Кто изобрел первый телескоп и в каком году, история создания. Астрономия — История создания телескопа

Кто изобрел первый оптический телескоп , с помощью которого астрономы проводят свои исследования и наблюдения? Самый первый оптический телескоп изобрел и создал профессор Падуанского университета Галилео Галилей. Произошло это в далеком 1609 году. Галилей создал телескоп с возможностью 30 кратного увеличения объектов и состоял из 1245 миллиметровой трубы, 53 миллиметрового объектива и окуляра в 25 диоптрий. Несмотря на несовершенную оптическую схему и более чем скромную возможность увеличения (тридцатикратное), первый телескоп Галилея был по настоящему революционным изобретением для астрономии того времени. Благодаря изобретению Галилея было открыто и исследовано множество астрономических объектов как самим изобретателем, так и его последователями. Галилей смог сделать очень интересные открытия - увидеть пятна на Солнце и горы на Луне,обнаружить звезды в Млечном пути и спутники Юпитера, изучить фазы Венеры.

Принцип работы телескопа Галилея основывался на свойствах выпуклых линз, выполняющих роль объектива. В первом телескопе роль окуляра выполняла линза диаметром примерно 3 см, а в качестве объектива была выбрана плоско-выпуклая линза диаметром около 4 миллиметров с 50 см фокусным расстоянием. Но вскоре Галилей усовершенствовал свое изобретение и соорудил телескоп помощнее - диаметр линзы 5,8 сантиметров,а фокусное расстояние - 150 см. Тем не менее этот оптический телескоп не позволял улучшить качество изображения и с его помощью Галилею удалось достичь увеличение расстояния примерно в 33 раза. Но благодаря изобретенному телескопу, Галилей смог сделать множество открытий в астрономии.

Польскому астроному Гевелию
удалось не только увеличить мощность оптического телескопа, но значительно улучшить качество изображения. А уже в 1663 году оптик Грегори разработал схему телескопа нового поколения, в котором зеркала заменили оптические линзы. Все современные телескопы являются зеркальными (на поверхность стекла путем вакуумного напыления наносится тончайший слой серебра).

Польский астроном Ян Гевелий выяснил,что путем увеличения у объектива фокусного расстояния можно существенно улучшить качество изображений. Телескоп Гевелия имел уникальную для того времени конструкцию - 50-ти метровая труба телескопа подвешивалась на столбе с помощью канатов. А вскоре астроному Озу удалось сконструировать мощный телескоп, который имел 600-кратное увеличение! Но к сожалению телескоп Озу был весьма неудобным - он не имел трубы и объектив размещался на расстоянии 100 метров от окуляра на столбе,а сам окуляр надо было держать в руках и наблюдать через него.

Наука не стояла на месте. Вскоре появился первый телескоп рефлектор - родоначальник современных зеркальных телескопов. Впервые схему телескопа-рефлектора создал изобретатель Джеймс Грегори в 1663 году, а в 1668 году известный ученый Исаак Ньютон построил телескоп, где вместо линз использовались зеркала.

А уже в 1672 году известный оптик католический священник Лоран Кассегрен (фр. Laurent Cassegrain) создал схему двухзеркального телескопа, где одно зеркало имело форму выпуклого гиперболоида, а второе было параболическим.

Министерство образования Оренбургской области

Государственное Образовательное Учреждение Начального Профессионального Образования Профессиональное Училище - № 17

РЕФЕРАТ НА ТЕМУ:

« Телескопы и история их создания »

Разработал:

Учащийся 1 курса гр. №2

Подкопаев Эдуард

Руководитель:

Обухова Н.С.

Абдулино,2010


Введение………………………………………………………………….2

1.1 История создания первых телескопов…………………………….5

1.2.Современные виды телескопов ……………………..…………….8

2. Глава 2………………………………………………………………….12

2.1 Домашний телескоп………………………………………………..12

Заключение…………………………………………………..…………13

Список используемой литературы……………………………………14

Приложения……………………………………………………………..15

Введение

Ведь каждый день пред нами солнце ходит,

Однако ж прав упрямый Галилей.

А.С.Пушкин

Телеско́п (от др.-греч. τῆλε - далеко + σκοπέω - смотрю) - прибор, предназначенный для наблюдения небесных светил. Действительно, это оптическое устройство представляет собой мощную зрительную трубу, предназначенную для наблюдения весьма удаленных объектов – небесных светил.

Существуют телескопы для всех диапазонов электромагнитного спектра: оптические телескопы, радиотелескопы, рентгеновские телескопы, гамма-телескопы. Кроме того, детекторы нейтрино часто называют нейтринными телескопами. Также, телескопами могут называть детекторы гравитационных волн.

Оптические телескопические системы используют в астрономии (для наблюдения за небесными светилами, в оптике для различных вспомогательных целей: например, для изменения расходимости лазерного излучения. Также, телескоп может использоваться в качестве зрительной трубы, для решения задач наблюдения за удалёнными объектами.

Актуальность: созданный около четырехсот лет назад, телескоп является своеобразным символом современной науки, воплощая в себе извечное стремление человечества к познанию.

Объект исследования: различные виды телескопов.

Цель нашего исследования рассмотреть историю создания телескопа, создать домашний телескоп.

Задачи исследования: собрать и изучить теоретический материал о телескопе, используя все доступные источники информации.

Основная гипотеза – телескопы и грандиозные обсерватории вносят немалый вклад в развитие целых областей науки, посвященных исследованию структуры и законов нашей Вселенной.

Научная новизна нашей работы заключается в значимости телескопов на современном этапе развития науки и техники (в истории космических)

Практическая значимость: материалы исследования могут быть использованы на уроках физики, истории, географии, во внеклассной работе. Сегодня телескоп все чаще можно встретить не в научной обсерватории, а в обычной городской квартире, где живет обычный астроном-любитель, который ясными звездными ночами отправляется приобщаться к захватывающим красотам космоса.

