Кто сделал первый микроскоп. Кто изобрел микроскоп впервые

История микроскопа

Невозможно точно определить, кто изобрёл микроскоп. Считается, что голландский мастер очков Ханс Янссен и его сын Захария Янссен изобрели первый микроскоп в , но это было заявление самого Захария Янссена в середине XVII века . Дата, конечно, не точна, так как оказалось, что Захария родился около г. Другим претендентом на звание изобретателя микроскопа был Галилео Галилей. Он разработал «occhiolino» («оккиолино»), или составной микроскоп с выпуклой и вогнутой линзами в г. Галилей представил свой микроскоп публике в Академии деи Линчеи, основанной Федерико Чези в г. Изображение трёх пчел Франческо Стеллути было частью печати Папы Урбана VIII и считается первым опубликованным микроскопическим символом (см. «Stephen Jay Gould, The Lying stones of Marrakech, 2000»). Кристиан Гюйгенс , другой голландец, изобрел простую двулинзовую систему окуляров в конце 1600-х , которая ахроматически регулировалась и, следовательно, стала огромным шагом вперед в истории развития микроскопов. Окуляры Гюйгенса производятся и по сей день, но им не хватает широты поля обзора, а расположение окуляров неудобно для глаз по сравнению с современными широкообзорными окулярами. Антон Ван Левенгук ( -) считается первым, кто сумел привлечь к микроскопу внимание биологов, несмотря на то, что простые увеличительные линзы уже производились с 1500-х годов , а увеличительные свойства наполненных водой стеклянных сосудов упоминались ещё древними римлянами (Сенека). Изготовленные вручную, микроскопы Ван Левенгука представляли собой очень небольшие изделия с одной очень сильной линзой. Они были неудобны в использовании, однако позволяли очень детально рассматривать изображения лишь из-за того, что не перенимали недостатков составного микроскопа (несколько линз такого микроскопа удваивали дефекты изображения). Понадобилось около 150 лет развития оптики, чтобы составной микроскоп смог давать такое же качество изображения, как простые микроскопы Левенгука. Так что, хотя Антон Ван Левенгук был великим мастером микроскопа, он не был его изобретателем вопреки широко распространённому мнению.

Недавние достижения

Немецкие ученые Штефан Хелль в 2006 году Stefan Hell и Мариано Босси Mariano Bossi из Института биофизической химии разработали оптический микроскоп под названием Наноскоп, позволяющий наблюдать объекты размером около 10 нм и получать высококачественные трёхмерные изображения.

Применение

Устройство микроскопа

Оптическая система микроскопа состоит из основных элементов - объектива и окуляра. Они закреплены в подвижном тубусе, расположенном на металлическом основании, на котором имеется предметный столик.

В современном микроскопе практически всегда есть осветительная система (в частности, конденсор с ирисовой диафрагмой), макро- и микро- винты для настройки резкости, система управления положением конденсора.

В зависимости от назначения, в специализированных микроскопах могут быть использованы дополнительные устройства и системы.

Объективы

Иммерсия

Может быть сухой и масляной. а)сухая: показатель преломления равен 1; б)масляная: используется при работе с мелкими объектами, показатель преломления равен 1,33 Иммерсионное масло добывают из деревьев

Окуляры

Система освещения препарата

В первых микроскопах исследователи вынуждены были пользоваться естественными источниками света. Для улучшения освещённости стали использовать зеркало, а затем - и вогнутое зеркало, с помощью которого на препарат направляли лучи солнца или лампы. В современных микроскопах освещение регулируют с помощью конденсора.

Конденсор

Конденсор тёмного поля

Предметный столик

Предметный столик выполняет роль поверхности, на которой размещают микроскопический препарат. В разных конструкциях микроскопов столик может обеспечить координатное движение препарата в поле зрения объектива, по вертикали и горизонтали, или поворот препарата на заданный угол.

Вспомогательные приспособления

Предметные и покровные стёкла

Первые наблюдения в микроскоп производились непосредственно над каким-либо объектом (птичье перо, снежинки, кристаллы и т. п.). Для удобства наблюдения в проходящем свете, препарат стали размещать на стеклянной пластинке (предметное стекло). Иногда эту пластинку делали с лункой - для размещения объекта в капле воды. Позже препарат стали закреплять тонким покровным стеклом, что позволило создавать коллекции образцов, например, гистологические коллекции.

Классификация

Рабочие лабораторные микроскопы

Бинокулярные микроскопы

Бинокуляр Olympus_SZIII Stereo microscope

Исследование с помощью компьютеризованного бинокулярного микроскопа

Бинокулярный микроскоп (иначе - стереомикроскоп) позволяет получать 2 изображения объекта, рассматриваемые под небольшим углом, что обеспечивает объёмное восприятие. В современных бинокулярных микроскопах одновременно используются два окуляра (по одному на каждый глаз) и обычно 1 объектив. Общее увеличение (объектив*оккуляр) бинокуляров обычно меньше, чем у монокулярных микроскопов. Бинокулярные микроскопы хорошо работают как в проходящем, так и в отражённом свете..

