к деградации и смерти.

Слайд 2

Биотехнология

Клони́рование (англ. cloning от др.- греч. κλών - «веточка, побег, отпрыск») - в самом общем значении - точное воспроизведение какого-либо объекта N раз. Объекты, полученные в результате клонирования, называются клоном. Причём как каждый по отдельности, так и весь ряд.

Слайд 3

Технология клонирования

Технология клонирования состоит в том, что из яйцеклетки при помощи микрохирургической операции удаляется ядро и вместо него вводится ядро соматической клетки другой особи (донора), в которой содержатся гены только донорского организма. Различия в геномах родительского организма и его клона составляют от 0,05% до 0,1%. Второй вариант технологии – это энуклуация соматической клетки и введение в нее ядра яйцеклетки. В связи с тем, что различия, хоть и минимальные существуют, в строгом смысле слова клон не является абсолютно идентичным родительскому организму.

Слайд 4

Естественное клонирование (в природе) у сложных организмов

У растений естественное клонирование происходит при различных способах вегетативного размножения. Клонирование широко распространено в природе у различных организмов.

Слайд 5

Клонирование животных

У животных клонирование происходит при амейотическом партеногенезе и различных формах полиэмбрионии. Так, среди позвоночных известны клонально размножающиеся виды ящериц, состоящие из одних партеногенетических самок. Уникальный вариант естественного клонирования открыт недавно у муравьёв - малого огненно муравья (Wasmanniaauropunctata) самцы и самки которого клонируются независимо, так что генофонды двух полов не смешиваются. В некоторых яйцах, оплодотворенных самцами, все хромосомы матери разрушаются, и из таких гаплоидных яиц развиваются самцы.

Слайд 6

У человека естественные клоны - монозиготные близнецы.

Слайд 7

Молекулярное клонирование

Молекулярное клонирование - клонирование молекул, другими словами - наработка большого количества идентичных ДНК-молекул с использованием живых организмов. Это технология клонирования наименьших биологических объектов - молекул ДНК, их частей и даже отдельных генов. Для молекулярного клонирования ДНК вводят в вектор (например, бактериальную плазмиду или геном бактериофага). Размножаясь, бактерии и фаги многократно увеличивают и количество введенной ДНК, в точности сохраняя её структуру. Такое клонирование необходимо для изучения биологических молекул, их идентификации, решения вопросов клонирования тканей и др.

Слайд 8

Клонирование многоклеточных организмов

Наибольшее внимание учёных и общественности привлекает клонирование многоклеточных организмов, которое стало возможным благодаря успехам генной инженерии. Различают полное (репродуктивное) и частичное клонирование организмов. При полном воссоздаётся весь организм целиком, при частичном - организм воссоздаётся не полностью (например, лишь те или иные его ткани).

Слайд 9

В 1997 году клонирование реконструировалось, когда Ян Вилмут и его коллеги в Рослинском Институте в Эдинбурге, Шотландии, успешно клонировали овцу по имени Долли. Долли была первое клонированное млекопитающее. Вилмут и его коллеги пересаживали ядро из клетки грудной железы овцы Финна Дорсетта в определенную яйцеклетку Шотландской черномордой овцы. Комбинация яйцеклетки-ядра стимулировалась электричеством, чтобы соединить и то и другое и стимулировать деление клетки. Новая клетка разделилась и была помещена в матку черномордой овцы, чтобы развиться. Долли была рождена на несколько месяцев позже. Долли с тех пор выросла и произвела на свет несколько особей обычным половым методом. Это говорит о том, что клон Долли абсолютно здоров.

Слайд 10

Клонирование человека

Клони́рованиечелове́ка - действие, заключающееся в формировании и выращивании принципиально новыхчеловеческих существ, точно воспроизводящих не только внешне, но и на генетическом уровне того или иногоиндивида, ныне существующего или ранее существовавшего. ЗА ПРОТИВ

Слайд 11

Репродуктивное клонирование человека

Репродуктивное клони́рование человека - предполагает, что индивид, родившийся в результате клонирования, получает имя, гражданские права, образование,воспитание, словом - ведёт такую же жизнь, как и все «обычные» люди. Репродуктивное клонирование встречается со множеством этических, религиозных, юридическихпроблем, которые сегодня ещё не имеют очевидного решения. В некоторых государствах работы по репродуктивному клонированию запрещены на законодательном уровне.

Слайд 12

Терапевтическое клонирование человека

Терапевти́ческоеклони́рованиечелове́ка - предполагает, что развитие эмбриона останавливается в течение 14 дней, а сам эмбрион используется как продукт для получения стволовых клеток. Законодатели многих странопасаются, что легализация терапевтического клонирования приведёт к его переходу в репродуктивное. Однако в некоторых странах (США, Великобритания) терапевтическое клонирование разрешено.