Глава 1

1.1. История создания первых телескопов

Трудно сказать, кто первый изобрел телескоп. Годом изобретения телескопа, а вернее зрительной трубы, считают 1608 год, когда голландский очковый мастер Иоанн Липперсгей продемонстрировал своё изобретение в Гааге. Тем не менее в выдаче патента ему было отказано, в силу того что и другие мастера, как Захарий Янсен из Мидделбурга и Якоб Метиус из Алкмара, уже обладали экземплярами подзорных труб, а последний вскоре после Липперсгея подал в Генеральные штаты (голландский парламент) запрос на патент. Позднейшее исследование показало, что, вероятно, подзорные трубы были известны ранее, ещё в 1605 году, в «Дополнениях в Вителлию», опубликованных в 1604 г. Кеплер рассмотрел ход лучей в оптической системе, состоящей из двояковыпуклой и двояковогнутой линз. Самые первые чертежи простейшего линзового телескопа (причем как однолинзового, так и двухлинзового) были обнаружены еще в записях Леонардо да Винчи датируемых 1509-м годом. Сохранилась его запись: «Сделал стекла, чтобы смотреть на полную Луну» («Атлантический кодекс»).(2,136)

Известно, что еще древние употребляли увеличительные стекла. Дошла до нас легенда о том, что якобы Юлий Цезарь во время набега на Британию с берегов Галлии рассматривал в подзорную трубу туманную британскую землю. Роджер Бекон, один из наиболее замечательных ученых и мыслителей XIII века, в одном из своих трактатов утверждал, что он изобрел такую комбинацию линз, с помощью которой удаленные предметы на расстоянии кажутся близкими. (1, 46)

Так ли это было в действительности – неизвестно. Бесспорно, однако, что в самом начале XVII века в Голландии почти одновременно об изобретении подзорной трубы заявили три оптика: Липерсчей, Меунус, Янсен. Как бы там ни было, к концу 1608 года первые подзорные трубы были изготовлены и слухи об этих новых оптических приборах быстро распространялись по Европе.

В Падуе в это время уже был широко известен Галилео Галилей, профессор местного университета, красноречивый оратор и страстный сторонник учения Коперника. Услышав о новом оптическом инструменте, Галилей решил собственноручно построить подзорную трубу. 7 января 1610 года навсегда останется памятной датой в истории человечества. Вечером того же дня Галилей впервые направил построенный им телескоп на небо. (Приложение №1.рис.1)

Он увидел то, что ранее было невозможно. Луна, испещренная горами и долинами, оказалась миром, сходным хотя бы по рельефу с Землей. Юпитер, предстал перед глазами изумленного Галилея крошечным диском, вокруг которого вращались четыре необычные звездочки – его спутники. При наблюдении в телескоп планета Венера оказалась похожа на маленькую Луну. Она меняла свои фазы, что свидетельствовало об ее обращении вокруг Солнца. На самом Солнце (поместив перед глазами темное стекло) ученый увидел черные пятна, опровергнув тем самым общепринятое учение Аристотеля о «неприкосновенной чистоте небес». Эти пятна смещались по отношению к краю Солнца, из чего сделал правильный вывод о вращении Солнца вокруг оси. В темные ночи, когда небо было чистым, в поле зрения галилеевского телескопа было видно множество звезд, недоступных невооруженному глазу. Несовершенство первого телескопа не позволило ученому рассмотреть кольцо Сатурна. Вместо кольца он увидел по обе стороны Сатурна два каких-то странных придатка. Открытия Галилея положили начало телескопической астрономии. Но его телескопы, утвердившие окончательно мировоззрение Коперника, были очень несовершенны. Уже при жизни Галилея на смену пришли телескопы несколько иного типа. Изобретателем нового инструмента был Иоганн Кеплер.(Приложение №1.рис.2)

В 1611 году в трактате «Диоптрика» он дал описание телескопа, состоящего из двух двояковыпуклых линз. Сам Кеплер, будучи типичным астрономом – теоретиком, ограничился лишь описанием схемы нового телескопа, а первым, кто его построил, был Шейнер, оппонент Галилея в их горячих спорах. К 1656 году Христиан Гюйенс сделал телескоп, увеличивающий в 100 раз наблюдаемые объекты, размер его был более 7 метров, апертура около 150 мм. Этот телескоп уже относят к уровню сегодняшних любительских телескопов для начинающих. К 1670-х годам был построен уже 45-метровый телескоп, который еще больше увеличивал объекты и давал больший угол зрения. Но даже обычный ветер мог служить препятствием для получения четкого и качественного изображения. (Приложение №2)

Исаак Ньютон в тот период сумел дать новую жизнь телескопам с помощью зеркала. Первое зеркало для телескопа диаметром 30 мм он сделал из сплава меди, олова и мышьяка в 1704 году. Изображение стало четким.

Двухзеркальная система в телескопе предложена французом Кассегреном. Реализовать свою идею в полной мере Кассегрен не смог из-за отсутствия технической возможности изобретения нужных зеркал, но сегодня его чертежи реализованы. Именно телескопы Ньютона и Кассегрена считаются первыми «современными» телескопами, изобретенными в конце 19 века. Кстати, космический телескоп Хаббл работает как раз по принципу телескопа Кассегрена. А фундаментальный принцип Ньютона с применением одного вогнутого зеркала использовался в Специальной астрофизической обсерватории в России с 1974 года.

Я.В. Брюс прославился разработкой специальных металлических зеркал для телескопов. Ломоносов и Гершель, независимо друг от друга, изобрели совершенно новую конструкцию телескопа, в которой главное зеркало наклоняется без вторичного, тем самым уменьшая потери света. А Гершель собственноручно в мастерской сплавлял зеркала из меди и олова. Главный труд его жизни – большой телескоп с зеркалом диаметром 122 см. (Приложение №3.рис 1 и 2).

К концу 18 века компактные удобные телескопы пришли на замену громоздким рефлекторам. Металлические зеркала тоже оказались не слишком практичны - дорогие в производстве, а также тускнеющие от времени.

К 1758 году с изобретением двух новых сортов стекла: легкого - крон и тяжелого - флинта, появилась возможность создания двухлинзовых объективов. Чем благополучно и воспользовался ученый Дж. Доллонд, который изготовил двухлинзовый объектив, впоследствии названный доллондовым. (Приложение 4).