Изобретение микроскопа началось с того, что однажды Галилей соорудил очень длинную подзорную трубу. Дело происходило днем. Закончив работу, он навел трубу на окно, чтобы на свету проверить чистоту линз. Прильнув к окуляру, Галилей оторопел: все поле зрения занимала какая-то серая искрящаяся масса. Труба немного покачнулась, и ученый увидел огромную голову с выпуклыми черными глазами по бокам. У чудовища было черное, с зеленым отливом туловище, шесть коленчатых ног… Да ведь это … муха! Отняв трубу от глаза, Галилей убедился: на подоконнике действительно сидела муха.

Так появился на свет микроскоп - состоящий из двух линз прибор для увеличения изображения маленьких предметов. Свое название - «микроскопиум» - он получил от члена «Академиа деи линчеи» («академии рысьеглазых»)

И. Фабера в 1625 г. Это было научное общество, которое, кроме прочего, одобряло и поддерживало применение оптических приборов в науке.

А сам Галилей в 1624 г. вставил в микроскоп более короткофокусные (более выпуклые) линзы, благодаря чему труба стала короче.

Роберт Гук и его достижения

Следующая страница в истории создании микроскопа связана с именем Роберта Гука. Это был очень одаренный человек и талантливый ученый. Наиболее значимыми достижениями Гука являются следующие:

  • изобретение спиральной пружины для регулировки хода часов; создание винтовых зубчатых колес;
  • определение скорости вращения Марса и Юпитера вокруг своей оси; изобретение оптического телеграфа;
  • создание прибора для определения пресности воды; создание термометра для измерения низких температур;
  • установление постоянства температур таяния льда и кипения воды; открытие закона деформации упругих тел; предположение о волновой природе света и природе земного тяготения.

По окончании Оксфордского университета в 1657 г. Гук стал помощником Роберта Бойля. Это была отличная школа у одного из крупнейших ученых того времени. В 1663 г. Гук уже работал секретарем и демонстратором опытов Английского Королевского общества (академии наук). Когда там стало известно о микроскопе, Гуку поручили провести наблюдения на этом приборе. Имевшийся в его распоряжении микроскоп мастера Дреббеля являл собой полуметровую позолоченную трубу, расположенную строго вертикально. Работать приходилось в неудобной позе - изогнувшись дугой.

Совершенствование микроскопа Гуком

Прежде всего Гук сделал трубу - тубус - наклонной. Чтобы не зависеть от солнечных дней, которых в Англии бывает немного, он установил перед прибором масляную лампу оригинальной конструкции. Однако солнце светило все же гораздо ярче. Поэтому пришла мысль лучи света от лампы усилить, сконцентрировать. Так появилось очередное изобретение Гука - большой стеклянный шар, наполненный водой, а за ним специальная линза. Такая оптическая система в сотни раз усиливала яркость освещения.

Находчивый Гук легко справлялся с любыми трудностями, появлявшимися на его пути. Например, когда понадобилось сделать очень маленькую линзу идеально круглой формы, он опустил острие иглы в расплавленное стекло и затем быстро вынул ее - на кончике иголки сверкала капелька. Гук подшлифовал ее немного - и линза была готова. А когда возникла необходимость улучшить качество изображения в микроскопе, то Гук между двумя традиционными линзами - объективом и окуляром - вставил третью, коллектив, и изображение стало более четким, при этом увеличилось поле зрения.

Когда микроскоп был готов, Гук принялся за наблюдения. Их результаты он описал в своей книге «Микрография», изданной в 1665 г. За 300 лет она переиздавалась десятки раз. Помимо описаний, она содержала замечательные иллюстрации - гравюры самого Гука.

Обнаружения и открытия, строение клетки

Особый интерес в ней представляет наблюдение № 17 - «О схематизме, или строении пробки и о клетках и порах некоторых других пустых тел». Гук так описывает срез обыкновенной пробки: «Вся она перфорированная и пористая, подобно сотам, но поры ее неправильной формы, и в этом отношении она напоминает соты… Далее, эти поры, или клетки, неглубоки, но состоят из множества ячеек, разделенных перегородками».

В этом наблюдении бросается в глаза слово «клетка». Так Гук назвал то, что и сейчас называется клетками, например, клетки растений. В те времена люди не имели об этом ни малейшего представления. Гук первым наблюдал их и дал название, оставшееся за ними навсегда. Это было открытие громадной важности.

Наблюдения Антони ван Левенгука

Вскоре после Гука начал вести свои наблюдения голландец Антони ван Левенгук. Это была интересная личность - он торговал тканями и зонтиками, но не получил никакого научного образования. Зато у него был пытливый ум, наблюдательность, настойчивость и добросовестность. Линзы, которые он сам шлифовал, увеличивали предмет в 200-300 раз, то есть в 60 раз лучше применявшихся тогда приборов. Все свои наблюдения он излагал в письмах, которые аккуратно посылал в Лондонское королевское общество. В одном из своих писем он сообщил об открытии мельчайших живых существ - анималькул, как Левенгук их назвал.

Оказалось, что анималькули присутствуют повсюду-в земле, растениях, теле животных. Это событие произвело революцию в науке - были открыты микроорганизмы.

В 1698 г. Антони ван Левенгук встретился с российским императором Петром I и продемонстрировал ему свой микроскоп и анималькул. Император был так заинтересован всем, что он увидел и что объяснил ему голландский ученый, что закупил для России микроскопы голландских мастеров. Их можно увидеть в Кунсткамере в Петербурге.