Слайд 13

Препятствия клонированию

Технологические трудности и ограничения Самым принципиальным ограничением является невозможность повторения сознания, а это значит, что речь не может идти о полной идентичности личностей, как это показывается в некоторых кинофильмах, но только об условной идентичности, мера и граница которой ещё подлежит исследованию, но для опоры за базис берётся идентичность однояйцевых близнецов. Невозможность достичь стопроцентной чистоты опыта обуславливает некоторую неидентичность клонов, по этой причине снижается практическая ценность клонирования.

Слайд 14

Социально-этический аспект

Опасения вызывают такие моменты, как большой процент неудач при клонировании и связанные с этим возможности появления неполноценных людей. А также вопросы отцовства, материнства, наследования, брака и многие другие.

Слайд 15

Этико-религиозный аспект

С точки зрения основных мировых религий клонирование человека является или проблематичным актом или актом, выходящим за рамки вероучения и требующим у богословов чёткого обоснования той или иной позиции религиозных иерархов.

Слайд 16

Главная причина клонирования растений и животных в том, чтобы произвести организмы с определенными качествами, которые необходимы человеку, такие как награжденная орхидея или генетическая инженерия, например овца была выведена чтобы предоставить человеческий инсулин. Если бы ученые полагались только на половое (сексуальное) размножение чтобы вывести этих животных, они бы рисковали тем, что необходимые им качества исчезли, так как половое размножение (сексуальное) переставляет генетический код в блоках. Другими причинами для клонирования могут быть потерянные или умершие домашние животные или животные, которые находятся на грани вымирания. Какими бы не были причины, новые технологии клонирования разожгли много этических спорах среди ученых. Некоторые государства рассмотрели или предписали законодательство, чтобы замедлить, ограничить или запретить эксперименты клонирования. Ясно, что клонирование будет частью нашей жизни в будущем, но будущее этой технологии должно всё же быть определено.

Посмотреть все слайды

– пятидневных зародышей, представляющих собой шарик из клеток, образующийся при делении оплодотворенной яйцеклетки и впоследствии развивающийся в эмбрион. Такие могут давать начало практически любым клеткам, входящим в состав человеческого организма, а также обладают способностью к воспроизведению. Возможность выращивать линии стволовых клеток в лабораторных условиях и направлять их дифференцировку в нужном направлении является ключом к спасению огромного количества жизней посредством контроля над развитием злокачественных опухолей, восстановления подвижности перенесших инсульт пациентов, излечения диабета, регенерации тканей поврежденного спинного и головного мозга, а также излечение многочисленных заболеваний, ассоциированных со старением.

Такие недифференцированные клетки необходимы для проведения различных исследовательских работ. Изучение этих клеток должно помочь нам в изучении механизмов, лежащих в основе дифференцировки и де-дифференцировки клеток.

Ученые также признают ценность недифференцированных клеток из других тканей, в том числе так называемых «взрослых» стволовых клеток. BIO поддерживает работу по изучению этих клеток. Однако, согласно утверждению Национальных институтов здравоохранения (NIH) и Национальной академии наук (NAS) США, только эмбриональные стволовые клетки могут дифференцироваться в клетки любого типа.

В 2000 году NIH объявили постановление, разрешающее выделение федеральных средств на изучение эмбриональных стволовых клеток, которое должно проводиться согласно своду строгих ограничений и под федеральным надзором. Стратегия NIH направлена на поддержание равновесия в медицинских, научных, официальных и этических аспектах, касающихся этой области исследований. В отличие от целой бластоцисты, полученные из нее стволовые клетки не могут развиться в эмбрион. NIH поддерживает выделение федеральных средств на использование в исследовательских целях, но не целенаправленное производство, эмбриональных стволовых клеток, получаемых из замороженных оплодотворенных яйцеклеток, предназначенных для экстракорпорального оплодотворения, но по каким-либо причинам не имплантированным и подлежащим уничтожению.

– это обобщающий термин для процесса создания в лабораторных условиях генетически точных копий гена, клетки или целого организма.

BIO выступает против репродуктивного клонирования человека – использования методов клонирования с целью создания человеческого существа. BIO была одной из первых организаций национального масштаба, выступивших в поддержку моратория, наложенного президентом Биллом Клинтоном на исследования по клонированию целого человеческого организма. Репродуктивное клонирование слишком опасно и поднимает слишком много этических и социальных вопросов.

Репродуктивное клонирование человека подразумевает выделение ядра соматической клетки (клетки организма, не являющейся сперматозоидом или яйцеклеткой) человека и внедрения его в неоплодотворенную яйцеклетку с предварительно удаленным ядром. После этого яйцеклетка со встроенным ядром соматической клетки имплантируется в матку суррогатной матери. Теоретически эта процедура должна привести к появлению на свет точной копии человека-донора ядра соматической клетки.

Другой тип клонирования также подразумевает перенос ядра соматической клетки, однако яйцеклетка не имплантируется в матку, а начинает делиться в лабораторных условиях. Образующиеся при этом недифференцированные клетки некоторое время культивируются, после чего из всей массы клеток выделяются стволовые, способные к неограниченному делению, на основании которых формируются линии эмбриональных стволовых клеток, генетически идентичных соматической клетке, послужившей донором ядра. Однако такие клетки уже не способны дать начало эмбриону даже при имплантации в матку.