Немецкий оптик Фраунгофер поставил на конвейер производство и качество линз. И сегодня в Тартуской обсерватории стоит телескоп с целой, работающей линзой Фраунгофера. Но рефракторы немецкого оптика также были не без изъяна – хроматизма. (Приложение 5)

И лишь к концу 19 века изобрели новый метод производства линз. Стеклянные поверхности начали обрабатывать серебряной пленкой, которую наносили на стеклянное зеркало путем воздействия виноградного сахара на соли азотнокислого серебра. Эти принципиально новые линзы отражали до 95% света, в отличие от старинных бронзовых линз, отражавших всего 60% света. Л. Фуко создал рефлекторы с параболическими зеркалами, меняя форму поверхности зеркал. (Приложение №6)

В конце 19 века Кросслей, астроном-любитель, обратил свое внимание на алюминиевые зеркала. Купленное им вогнутое стеклянное параболическое зеркало диаметром 91 см сразу было вставлено в телескоп. Сегодня телескопы с подобными громадными зеркалами устанавливаются в современных обсерваториях.

История телескопа прошла долгий путь – от итальянских стекольщиков до современных гигантских телескопов-спутников. Современные крупные обсерватории давно компьютеризированы. Однако любительские телескопы и многие аппараты, типа Хаббл, все еще базируются на принципах работы, изобретенных Галилеем. (Приложение №7.)

1.2.Современные виды телескопов.

Первое из двух главных преимуществ телескопа – это увеличение угла зрения, под которым мы видим небесные объекты. Человеческий глаз способен в отдельности различать две части предмета, если угловое расстояние не меньше одной минуты дуги. Поэтому, например, на Луне невооруженный глаз различает лишь крупные детали, поперечник которых превышает 100 километров. В благоприятных условиях, когда Солнце затянуто дымкой, на его поверхности удается рассмотреть самые крупные из солнечных пятен. Никаких других подробностей невооруженный глаз на небесных телах не видит. Оптические телескопы увеличивают угол зрения в десятки и сотни раз. Второе преимущество телескопа по сравнению с глазом заключается в том, что телескоп собирает гораздо больше света, чем зрачок человеческого глаза, имеющий даже в полной темноте диаметр не более 8 мм. Очевидно, что количество света, собираемого телескопом, во столько раз больше, во сколько площадь объектива больше площади зрачка. Это отношение равно отношению квадратов диаметров объектива и зрачка.

В радиотелескопе радиоволны собирает металлическое зеркало, иногда сплошное, а иногда решетчатое. Форма зеркала в телескопе параболическая поверхность способна собирать в фокусе падающее на нее электромагнитное излучение. На самом деле приемником радиоволн в радиотелескопах служит не человеческий глаз или фотопластинка, а высокочувствительный радиоприемник. Зеркало концентрирует радиоволны на маленькой дипальной антенне, облучая её. Вот почему эта антенна называется облучатель. Радиоволны, как и всякое другое излучение, несут в себе некоторую энергию. Поэтому, попадая на облучатель, они возбуждают в этом металлическом проводнике упорядоченное перемещение электронов или, иначе говоря, электрический ток. Радиоволны с невообразимо большой скоростью «набегают» на облучатель. Поэтому в облучателе возникает быстропеременный электрический ток. От облучателя к радиоприемнику электрический ток передается по волноводам – специальным проводникам, имеющим форму полых трубок. Космические радиоволны, или точнее, возбужденные ими электрические токи поступают в радиоприемник. К приемнику радиотелескопа присоединяют специальный самопишущий прибор, который регистрирует поток радиоволн определенной длины. (Приложение № 10)

Благодаря сложным оптическим явлениям лучи от звезды, уловленные телескопом, сходятся не в одной точке (фокусе телескопа), а в некоторой небольшой области пространства вблизи фокуса, образуя так называемое фокальное пятно. В этом пятне объектив телескопа конденсирует электромагнитную энергию светила, уловленную телескопом. Если взглянуть в телескоп, звезда покажется нам не точкой, а кружком с заметным диаметром. Но это не настоящий диск звезды, а лишь её испорченное изображение, вызванное несовершенством телескопа. Мы видим, созданное телескопом фокальное пятно. Чем больше диаметр объектива телескопа, тем меньше фокальное пятно. Следовательно, большинство телескопов обладают большей «зоркостью», благодаря большим размерам. Радиотелескопы воспринимают весьма длинноволновое излучение. Таким образом, новая техника поставила перед наукой новые проблемы принципиального характера. В будущем, вероятно, радиотелескопы станут еще зорче. (Приложение № 9)

Инфракрасные телескопы – это вид телескопов, которые применяются в астрономии для исследования теплового излучения космических объектов. Инфракрасное излучение – электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волны 0,74 мкм) и микроволновым излучением (1-2 мм). Другое название инфракрасного излучения – «тепловое» излучение. Действительно, все тела, твердые и жидкие, нагретые до определенной температуры, излучают энергию в инфракрасном спектре. При этом длины волн, излучаемые телом, зависят от температуры нагревания: чем выше температура, тем короче длина волны и выше интенсивность излучения. Первые эксперименты в области изучения инфракрасного излучения были проведены еще на рубеже 18-19 веков. Именно тогда английский ученый Уильям Гершель провел исследование нагревательных способностей лучей разных частей спектра. Обнаруженное невидимое излучение, способное, тем не менее, нагревать Гершель назвал инфракрасным.

Известно три составляющих диапазона инфракрасного излучения: коротковолновая, средневолновая и длинноволновая область. Длинноволновую область иногда называют терагерцовым излучением. Доказано, что земная атмосфера пропускает инфракрасное излучение только определенного диапазона: 0,75-5 мкм. Для остальной части лучей она непрозрачна. Тем не менее, инфракрасное наблюдение активно используется в астрономии с 19 века. С помощью инфракрасных телескопов зачастую можно сделать такие наблюдения, которые невыполнимы с помощью обычной астрономической техники. Основателем инфракрасной астрономии принято считать британского ученого Чарльза Пиацци Смита, который в 1856 году первым зарегистрировал тепловое излучение Луны.

Принцип действия инфракрасного телескопа состоит в принятии и обработке теплового излучения. Основным элементом первых радиотелескопов была полоска фольги, обладающая черной поверхностью. Если через фольгу пропустить ток, то при изменении температуры металла, меняется его сопротивление. Следовательно, изменяются и показатели тока. В зависимости от этих показателей можно рассчитать интенсивность теплового излучения. Существуют телескопы, которые одновременно являются оптическими и инфракрасными, например знаменитый Хаббл (Приложение № 7). Тепловые лучи отражаются обычным телескопическим объективом и фокусируются в одной точке, где размещается прибор, измеряющий тепло. Также существуют инфракрасные фильтры, пропускающие только тепловые лучи. С такими фильтрами происходит фотографирование.