Левенгуку принадлежит еще одно важное открытие. Нагревая воду до кипения, он обратил внимание, что практически все анималькулы погибают. Значит, таким способом можно избавляться от болезнетворных микроорганизмов в воде, которую пьют люди.

Камера-обскура

Заканчивая разговор об оптических инструментах, необходимо упомянуть камеру-обскуру, изобретенную в 1420 г. итальянским инженером Дж. Фонтаной. Камера-обскура является простейшим оптическим приспособлением, позволяющим получать на экране изображения предметов. Это темный ящик с небольшим отверстием в одной из стенок, перед которым помещают рассматриваемый объект. Исходящие от него лучи света проходят через отверстие и создают на противоположной стене ящика (экране) перевернутое изображение объекта.

В 1558 г. итальянец Дж. Порта приспособил камеру-обскуру для исполнения рисунков. Ему же принадлежит идея применения камеры-обскуры для проецирования рисунков, помещенных у отверстия камеры и сильно освещаемых свечами или солнцем.

Основной частью микроскопа являются оптические линзы. Искусство шлифовки оптических линз и первые попытки их применения уходят в глубокую древность.

В XVI-XVII вв. это искусство достигло значительного развития, особенно в Голландии и Италии. Потребность в очках вызвала и соответствующую промышленность. Очки практически могли появиться только тогда, когда научились шлифовать стекла с большим фокусным расстоянием (конец XIII века, предположительно 1285-1289 гг.). Вероятно, они были сконструированы под влиянием идей Роджера Бэкона (Roger Bacon, ок. 1214-1294) флорентийцем Сальвино дельи-Армати (Salvino d’Amarto degli Armati) или его соотечественником Александром делля Спина (Alessandro della Spina), хотя сведения об этом не считаются достаточно достоверными. Так или иначе, в первой половине XIV в. очки были уже распространены и широко употреблялись в Европе.

Но еще два столетия понадобилось для того, чтобы идея микроскопа, потенциально существовавшая, вероятно, со времени Бэкона, была реализована и оптические линзы начали применяться как прибор, дающий возможность видеть «невидимое». Лишь к концу XVI в. техника изготовления оптических линз и практика их использования дают условия для изготовления микроскопа, и лишь в XVII в. увеличительные стекла находят применение для исследования природы.

На рубеже XVI и XVII вв. почти одновременно были изобретены два прибора, оказавшие неоценимые услуги в науке: телескоп и микроскоп. История изобретения микроскопа выяснена до сих пор недостаточно и часто подменяется непроверенными сведениями.

До недавнего времени большинство историков считало изобретателями микроскопа голландских оптических мастеров Ганса и Захариаса Янсенов (Hans, Zacharias Janssen), занимавшихся в Миддельбурге изготовлением очков. Однако С. Л. Соболь (1941-1943, 1949) на основании критического анализа существующей исторической документации оспаривает это положение. По мнению С. Л. Соболя, изобретению микроскопа предшествовало изобретение телескопа. Первый прототип микроскопа, считает Соболь, был сконструирован Галилеем в 1609-1610 гг. путем удлинения подзорной трубы (изобретенной им несколько ранее) и увеличения расстояния между вогнутым окуляром и выпуклым объективом. Галилей, очевидно, заметил, что при этом зрительная труба увеличивает близко находящиеся мелкие объекты. Добиваясь в дальнейшем получения более короткофокусных линз, Галилей усовершенствовал первоначальную конструкцию микроскопа, уменьшив длину трубы.

Однако последующая конструкция микроскопа пошла по другому пути, на основе оптического инструмента, предложенного Кеплером, где были применены окуляр и объектив в виде одиночных выпуклых линз, что давало обратное (перевернутое) изображение. Идея такого инструмента была выдвинута Кеплером еще в 1611 г., а в 1613-1617 гг. впервые был сконструирован подобный телескоп.

Поэтому, считает С. Л. Соболь, изобретение микроскопа нужно отнести к 1617-1619 гг. Во всяком случае к 1619 г. относится один из первых микроскопов, о которых сохранились сведения, - микроскоп Дреббеля. Корнелиус Дреббель (Cornelius Drebbel, 1572-1634), крестьянин по происхождению, приобрел славу опытами, где незаурядное знание физики перемешивалось с магией, а наука - с шарлатанством. Прожив богатую приключениями жизнь, Дреббель стал астрологом при дворе английского короля Якова I. Дреббель занимался конструкцией ряда физических приборов, в том числе и микроскопов. Изготовленные Дреббелем микроскопы, изобретателем которых он себя выдавал, распространились в Европе, проникнув из Англии во Францию и Италию. Изображена реконструкция микроскопа Дреббеля, выполненная по указанию С. Л. Соболя на основании описания, относящегося к 1619 г. Труба этого микроскопа около полуметра длиной, при диаметре около 5 см; она была сделана из позолоченной меди и поддерживалась тремя медными дельфинами на круглой подставке из черного дерева. На подставку, пишет современник, «клались различные вещи, которые мы рассматривали сверху в увеличенном почти до невероятности виде».