Генетически идентичные клеткам пациента, обладают огромным терапевтическим потенциалом. В определенных условиях они могут дать начало новым тканям, которые могут использоваться для , поврежденных в результате различных заболеваний, таких как диабет, болезни Альцгеймера и Паркинсона, различные типы рака и заболевания сердца. Развитие этого направления может привести к созданию кожи, хрящей и костной ткани для лечения ожоговых пациентов, а также нервной ткани для людей с повреждениями спинного и головного мозга. Исследование также ведется в направлении выявления внешних стимулов, генов и структур, направляющих дифференцировку клеток с формированием целых органов, в состав которых входят ткани различных типов. Благодаря использованию метода переноса ядер соматических клеток, выращенные в лабораторных условиях органы и ткани будут по генетическим признакам идентичны тканям пациента и, соответственно, не будут приводить к развитию реакций отторжения. Эта область применения клонирования часто называется терапевтическим клонированием или методом ПЯСК – переноса ядра соматической клетки (somatic cell nuclear transfer, SCNT).

Одна из причин важности проведения работ по переносу ядер соматических клеток является важность понимания процессов репрограммирования – механизмов, с помощью которых яйцеклетка воспринимает генетический материал взрослой клетки и возвращает его в состояние, характерное для недифференцировавшейся клетки. Знание деталей происходящих при этом процессов позволит осуществлять весь процесс в лабораторных условиях без использования донорских яйцеклеток.

Учитывая огромный потенциал клеточного клонирования в лечении различных заболеваний и восстановлении функций поврежденных органов и тканей, в 2002 году Национальная академия наук США издала документ, выступающий в поддержку использования клонирования в терапевтических целях, но возражающий против репродуктивного клонирования. BIO полностью поддержала выводы и точку зрения сотрудников академии.

Евгения Рябцева
Интернет-журнал «Коммерческая биотехнология» http://www..org.
Продолжение следует.

Сразу две генетических новости пришло из незалежной Японии.
Первая, интересная с точки зрения будущего человека, заключается в удачном опыте получения функционирующих тканей головного мозга из стволовых клеток. Изначально, целью эксперимента было воссоздание тканей коры головного мозга (который, как завещал И.П.Павлов: «Высший распорядитель и распределитель функции организма животного и человека»), но в итоге исследователям удалось получить клетки различных тканей. Что примечательно, ученым страны восходящего солнца удалось создать экземпляры тканей не только из эмбриональных стволовых клеток (как это обычно бывает), но и из «взрослых» клеток, присутствующих в кожном покрове и волосах.

У пересадки клонированных тканей самые радужные перспективы, т.к. в регенеративной терапии лишь несколько заболеваний можно вылечить пересадкой клеток, и куда больше - пересадкой функционирующих, «живых», тканей: начиная от наращивания потерянных конечностей и заканчивая раком.

Выращенные ткани, на данный момент, еще слишком малы для их практического применения, но, как заявлено в пресс-релизе исследовательского института, исследования направленные на создание тканей взрослого человека будут продолжаться. Кроме экспериментов с человеческими стволовыми клетками, японцы успешно проделали то же самое с клетками лабораторных мышей, даже создав на основе их тканей сеть нейронов, отвечающую на стимулирование.


Не заканчивая лабораторными крысами, продолжаем дальше: на основе мертвой клетки, 16 лет пролежавшей в замороженном состоянии (-20 по Цельсию, температура схожая с мерзлой почвой, в которой был найден известный мамонтенок Дима), была успешно клонирована мышь.

Исследователи института Riken выделили клеточное ядро из органа мертвой мыши и привили его к яйцеклетке живой мыши, результатом чего стало появление на свет клона, способного к репродукции. Это не просто новость, а Новость с большой буквы, ведь подобные опыты открывают дорогу к восстановлению вымерших видов животных на планете, таких как мамонты, саблезубые тигры и… отправляйтесь пересматривать Парк Юрского Периода.

И если еще до недавнего времени подобные опыты не заканчивались успехом и казались скорее фантастикой, нежели реальностью, у ученых впереди решение еще одного сложнейшего вопроса: скрещивание с ныне существующими видами. Тысячи лет назад не существовало как минимум половины распространенных ныне заболеваний, инфекций, вирусов и всего прочего, что способно убить «новое-старое» существо еще до рождения.

Для клонирования мамонта (который пока представляется наиболее безопасным, вероятным и реализуемым существом) исследователям нужно найти способ привить ядро клетки мамонта яйцеклетке слонихи, после чего имплантировать ее. Тем не менее, даже если «родить» живое существо не удастся - в процессе могут получиться клонированые эмбриональные стволовые клетки, что даст еще один толчок к работам в этой области.