В первую очередь возможности инфракрасных телескопов были использованы для изучения планет Солнечной системы. С помощью тепловых наблюдений удалось уточнить структуру атмосфер некоторых планет, обнаружить водяной лед на поверхности спутников планет-гигантов, открыть собственное тепловое излучение Сатурна и Юпитера. С помощью инфракрасных телескопов ученым удалось составить новую «тепловую» карту вселенной, которая во многом отличается от привычной карты звездного неба. На ней можно увидеть как остывшие планеты, так и места возможного образования новых звезд. (Приложение № 8)

Глава 2

Изучив материал по теме исследования, решили сделать телескоп сами.

В качестве объектива использовали два стекла для очков (мениски) по +0,5 диоптрии, расположив их выпуклыми сторонами одно наружу, а другое вовнутрь на расстоянии 30 мм одно от другого. Между ними поставили диафрагму с отверстием диаметром около 30 мм.

Для окуляра взяли лупу с 8 кратным увеличением.

Трубу телескопа, в которой укрепляется объектив, сделали из бумаги; можно, из пластмассы сделали выдвижную трубку меньшего диаметра для окуляра. Главную трубу делаем сантиметров на десять короче фокусного расстояния объектива-90 см. Длина окулярной трубки около 40 см.

Линзу объектива укрепили в передней части трубы с помощью оправы, состоящей из 2 картонных колец с разрезом и 2 коротких бумажных трубок чуть меньшего диаметра, чем линза. С помощью этих трубок линза плотно зажимается между кольцами.

Чтобы было удобнее вести наблюдение, изготовили для телескопа штатив, сделали деревянный азимутальный штатив, на котором труба поворачивается вокруг двух осей: вертикальной и горизонтальной. Трубу на другом конце горизонтальной оси уравновесили грузом. Чтобы не приходилось поддерживать все время трубу рукой, сделали два стопорных винта: для вертикальной и горизонтальной осей.

С помощью сделанного нами рефрактора, который увеличивает в 33 раза, мы сможем наблюдать горы на Луне, кольца Сатурна, фазы Венеры, диск Юпитера и 4 его спутника, двойные звезды, некоторые звездные скопления - Плеяды, Ясли. Солнечные пятна будем наблюдать, проецируя изображение Солнца на экран - лист белой бумаги, защитив его от прямых лучей Солнца куском картона с отверстием посредине, надетым на трубу. Для того, чтобы рассчитать увеличение телескопа необходимо фокусное расстояние объектива разделить на фокусное расстояние окуляра.

Заключение

В заключении можно сделать следующие выводы:

1. изучив теоретический материал по теме, установили, что существует большое разнообразие телескопов, узнали историю их создания.

2. сконструировав модель телескопа, можно наблюдать тела Вселенной.

С древних времен наблюдают астрономы за процессами, происходящими во Вселенной. Их открытия связаны, как правило, с появлением новых изобретений и технологий. Использование телескопа привело к резкому скачку количества открытий и существенному расширению области знаний о космических объектах. Дальнейшее увеличение мощности астрономических приборов продолжало увеличивать и количество открытий, сделанных с их помощью. Современная аппаратура способна обнаруживать даже невидимые глазу космические излучения. Благодаря таким приборам в течение XX- XX1 века во Вселенной было сделано больше открытий, чем за всю историю человечества.

Список используемой литературы и Интернет ресурсов:

1. Амбарцумян В.А. Загадки Вселенной.- М.: Педагогика, 1987.

2. Всё обо всём. Энциклопедия. – М: Аванта-Плюс, 2000.

3. Гурштейн А.А. Извечные тайны неба.- Просвещение, 1984.

4. Жиль Спэрроу «Вселенная. Как наблюдать и изучать звездное небо» / Пер. с англ. – М.: БММ АО, 2002.

5. Космос: Энциклопедия для детей. Я познаю мир-М.: Издательство «AСТ», 2001.

6. Петров Б.Н. Орбиты сотрудничества.-М.: «Машиностроение», 1975.

7. Энциклопедический словарь юного астронома/ Сост. Н.П. Ерпылев. – М.: Педагогика, 1980.

8. www.netfereta.ru

9. www.astrotime.ru

10. www.sky-watcher.ru

11. www.binoculars.ru

12. astronews.prao. ru

13. astrooptics.pisem.net

14. http://vsego.wordpress.com/2009/08/25/galileos-telescope/

Приложения

Приложение №1


Рис.1 Телескоп Галилея


Рис.2 Телескоп Кеплера

Приложение №2


Телескоп Галилея.

Приложение №3

Рис 2.Телеском А. Гершеля. Рис 1.Телескоп Я.В. Брюса.

Приложение №4


Приложение №5

Линзовый телескоп Фраунгофера.

Приложение № 6

Л. Фуко создал рефлекторы с параболическими зеркалами.

Приложение №7.

Космический телеском Хаббл.

Приложение № 8

Инфракрасный телескоп в Аризоне

Приложение № 9

Антенна радиотелескопа в Аризоне

придуманы людьми несколько столетий назад, однако их точное происхождение пока остаётся предметом спора учёных. Достоверно известно, что в начале 17 века, а именно в 1608 году, голландский изготовитель очков Ханс Липперсхей (Hans Lipperhey) подал заявку на патент зрительной трубы, по сути представлявшей собой примитивный . Липперсхей обычно считается изобретателем телескопа, но есть вероятность, что он был не первым человеком, догадавшимся, что труба с вогнутой линзой на одном конце и выпуклой линзой на другом может увеличивать далёкие объекты.

Рефрактор Галилея (1609г)

Несмотря на то, что был изобретён другим человеком, Галилео Галилей (Galileo Galilei) усовершенствовал его, значительно увеличив его возможности. Помимо этого, Галилей первым понял, что можно использовать не только для зрительного приближения далёких объектов на Земле, но и для изучения неба.

На картинке изображён Галилей, демонстрирующий один из своих телескопов правителям Венеции в августе 1609г. В течение нескольких лет после этого Галилей сделал ряд крупных наблюдений, в том числе открыл четыре крупных спутника Юпитера.