Первые четыре десятилетия конструкция микроскопа прогрессировала медленно, однако вместо объективов типа очковых линз постепенно начинают применять более короткофокусные линзы. Кирхер (Atanasius Kircher, 1601-1680), немецкий естествоиспытатель, издал в Риме сочинение под названием «Великое искусство света и тени» (Ars magna lucis et umbrae), где дал перечень существовавших в то время микроскопов (С. Л. Соболь, 1949).

В начале XVII века к микроскопу относились преимущественно как к любопытной игрушке, с помощью которой, забавы ради, можно рассматривать мелких насекомых и вообще различные мелкие предметы, но который мало кто считал серьезным научным инструментом. «Микроскопы» того времени представляли собой трубку с двумя стеклами по концам; их называли «блошиными» или «комариными стеклами» (vitrium pulicarium), в чем отражалось характерное для этого периода легкомысленное отношение к инструменту, служившему обычно для изумления наблюдателей величиной изображения. Гевелиус (Jan Heveliusz, 1611--1687), выдающийся польский астроном, в своей «Селенографии», изданной в Гданьске, так описывает подобный «микроскоп»: «Микроскоп, который обычно называют комариным стеклом, показывает маленькие тельца и едва ли заметных зверьков в величину верблюда или слона, так что это вызывает большое удивление и забаву. Он состоит из двух стекол и трубки, около дюйма длиной, перед которой располагается объект. Одно стекло, расположенное около глаза, выпуклое, вышлифованное из сегмента небольшого шара, не более двух дюймов в диаметре; другое стекло, лежащее у основания, где располагаются рассматриваемые предметы, - простое плоское стекло, назначение которого пропускать свет». Таким образом, служившие для забавы «микроскопы» представляли собою чаще всего простые лупы, или, как их позже стали называть, «простые микроскопы». Но наряду с этим Гевелиус описывает и «сложный микроскоп» из двух выпуклых линз типа микроскопа Дреббеля, в отношении которого он замечает, что «при этом способе предстоящие мельчайшие объекты, которые ускользают от глаз, явятся более ясными и отчетливыми, чем в первом микроскопе» (т. е. в «блошином стекле»).

Применение микроскопа с научными целями впервые было начато по инициативе Федерико Чези (Federico Cesi, 1585-1630) в римской Academia dei Lincei (к ее составу принадлежал и Галилей). По-видимому, итальянский натуралист Стеллути (Francesco Stelluti, 1577-1646) одним из первых применил микроскоп для изучения биологического объекта - пчелы.

Первые микроскопы никаких осветительных приспособлений и приспособлений для изменения фокуса не имели. Объекты рассматривались в них при дневном освещении в падающем свете. Естественно, что эти микроскопы давали весьма плохое и искаженное изображение.

Первое усовершенствование микроскопа и пропаганда этого прибора в качестве научного инструмента связаны с именем выдающегося английского физика Роберта Гука (Robert Hooke, 1635-1703), впервые обнаружившего при помощи своего микроскопа «клетки» у растений. Таким образом, возникновение понятия о клетке почти совпадает с периодом появления микроскопа и зарождения микроскопии.

Гук был знаком с микроскопом, привезенным Дреббелем в 1619 г. в Англию. Будучи по складу ума изобретателем, Гук заинтересовался новым прибором и поставил перед собой цель реконструировать микроскоп Дреббеля. Гуку удалось создать инструмент, обладавший рядом преимуществ по сравнению с существовавшими микроскопами. В «Микрографии» (1665) Гук дал подробное описание и изображение своего микроскопа. Тубус имел около 8 см в диаметре и около 18 см длины и был снабжен приспособлениями для некоторого изменения расстояния объектива от объекта и изменения наклона трубы. Существенным изменением оптической части микроскопа было введение третьей двояковыпуклой линзы, помещенной между окуляром и объективом; уменьшая изображение, эта линза делала его более отчетливым и увеличивала поле зрения. Объект располагался на небольшом круглом диске или его нанизывали на штифт, расположенный на диске сбоку. К микроскопу был приспособлен осветительный аппарат, состоявший из источника света, наполненного водой стеклянного шара и двояковыпуклой линзы, концентрировавшей свет на объект. Таким образом, и в микроскопе Гука объект рассматривался в падающем свете. При помощи этого микроскопа Гук сделал поразительные по тонкости наблюдения, описание которых в его «Микрографии» сопровождается прекрасными иллюстрациями, показывающими тонкость наблюдений этого первого микроскописта.

Одновременно с Гуком над усовершенствованием микроскопа работал в Риме Эвстахий Дивини (Divini, 1667), внесший существенное улучшение введением окуляра, составленного из двух плосковыпуклых линз, выпуклые поверхности которых были направлены друг к другу. Это создавало плоское поле зрения и более равномерное увеличение различных частей рассматриваемого предмета. Линзы Дивини увеличивали от 41 до 143 раз. Конструкцией микроскопов занимались в Италии еще несколько мастеров, способствовавших распространению нового прибора.

В 1672 г. немецкий оптик Штурм (Sturm) ввел в микроскоп новое улучшение: вместо объектива с одной линзой, он изготовил объективы из двух линз: плосковыпуклой и двояковыпуклой или из двух двояковыпуклых линз с различной кривизной («дублеты»). Таким образом, в практику вводятся микроскопы с комбинацией нескольких линз в окуляре и в объективе. Венский инженер Гриндель фон Ах (Griendel von Ach) сконструировал в 1685 г. микроскоп с 6 линзами. Общий вид этого микроскопа очень схож с описанием микроскопа Дреббеля.