Отражающий Ньютона (1668г)


Вместо стеклянных линз, преломляющих лучи света, Исаак Ньютон (Isaak Newton) использовал изогнутые зеркала, также способные собирать или рассеивать свет в зависимости от формы. Конструкция на основе зеркал позволяет увеличивать объекты намного сильнее, чем это возможно с линзами. Кроме того, использование зеркал решает проблему хроматической аберрации, явления, из-за которого разные части спектра преломляются по-разному, что вызывает искажение изображения.

Однако из-за плохого качества зеркала первый отражающий Ньютона довольно сильно искажал и затемнял изображение. Отражающие стали популярны среди астрономов более чем через сто лет, когда появились зеркала, лучше отшлифованные и поглощающие меньше света.

Гринвичская королевская обсерватория (Royal Greenwich Observatory) с 1675 года является основной астрономической организации Великобритании. Она была организована королём Карлом II для навигационных нужд и сопутствующих исследований и размещена в Гринвиче, предместье Лондона. В то время Англия была крупнейшей морской державой, которой были необходимы возможно более точные инструменты для определения положения корабля, навигации на море, картографии и т.д. Меридиан, проходящий через Гринвич, решили считать нулевым в Великобритании и её колониях, а с 1884 года от него исчисляется поясное время во всём мире.

Здесь, в Гринвичской обсерватории, в 1676г приступил к наблюдениям за звездами и Луной первый королевский астроном Джон Флемстид (John Flamsteed). К концу XIX века Гринвичская обсерватория имела 76см рефлектор, 71см, 66см и 33см рефракторы и множество вспомогательных инструментов. В 1953г часть обсерватории была перенесена на 70км к юго-западу, в позднесредневековый замок Хёрстмонсо.

Великий русский ученый М.В.Ломоносов не только изобрел и построил более десятка принципиально новых оптических приборов, но и создал русскую школу научной и прикладной оптики. Среди его изобретений был , позволяющий видеть ночью и названный Ломоносовым "ночезрительной трубой", и новый тип отражательного телескопа, который позднее был использован Гершелем в его знаменитом телескопе.

Под руководством Ломоносова в 1761г оптик Иван Иванович Беляев изготовил "небесную трубу" длиной больше 12м, с большими металлическими зеркалами и линзой-объективом. Эта зрительная труба, будучи неподвижной, позволяла наблюдать за двигающимися звёздами и планетами. Позднее, в 1764г, тот же Беляев по чертежам Ломоносова сделал три трубы, предназначенные для сумеречного времени. Эти трубы имели латунный корпус и по четыре стекла. До того "ночезрительные трубы" считались невозможными, и идея Ломоносова высмеивалась в научных кругах.


Первый собственный Джон Гершель (John Frederick William Herschel) построил в 1774г, взяв за основу идеи и расчёты Ломоносова (по другим данным, Гершель и Ломоносов независимо друг от друга придумали оптические системы с одинаковыми принципами работы). Гершель несколько раз улучшал конструкцию телескопа, построив в итоге 20-футовый (6м) . Это был довольно громоздкий инструмент, для обслуживания которого требовалось четыре рабочих. На протяжении нескольких десятилетий этот оставался крупнейшим в мире.

Гершель составил огромный каталог звёзд и туманностей, произвёл ценные наблюдения над планетами Солнечной системы, в частности, в 1781г подтвердил, что Уран является планетой, а не звездой, а также открыл два спутника Урана и два спутника Сатурна. Сын Гершеля также активно занимался небесной оптикой и провёл несколько лет в Южной Африке, где построил аналогичный для изучения неба Южного полушария.

Пулковская обсерватория (полное официальное название "Главная (Пулковская) астрономическая обсерватория Российской академии наук", сокращённое - ГАО РАН) в настоящее время является основной астрономической обсерваторией РАН. Она расположена в 19км к югу от Санкт-Петербурга на Пулковских высотах.

Торжественное открытие обсерватории, созданной по решению Петербургской Академии наук, состоялось 7 (19) августа 1839г. Созданием обсерватории руководил выдающийся учёный-астроном Василий Яковлевич Струве, который и стал её первым директором. В Пулковской обсерватории находился один из самых больших на тот момент в мире рефракторов (38см). Как и Гринвичская, Пулковская обсерватория предназначалась для развития навигации и для исследования неба, геодезических измерений и т.д. В 1847 году директор Гринвичской обсерватории написал, что ни один астроном не может считать себя астрономом, если он не познакомился с Пулковской обсерваторией. До 1884 года все географические карты России имели точкой отсчёта Пулковский меридиан. Обсерватория, практически разрушенная во время Великой Отечественной войны, была восстановлена и вновь открыта в 1954г.

На сегодняшний день научная деятельность обсерватории охватывает практически все приоритетные направления фундаментальных исследований современной астрономии: небесная механика и звёздная динамика, астрометрия (геометрические и кинематические параметры Вселенной), Солнце и солнечно-земные связи, физика и эволюция звезд, аппаратура и методика астрономических наблюдений.

Крымская астрофизическая обсерватория была основана в начале XX века возле поселка Симеиз на горе Кошка, как частная обсерватория любителя астрономии Николая Мальцова. В 1912 году она была передана в дар Пулковской обсерватории, после чего стала превращаться в полноценный научный центр, проводящий фотометрию звёзд и малых планет. В 1926 году в Крымской обсерватории был установлен метровый английский рефлектор, один из крупнейших рефракторов того времени. Крымская обсерватория, как и Пулковская, была практически полностью уничтожена во время Второй Мировой войны, позднее восстановлена и усовершенствована.

Сейчас Крымская обсерватория представляет собой развитый научно-исследовательский комплекс, в котором ведутся исследования по направлениям Физика звёзд и галактик, Физика Солнца, Радиоастрономия, Гамма-астрономия, Экспериментальная астрофизика, Оптическое производство. Сотрудниками Крымской обсерватории открыто около 1300 астероидов и 3 кометы. В настоящее время обсерватория находится под угрозой уничтожения из-за начавшейся в марте 2009 года противозаконной застройки ее территории коттеджным поселком с развлекательными комплексами.