Новое изменение в конструкцию микроскопа ввел (около 1665 г.) итальянец Камяани (Giuseppe Campani), микроскоп которого имел в предметном столике отверстие и зажимы для стеклянных или слюдяных пластинок с объектами. Его микроскоп состоял из двух линз. Ту же конструкцию Тортона (Carl Anton Tortona) применил для своего трехлинзового микроскопа (около 1685 г.). Микроскоп Тортоны состоял из трубки, в верхний конец которой был вставлен окуляр, далее располагалась собирательная линза, а внизу был укреплен объектив. Все линзы представляли собой двояковыпуклые чечевицы. На трубку навинчивалось кольцо, соединенное с объектодержателем, состоящим из двух стекол, между которыми помещался предмет, рассматриваемый в проходящем свете.

Изображена модель микроскопа Бонануса (Bonannus) - одна из наиболее сложных моделей конца XVII в. За основу взят микроскоп Тортоны, дополненный рядом приспособлений. Микроскоп Бонануса сконструирован так, чтобы, прочно фиксировав положение инструмента, освободить руки наблюдателя (микроскопы Тортоны, как и первые микроскопы Бонануса, надо было держать в руках) и сконцентрировать на объекте максимум света. Микроскоп состоит из тубуса (АВ), несущего линзы. Винт Z зажимает вертикальную подачу тубуса, укрепленного в держателе У. Приспособление RTG, деталь которого изображена отдельно, позволяет передвигать тубус вперед и назад, т. е. менять фокусное расстояние. Это первая попытка механического приспособления для установки фокуса при неподвижной фиксации объекта. Объект помещается в особый держатель CD, зажатый между двумя стеклами, вделанными в деревянные пластинки I. Освещается объект лампой Q, свет которой концентрируется конденсором О; конденсор может двигаться по горизонтальной и вертикальной плоскости. В микроскопе Бонануса есть уже зачатки основных механических частей и приспособлений позднейшего микроскопа: механическая подача тубуса, осветитель и предметный столик. Объект рассматривался в проходящем свете; Бонанус снова ввел для этой цели искусственное освещение.

Оптические части его микроскопа состояли из трех или четырех линз, дававших увеличение в 200-300 раз.

Несмотря на все эти нововведения, микроскоп оставался очень несовершенным инструментом, так как при употреблении комбинированных систем линз резко ощущались сферическая и хроматическая аберрации, сильно искажавшие изображения при сколько-нибудь большом увеличении. В этом приходится искать причину того, что некоторые выдающиеся исследователи XVII и XVIII вв. не применяли сложного микроскопа.

Сваммердам - замечательный зоотом XVII в., прославившийся искусством препаровки мелких объектов, особенно насекомых, употреблял лишь простую лупу. Он сконструировал прибор, где можно было быстро сменять лупы разных увеличений, и при помощи этого прибора последовательно переходил от слабых линз к сильным, не прибегая к их комбинированию.

Лёвенгук, второй замечательный голландский микроскопист, также не пользовался настоящим сложным микроскопом. «Микроскопы» Лёвенгука были в действительности лупами. Изображен один из подобных инструментов Лёвенгука. Он представлял собой две серебряные пластинки, имеющие отверстие, в которое вделана линза; позади помещается держатель для объекта. Наблюдатель брал «микроскоп» за особую ручку и рассматривал объекты в проходящем свете. Для различных объектов Лёвенгуку приходилось делать разные держатели, и он делал с этой целью новые инструменты. По собственному заявлению, Лёвенгук обладал 200 «микроскопами», дававшими увеличение от 40 до 270 раз. Только исключительное мастерство в шлифовке стекол позволило Левенгуку изготовлять линзы с таким поразительным увеличением (ведь увеличение в 270 раз достигалось одной линзой), а зоркость наблюдателя позволила Лёвенгуку сделать поразительные открытия.

Таковы инструменты, с которыми работали и сделали выдающиеся открытия микроскописты XVII в. Достойно удивления, как с такими примитивными приборами можно было описывать те порой поразительные по точности детали, которые мы находим в их работах. Очевидно, настойчивость, перспектива открытия новых, никому не известных фактов, помогали преодолевать трудности, которые ставил перед наблюдателем микроскоп в ранний период своего возникновения.

К сказанному нужно добавить, что изучаемые объекты рассматривались без всякой обработки, прямо в воздухе, помещенными на стекло (иногда между двумя стеклами) или наколотыми на иголку. Резкая разница между показателями преломления воздуха и объекта создавала дополнительные трудности для изучения. Наконец, несмотря на исключительное мастерство в шлифовке линз, стекла того времени давали резкую хроматическую аберрацию, особенно чувствительную в сложных микроскопах, где недостатки одной системы стекол усиливались второй системой - окуляром.

Едва ли кто-либо из современных опытных микроскопистов, избалованных новейшими ахроматическими микроскопами, мог бы при помощи инструментов, которыми пользовались в XVII в., рассмотреть то, что видели выдающиеся микроскописты того времени. Простой современный школьный микроскоп представляет собой шедевр, с которым эти старинные микроскопы нельзя сравнивать. И тем не менее с их помощью открывали замечательные факты. Одним из них явилось открытие в XVII в. клеточного строения растений.