200-дюймовый Хейла (1948г)


Джордж Эллери Хейл (George Ellery Hale), которого вполне можно назвать фанатом астрономии, в 1908г построил 60" на горе Вильсон, к северо-востоку от Лос-Анджелеса. в 1917г там же был установлен 100" Вильсона, который в течение 30 лет был самым большим телескопом в мире. Но Хейлу не хватало 100" телескопа, он хотел построить раза в два больше размером. В 1928г Хейл начал продвигать идею создания 200" телескопа. Он сумел заручиться финансовой поддержкой чикагского миллионера Чарлза Йеркса и на горе Паломар, к югу от Лос-Анджелеса, был построен 200" (5.1м) Хейла. Его строительство было завершено в 1948г, через 10 лет после смерти Хейла. Этот на протяжении 10 лет оставался крупнейшим в мире.

В телескопе Хейла использованы гигантские зеркала, изготовленные из специального нового стекла Pyrex, которое не меняет форму и размеры из-за колебаний температуры. Зеркало в нижней части трубы телескопа отражает свет звёзд, кабина наблюдателя находится наверху. Дополнительное зеркало может отражать свет через отверстие в центре основного зеркала.

Космический Хаббл (Hubble, 1990г)

Телескоп Хаббл был назван в честь известного астронома Эдвина Хаббла (Edwin Powell Hubble). Этот учёный оказал огромное влияние на проблему определения размеров нашей Вселенной и сформулировал закон: "галактики разлетаются со скоростью пропорциональной расстоянию между ними". Кстати, многие наблюдения Хаббл проводил на телескопах Хейла.

Запуск телескопа Хаббл, который состоялся в апреле 1990г, был настоящим прорывом для астрономии. Впервые был выведен за границу атмосферы и избавлен от искажений, возникающих из-за прохождения света через земную атмосферу. С помощью телескопа Хаббл более точно определены темпы расширения Вселенной, открыты многие новые звёзды и туманности, открыта тёмная материя, до того существовавшая только в расчётах отдельных физиков. Хаббл стал первым космическим объектом искусственного происхождения, который предназначен для проведения профилактики и текущего ремонта прямо в космосе. Пятый и пока последний ремонт Хаббла был проведён 11 мая 2009 года, следующий ремонт ориентировочно будет в 2014 году.

WMAP (Wilkinson Microwave Anisotropy Probe, 2001г)

WMAP представляет собой космический аппарат НАСА, предназначенный для изучения реликтового излучения, образовавшегося в результате Большого взрыва. Строго говоря, это не , а исследовательский спутник. С помощью WMAP была создана первая чёткая карта неба в микроволновом диапазоне, уточнён возраст Вселенной (13.7млрд лет), измерен состав Вселенной (по крайней мере ближайшего участка). Примерно 72% Вселенной занимает тёмная энергия, 23% ─ тёмная материя, и только 5% обычная материя.

14 мая 2009 года был запущен преемник аппарата WMAP, спутник Планк (Planck). Теоретически чувствительность приборов Планка в 10 раз выше, а угловое разрешение в 3 раза выше, чем у WMAP.

Телескоп Свифт (Swift, 2004г)

Орбитальный рентгеновский Свифт был разработан для изучения быстрых космических явлений, называемых гамма-всплесками, которые, предположительно, возникают при смерти массивной звезды или объединении двух плотных объектов, таких как нейтронные звёзды. До запуска Свифта, состоявшегося в 2004 году, астрономам требовалось около 6 часов, чтобы после фиксации гамма-всплеска регистрировать все его параметры. Свифт способен начать записывать все данные о гамма-потоке не более чем через минуту после фиксации всплеска. Свифт уже зафиксировал данные сотен гамма-всплесков, а в апреле 2009 года обнаружил поток гамма-излучения, который дошёл до нас от наиболее отдалённого космического объекта из всех зафиксированных до сих пор.

Благодарим ресурсы NewScientist , Astronomer.ru , Wikipedia за предоставленную информацию.

Трудно сказать, кто первый изобрел телескоп. Известно, что еще древние употребляли увеличительные стекла. Дошла до нас и легенда о том, что якобы Юлий Цезарь во время набега на Британию с берегов Галлии рассматривал в подзорную трубу туманную британскую землю. Роджер Бэкон, один из наиболее замечательных ученых и мыслителей XIII века, в одном из своих трактатов утверждал, что он изобрел такую комбинацию линз, с помощью которой отдаленные предметы при рассматривании их кажутся близкими.

Так ли это было в действительности - неизвестно. Бесспорно, однако, что в самом начале XVII века в Голландии почти одновременно об изобретении подзорной трубы заявили три оптика - Липперсгей, Мециус и Янсен. Рассказывают, что будто бы дети одного из оптиков, играя с линзами, случайно расположили две из них так, что далекая колокольня вдруг показалась близкой. Как бы там ни было, к концу 1608 года первые подзорные трубы были изготовлены и слухи об этих новых оптических инструментах быстро распространились по Европе.

В Падуе в это время уже пользовался широкой известностью Галилео Галилей, профессор местного университета, красноречивый оратор и страстный сторонник учения Коперника. Услышав о новом оптическом инструменте, Галилей решил собственноручно построить подзорную трубу. Сам он рассказывает об этом так:

«Месяцев десять тому назад стало известно, что некий фламандец построил перспективу, при помощи которой видимые предметы, далеко расположенные от глаз, становятся отчетливо различимы, как будто они находятся вблизи. Это и было причиной, по которой я обратился к изысканию оснований и средств для изобретения сходного инструмента. Вскоре после этого, опираясь на учение о преломлении, я постиг суть дела и сначала изготовил свинцовую трубу, на концах которой я поместил два оптических стекла, оба плоских с одной стороны, с другой стороны одно стекло выпукло-сферическое, другое вогнутое».

Этот первенец телескопической техники давал увеличение всего в три раза. Позже Галилею удалось построить более совершенный инструмент, увеличивающий в 30 раз. И тогда, как пишет Галилей, «оставив дела земные, я обратился к небесным».

7 января 1610 года навсегда останется памятной датой в истории человечества. Вечером этого дня Галилей впервые направил построенный им телескоп) на небо. Он увидел то, что предвидеть заранее было невозможно. Луна, испещренная горами и долинами, оказалась миром, сходным хотя бы по рельефу с Землей. Планета Юпитер предстала перед глазами изумленного Галилея крошечным диском, вокруг которого обращались четыре необычные звездочки - его спутники. Картина эта в миниатюре напоминала Солнечную систему по представлениям Коперника. При наблюдениях в телескоп планета Венера оказалась похожей на маленькую Луну. Она меняла свои фазы, что свидетельствовало о ее обращении вокруг Солнца. На самом Солнце (закрыв глаза темным стеклом) Галилей увидел черные пятна, опровергнув тем самым общепринятое учение Аристотеля о «неприкосновенной чистоте небес». Эти пятна смещались по отношению к краю Солнца, из чего Галилей сделал правильный вывод о вращении Солнца вокруг оси.

В темные прозрачные ночи в поле зрения галилеевского телескопа было видно множество звезд, недоступных невооруженному глазу. Некоторые туманные пятна на ночном небе оказались скопищами слабо светящихся звезд. Великим собранием скученно расположенных звездочек оказался и Млечный Путь - беловатая, слабо светящаяся полоса, опоясывающая все небо.

Несовершенство первого телескопа помешало Галилею рассмотреть кольцо Сатурна.


Рис. 11. Телескопы Галилея.

Вместо кольца он увидел по обе стороны Сатурна два каких-то странных придатка и в своем «Звездном вестнике» - дневнике наблюдений - Галилеи был вынужден записать, что «высочайшую планету» (то есть Сатурн) он «тройною наблюдал».

Открытия Галилея положили начало телескопической астрономии. Но его телескопы (рис. 11), утвердившие, окончательно новое коперниканское мировоззрение, были очень несовершенны. Уже при жизни Галилея им на смену пришли телескопы несколько иного типа. Изобретателем нового инструмента был уже знакомый нам Иоганн Кеплер. В 1611 году в трактате «Диоптрика» Кеплер дал описание телескопа, состоящего из двух двояковыпуклых линз. Сам Кеплер, будучи типичным астрономом-теоретиком, ограничился лишь описанием схемы нового телескопа, а первым, кто построил такой телескоп и употребил его для астрономических целей, был иезуит Шейнер, оппонент Галилея в их горячих спорах о природе солнечных пятен.

Рассмотрим оптические схемы и принцип действия галилеевского и кеплеровского телескопов . Линза А, обращенная к объекту наблюдения, называется объективом, а та линза В , к которой прикладывает свой глаз наблюдатель - окуляром. Если линза толще посередине, чем на краях, она называется собирательной или положительной, в противном случае - рассеивающей или отрицательной. Заметим, что в телескопе самого Галилея объективом служила плоско-выпуклая линза, а окуляром - плоско-вогнутая. По существу, галилеевский телескоп был прообразом современного театрального бинокля, в котором используются двояковыпуклые и двояковогнутые линзы. В телескопе Кеплера и объектив и окуляр были положительными двояковыпуклыми линзами.


Рис. 12. Галилеевский (вверху) и кемеровский телескопы (схема)

Представим себе простейшую двояковыпуклую линзу, сферические поверхности которой имеют одинаковую кривизну. Прямая, соединяющая центры этих поверхностей, называется оптической осью линзы. Если на такую линзу падают лучи, идущие параллельно оптической оси, они, преломляясь в линзе, собираются в точке оптической оси, называемой фокусом линзы. Расстояние от центра линзы до ее фокуса называют фокусным расстоянием. Нетрудно сообразить, что чем больше кривизна поверхностей собирательной линзы, тем меньше ее фокусное расстояние. В фокусе такой линзы всегда получается действительное изображение предмета.

Иначе ведут себя рассеивающие, отрицательные линзы. Падающий на них параллельно оптической оси пучок света они рассеивают и в фокусе такой линзы сходятся не сами лучи, а их продолжения. Потому рассеивающие линзы имеют, как говорят, мнимый фокус и дают мнимое изображение.

На рис. 12 показан ход лучей в галилеевском телескопе. Так как небесные светила, практически говоря, находятся «в бесконечности», то изображения их получаются в фокальной плоскости, то есть в плоскости, проходящей через фокус F и перпендикулярной к оптической оси. Между фокусом и объективом Галилей поместил рассеивающую линзу, которая давала мнимое, прямое и увеличенное изображение MN.

Главным недостатком галилеевского телескопа было очень малое поле зрения - так называют угловой поперечник кружка неба, видимого в телескоп. Из-за этого наводить телескоп на небесное светило и наблюдать его Галилею было очень трудно. По той же причине галилеевские телескопы после смерти их изобретателя в астрономии не употреблялись и их реликтом можно считать современные театральные бинокли.

В кеплеровском телескопе (см. рис. 12) изображение CD получается действительное, увеличенное и перевернутое. Последнее обстоятельство, неудобное при наблюдениях земных предметов, в астрономии несущественно - ведь в космосе нет какого-то абсолютного верха или низа, а потому небесные тела не могут быть повернутыми телескопом «вверх ногами».

Первое из двух главных преимуществ телескопа - это увеличение угла зрения, под которым мы видим небесные объекты. Как уже говорилось, человеческий глаз способен в отдельности различать две части предмета, если угловое расстояние между ними не меньше одной минуты дуги. Поэтому, например, на Луне невооруженный глаз различает лишь крупные детали, поперечник которых превышает 100 км. В благоприятных условиях, когда Солнце затянуто облачной дымкой, на его поверхности удается рассмотреть самые крупные из солнечных пятен. Никаких других подробностей невооруженный глаз на небесных телах не видит. Телескопы же увеличивают угол зрения в десятки и сотни раз.

Второе преимущество телескопа по сравнению с глазом заключается в том, что телескоп собирает гораздо больше света, чем зрачок человеческого глаза, имеющий даже в полной темноте диаметр не больше 8 мм. Очевидно, что количество света, собираемого телескопом, во столько раз больше того количества, которое собирает глаз, во сколько площадь объектива больше площади зрачка. Иначе говоря, это отношение равно отношению квадратов диаметров объектива и зрачка.