Такой прибор, как микроскоп, и раньше, и в современном мире пользуется огромной популярностью. Каждый из нас еще со школьных времен хорошо помнит, что это оптическое устройство, которое увеличивает объекты в сотни, а то и в тысячи раз. На уроках биологии мы смотрели через окуляр на клетки луковой пленки и удивлялись хитроумности и сложности такого прибора. Сегодня же попробуем разобраться в том, кто изобрел микроскоп, так как точного ответа на этот вопрос еще нет.

Как появился первый микроскоп

Оптические свойства изогнутых поверхностей были обнаружены еще в 300-х годах до нашей эры. Евклид в своих трактатах рассказал о проведенных исследованиях, объяснив преломление и в результате чего происходило зрительное увеличение предметов. Птолемей в работе "Оптика" описал характеристики воспламеняющих стекол. Но в то время все эти свойства не нашли применения. И только через несколько веков их использовали на практике.

Ханс Янсен вместе со своим сыном Захарием соорудили в 1550 году самую первую модель устройства: в одну трубку поместили две линзы, получив таким образом пятидесятикратное увеличение. Это и есть один из вариантов ответа на вопрос о том, кто изобрел примитивный микроскоп. А Галилей в 1610 году обнаружил, что, раздвигая им изобретенную, можно также увеличить небольшие предметы. Именно этот ученый и стал считаться тем, кто изобрел первый микроскоп, состоящий из отрицательной и положительной линз. После этой даты исследования в рассматриваемой области начали стремительно развиваться.

17 век - время великих открытий

В указанном столетии произошла самая настоящая научно-техническая революция, которая и стала фундаментом большинства современных наук: биологии, медицины, физики, математики. Были сделаны грандиозные открытия и великие изобретения. Как раз в то время микроскопы заметно усовершенствовались и стали важной частью каждого исследователя. Но так никто точно и не сказал, кто изобрел микроскоп, кого считать его создателем. По одному из мнений, создателем рассматриваемого прибора является А. Кирхер, в 1646 году описавший устройство под названием "блошиное стекло". Из чего оно состояло?

Это была лупа, закрепленная в основе из меди, которая держала предметный столик. В самом низу размещалось отражавшее свет и освещающее предмет. При помощи винта можно было перемещать лупу и настраивать изображение. Такое устройство стало прообразом современного светового микроскопа.

Система окуляров К. Гюйгенса и дальнейшее развитие устройства

Создание данной системы стало большим шагом в развитии микроскопов. Удалось получить бесцветное изображение, что позволило увеличить четкость изучаемых предметов. Ученый К. Дребель в начале 17 века сделал сложный микроскоп, состоящий из двух линз: первая обращена к предмету, вторая - к глазу исследователя.

При этом в первой использовались стекла двояковыпуклые, что давало перевернутое увеличенное изображение. в 1661 году усовершенствовал устройство, добавив еще одну линзу. Такой тип и стал самым популярным для большинства моделей микроскопов до средины 18 века. Еще один изобретатель - Антоний Ван Левенгук - также считается тем, кто изобрел микроскоп. Причина - его огромный вклад в развитие рассматриваемого прибора. В свободное от работы время он шлифовал линзы. Несмотря на то, что они были относительно маленькими, увеличение давали поразительное - в 350-400 раз.

Влияние микроскопа на микробиологию

Используя свои линзы, Левенгук создал собственное устройство и стал изучать различные объекты. Так вот, всего лишь через одну небольшого размера сферическую линзу он увидел в капле грязной воды множество живых существ мельчайшего размера. Был сделан вывод о том, что существует какая-то микроскопическая жизнь. Левенгук занялся ее изучением, что положило начало еще одной новой науке - микробиологии. В 1861 году ученый представил свое открытие Лондонскому королевскому обществу и получил звание изобретателя микроскопов и величайшего исследователя.

Получается так, что и он - тот, кто изобрел микроскоп. К настоящему времени описываемые приборы претерпели большие изменения. Появились модели, которые используют не свет для получения изображения, а потоки электронов, а иногда и лазерное излучение. Для этого применяют и компьютерные вычисления. Микроскоп стал одним из важнейших приборов в исследованиях по естественным наукам, он применяется и в химии, и в биологии, и в физике.

Электронный микроскоп

Если задаться вопросом о том, кто изобрел электронный микроскоп, то правильный ответ будет таким: физики из Шеффилдского университета. В основе старого устройства - метод трансмиссионной микроскопии, позволяющий получать разрешение изображений, ограниченное только длиной волны электрона. В конструкции просвечивающего прибора исследователи отказались от магнитных линз, так как именно они в основном и понижали разрешение.

Сквозь образец проходили дифракции волн, и путем компьютерного анализа получалось изображение. Это электронная птихография. При помощи небольшой модификации конструкции и несколько другого способа формирования конечного изображения ученым удалось в пять раз увеличить разрешение на уже существующем приборе.