Собранный телескопом свет выходит из его окуляра концентрированным световым пучком. Наименьшее его сечение называется выходным зрачком . В сущности, выходной зрачок - это изображение объектива, создаваемое окуляром. Можно доказать, что увеличение телескопа (то есть увеличение угла зрения по сравнению с невооруженным глазом) равно отношению фокусного расстояния объектива к фокусному расстоянию окуляра. Казалось бы, увеличивая фокусное расстояние объектива и уменьшая фокусное расстояние окуляра, можно достичь любых увеличений. Теоретически это так, но практически все выглядит иначе. Во-первых, чем больше употребляемое в телескопе увеличение, тем меньше его поле зрения. Во-вторых, с ростом увеличения становятся все заметнее движения воздуха. Неоднородные воздушные струи размазывают, портят изображение и иногда то, что видно при малых увеличениях, пропадает для больших. Наконец, чем больше увеличение, тем бледнее, тусклее изображение небесного светила (например, Луны). Иначе говоря, с ростом увеличения хотя и видно больше подробностей на Луне, Солнце и планетах, но зато уменьшается поверхностная яркость их изображений. Есть и другие препятствия, мешающие применять очень большие увеличения (например, в тысячи и в десятки тысяч раз). Приходится искать некоторый оптимум и потому даже в современных телескопах, как правило, наибольшие увеличения не превосходят нескольких сотен раз.

При создании телескопов со времен Галилея придерживаются следующего правила: выходной зрачок телескопа не должен быть больше выходного зрачка наблюдателя. Легко сообразить, что в противном случае часть света, собранного объективом, будет напрасно потеряна. Очень важной величиной, характеризующей объектив телескопа, является его относительное отверстие, то есть отношение диаметра объектива телескопа к его фокусному расстоянию. Светосилой объектива называется квадрат относительного отверстия телескопа. Чем «светосильнее» телескоп, то есть чем больше светосила его объектива, тем более яркие изображения объектов он дает. Количество же света, собираемого телескопом, зависит лишь от диаметра его объектива (но не от светосилы!). Из-за явления, именуемого в оптике дифракцией, при наблюдениях в телескопы яркие звезды кажутся небольшими дисками, окруженными несколькими концентрическими радужными кольцами. Разумеется, к настоящим дискам звезд дифракционные диски никакого отношения не имеют.

В заключение сообщим читателю основные технические данные о первых галилеевских телескопах. Меньший из них имел диаметр объектива 4 см при фокусном расстоянии 50 см (его относительное отверстие было равно 4/50 = 0,08). Он увеличивал угол зрения всего в три раза. Второй, более совершенный телескоп, с помощью которого Галилей совершил свои великие открытия, имел объектив диаметром 4,5 см при фокусном расстоянии 125 см и давал увеличение в 34 раза. При наблюдениях в этот телескоп Галилей различал звезды до 8-й звездной величины, то есть в 6,25 раз более слабые, чем те, которые еле видит на ночном небе невооруженный глаз.

Таково было скромное начало развернувшегося позже «чемпионата» телескопов - длительной борьбы за усовершенствование этих главных астрономических инструментов.

<<< Назад
Вперед >>>

Человечество и по сей день продолжают создавать все более усовершенствованные модели. Оно позволяет рассмотреть каждую частичку всех небесных тел земли, находящихся за пределами земной жизни. Но все равно вопрос о том, кто — же всё-таки является создателем все равно остается актуальным и для современного общества.

По некоторым историческим справкам первый телескоп был изобретен ученым Иоанном Липперсгейским в 1608 году. Как подумают, что это человек, который занимался изучением астрономии, в действительности же он являлся обычным мастером по производству очков для коррекции зрения.

Изобретение было придумано совершенно случайно, а идея о создании возникла во время проведения общего досуга с детьми, которые с помощью луп рассматривали расположенные вдалеке строения домов. Сделав соответствующие выводы, он принялся, к изготовлению подзорной трубы. Данный прибор был предназначен для рассмотрения удаленных предметов в пространстве.

Далее он отвез для показа в Гаагу для получения соответствующего документа на подтверждения своего изобретения. В чем ему был сделан отказ. Но по истечению некоторого времени после смерти, данный документ был дан другому ученому Янсену, но позже было выяснено, что первый телескоп был изобретен именно голландским ученым Иоанном Липперсгейским.

Несмотря на это были и другие ученые, которые тоже пытались создавать подобного рода изделия. Сюда можно отнести такого великого ученого астронома как Галилео Галилей, именно его можно считать первым конструктором и создателем устройства большого размера, предназначенного для рассмотрения именно небесных тел. Оптическая сила линз обладала наиболее улучшенной системой наблюдения за неземными телами.

Чуть позже в 1656 году ученый Христиан Гюйенс разработал оборудование, у которого сила линз по сравнению с предыдущими произведениями обладала повышенной силой увеличительных стекол.

Исаак Ньютон, который тоже занимался подобного рода занятиями, предложил использовать зеркальные стекла совместно с оптическими линзами. Данная технология производства подзорных труб используется, и по сей день.

Новое поколение

Большое количество космических данных ученые получают, благодаря современной технике изготовления телескопов. Особенно востребованными модели является и Спидзер, работающий с использованием инфракрасного луча. И совсем недавно для этой же цели был придуман другой телескоп подобного действия - это знаменитый Вебба, который на данный момент занимает первое место среди своих вышеперечисленных предшественников.

Является относительно новым изобретением нашего времени, которым планируют воспользоваться в сентябре 2015 года. Его хотят отправить в космос при помощи космического корабля «Ариан-5».

С самого начала такая идея возникла в 2000 году, после чего запуск был отложен до 2007 года, но по ряду возникших проблем он был отложен, потому что телескоп Вебба имел некоторые недоработки в своей конструкции. Но и в 2007 г запуск так и не был произведен. Но как говорят ученые после того, как это осуществится, он будет находиться в космосе до 2020 года.

Телескоп Добсона, другое название монтировка Добсона, что подразумевает под собой подставку, предназначенную для установки оборудования по ньютоновской технологии. Название телескоп Добсона пришло к нам благодаря Джону Добсону появившемуся на свет в городе Пекин в сентябре 1915 года. Добсон еще в детстве был заинтересован вопросом строения вселенной.

Позже это стало любимым увлечением, переросшим в основную деятельность, в течение которой он начал ездить по городам по учебным учреждениям для чтения лекции по астрономии. Он так был восхищен своим изобретением, что даже выставлял на улицах города, и каждому мимо проходящему человеку предлагал с помощью него посмотреть в небо, после чего спрашивал их о том, что они там увидели и рассказать об этом своими словами.

Возможно, что спустя еще пару десятилетий на смену уже существующим моделям оптических приспособлений для изучения космоса, ученые астронавты придумают и другие более новые модели, имеющие в своем репертуаре более сложную конструкцию. Пока наслаждаемся открытиями, мечтаем о планетах и Марсе.