Принцип действия электронного микроскопа

Сейчас уже не столь важно, кто изобрел впервые микроскоп. Ныне правят бал совсем другие, намного более мощные устройства, в том числе электронные. По принципу работы они похожи на световые. Только в них вместо через образец проходят электроны, а магниты используются вместо стеклянных линз.

Но оно размывается из-за аберраций, присущих магнитным линзам. Ученые нашли способ восстановления изображений. Это позволило убрать из схемы магниты и, соответственно, искажения.

Кто изобрел световой микроскоп? Немного истории

Что такое оптический микроскоп? Это лабораторная система, предназначенная для получения изображений малых объектов в увеличенном виде с целью их изучения, рассмотрения и практического применения. Мы начали нашу статью с истории развития микроскопа, сейчас же посмотрим на этот вопрос с другой стороны. В настоящее время такое устройство необходимо не только врачам и биологам.

Без него невозможно представить высокие современные технологии с нынешними требованиями к контролю сборки и качеству продукции.

Расскажем об одном достижении. В 2006 году немецкие ученые Мариано Босси и Штефан Хелль разработали наноскоп - сверхмощный оптический микроскоп, который позволяет исследовать объекты супермаленького размера в 10 Нм, а также получать 3D-изображения высочайшего качества.

Кратко о возможностях современных устройств

Мы с вами немного разобрались с вопросом о том, кто изобрел первый микроскоп. А теперь буквально пару слов о возможностях современных приборов. В 2010 году из израильского университета Йешивы пришло известие о том, что ученые смогли проследить, как внутри клетки перемещаются отдельные молекулы. Тогда же немецкие исследователи запечатлели молекулярные превращения в ходе химических реакций. А еще на год раньше в Харьковском ФТИ получили четкое изображение отдельного атома.

Также нужно отметить то, что в настоящее время световые микроскопы догоняют электронные по своим возможностям.

С древних времен человек хотел увидеть вещи, куда более мелкие, чем может воспринять невооруженный глаз. Кто первый начал использовать линзы, сейчас сказать невозможно, но достоверно известно, например, что наши предки более 2 тысяч лет назад знали о том, что стекло способно преломлять свет.

Во втором веке до нашей эры Клавдий Птолемей описывал, как “изгибается” палка, которую окунули в воду, и даже очень точно подсчитал постоянную рефракции. Еще ранее в Китае делали устройства из линз и наполненной водой трубки, чтобы “видеть невидимое”.

В 1267 году Роджер Бэкон описал принципы работы линз и общую идею телескопа и микроскопа, но только в конце XVI века Захарий Янсен и его отец Ганс, производители очков из Голландии, начали экспериментировать с линзами. Они поместили несколько линз в трубку и обнаружили, что предметы, обозреваемые через нее, выглядят значительно больше, чем под простым увеличительным стеклом.

Но этот их “микроскоп” был скорее диковинкой, нежели научным прибором. Сохранилось описание инструмента, который отец и сын сделали для королевской семьи. Он состоял из трех скользящих трубок общей длиной в 45 с небольшим сантиметров и диаметром в 5 сантиметров. В закрытом виде он увеличивал в 3 раза, в полностью раскрытом — в 9 раз, правда, изображение получалось немного размытым.

В 1609 году Галилео Галилей создал составной микроскоп с выпуклыми и вогнутыми линзами и в 1612 представил этот “оккиолино” (“маленький глаз”) польскому королю Сигизмунду III. Через несколько лет, в 1619-м, нидерландский изобретатель Корнелиус Дреббель продемонстрировал в Лондоне свою версию микроскопа, с двумя выпуклыми линзами. Но само слово “микроскоп” появилось только в 1625 году, когда, по аналогии с “телескопом”, его придумал немецкий ботаник из Бамберга, Иоханн (Джованни) Фабер.

От Левенгука до Аббе

В 1665 году английский естествоиспытатель Роберт Гук усовершенствовал увеличительный инструмент и открыл элементарные единицы строения, клетки, изучая кору пробкового дуба. Через 10 лет после этого голландский ученый Антони ван Левенгук сумел получить еще более совершенные линзы. Его микроскоп увеличивал предметы в 270 раз, при том, что остальные подобные приборы едва достигали 50-кратного увеличения.

Благодаря своим качественно отшлифованным и отполированным линзам, Ленвенгук сделал множество открытий — он первым увидел и описал бактерии, дрожжевые клетки, наблюдал движение кровяных телец в капиллярах. Всего ученый изготовил как минимум 25 разных микроскопов, из которых до нашего времени дошли лишь девять. Есть предположения, что некоторые из утерянных приборов имели даже 500-кратное увеличение.

Несмотря на все достижения в этой области, в последующие 200 лет микроскопы практически не изменились. И только в 1850-х немецкий инженер Карл Цейс начал совершенствовать линзы для микроскопов, которые производила его компания. В 1880-х он нанял Отто Шотта, специалиста по оптическим стеклам. Его исследования позволили значительно улучшить качество увеличительных приборов.

Еще один сотрудник Карла Цейса, физик-оптик Эрнст Аббе, усовершенствовал сам процесс производства оптических инструментов. Прежде все работы с ними выполнялись методом проб и ошибок; Аббе же создал для них теоретический фундамент, научно обоснованные методы изготовления.

С развитием технологии и появился микроскоп, который мы знаем сейчас. Однако теперь оптические микроскопы, способные фокусироваться на объектах, размер которых превышает или равен длине волны света, уже не могли удовлетворить ученых.

Современные электронные микроскопы

В 1931 году немецкий физик Эрнст Руска начал работу над созданием первого электронного микроскопа (просвечивающий (трансмиссионный) электронный микроскоп). В 1986 году за это изобретение он получит Нобелевскую премию.

В 1936-м немецкий же ученый Эрвин Вильгель Мюллер изобрел электронный проектор (автоэлектронный микроскоп). Прибор позволял увеличить изображение твердого тела в миллионы раз. Через 15 лет Мюллер же сделал еще один прорыв в этой области — автоионный микроскоп, который дал физику возможность впервые в истории человечества увидеть атомы.

Параллельно велись и другие работы. В 1953 году голландец Фриц Цернике, профессор теоретической физики, получил Нобелевскую премию за создание фазово-контрастной микроскопии. В 67-м Эрвин Мюллер усовершенствовал свой автоионный микроскоп, добавив к нему время-пролетный масс-спектрометр, создав первый “атомный зонд”. Это устройство позволяет не только идентифицировать отдельно взятый атом, но и определять массу и кратность заряда иона.

В 1981-м Герд Бинниг и Генрих Рорер из Германии создали сканирующий (растровый) туннельный микроскоп; через пять лет после этого Бинниг и его коллеги изобрели сканирующий атомно-силовой микроскоп. В отличие от предыдущей разработки, АСМ позволяет исследовать и проводящие, и непроводящие поверхности и фактически манипулировать атомами. В том же году Бинниг и Рорер получили Нобелевскую премию за СТМ.

В 1988 году трое ученых из Великобритании снабдили “атомный зонд” Мюллера позиционно-чувствительным детектором, что дало возможность определять положение атомов в трех измерениях.

В 1988-м японский инженер Кинго Итая изобрел электрохимический сканирующий туннельный микроскоп, а три года спустя был предложен кельвин-зондовый силовой микроскоп — бесконтактная версия атомно-силового микроскопа.

Вернуться к статьям

Изобретение и усовершенствование микроскопа

Развитие оптики позволило сконструировать в XVII в. микроскоп - прибор, оказавший поистине революционное действие на развитие биологии. Микроскопия открыла для исследователей мир простейших и бактерий. Изучение доселе недоступных деталей строения животных, растений и грибов показало, что в основе всего живого лежит универсальное крошечное образование - клетка.

К микроскопам в современном понимании относится лишь "сложный" микроскоп - прибор, состоящий из двух систем линз: окуляра и объектива. Но на заре микроскопии широко использовались и "простые" микроскопы, которые сегодня мы назвали бы лупой.
Один из первых сложных микроскопов был сконструирован в 1609-1610 гг. Галилеем как видоизмененный телескоп. Современный сложный микроскоп ведет свое происхождение от английских или голландских двухлинзовых микроскопов начала XVII в. Объекты в них рассматривались при дневном освещении в падающем свете; приспособления для наведения на фокус отсутствовали.


Один из первых микроскопов привычного нам вида

Первое крупное усовершенствование сложного микроскопа связано с именем английского физика Роберта Гука (1635-1703). Улучшения затронули как оптику, так и особенности механической конструкции. Принципиально новой явилась и придуманная ученым система искусственного освещения объекта.

Развитие микроскопии в XVIII столетии шло главным образом по пути улучшения конструкции механических частей. Тубус, несущий линзы, укреплялся теперь подвижно на особой колонке, его передвижение обеспечивалось специальным винтом с нарезкой.

История первого микроскопа или с чего все начиналось

Усовершенствования конструкции позволяли теперь исследовать как прозрачные объекты в проходящем свете, так и непрозрачные в падающем. С 1715 г. у микроскопа появляется привычное нам зеркало.


Микроскоп адаптированный для фотоснимков в чёрной комнате

Во всех сложных микроскопах XVII - XVIII вв. при увеличениях выше 120 - 150 раз (сферическая и хроматическая аберрации) сильно искажали изображение. Поэтому становится понятным то предпочтение, которое микроскописты того времени, начиная с

А. Левенгука, отдавали простому однолинзовому микроскопу. Проблема хроматической аберрации была решена в конце XVIII - начале XIX в. за счет применения комбинации линз из разных сортов стекла. Первый ахроматический микроскоп был сконструирован в 1784 г. петербургским академиком Ф. Эпинусом, но в силу ряда причин широкого распространения он не получил. Дальнейшие шаги на пути ахроматизации микроскопа были предприняты одновременно разными мастерами в Германии, Англии и Франции. В 1827 г. Дж. Б. Амичи использовал в объективе плоскую фронтальную линзу, что позволило уменьшить сферическую аберрацию.

Техника шлифовки и взаимной подгонки линз достигла такого совершенства, что микроскопы первой половины XIX в. могли давать увеличение до 1000 раз. Практическое применение таких сильных систем ограничивалось тем, что поле зрения при больших увеличениях оставалось темным - значительная часть лучей, преломляясь в воздухе, не попадала в объектив. Коренное улучшение было достигнуто с началом применения (иммерсии). Масляный иммерсионный объектив был создан конструкторами фирмы К. Цейса.

Создание фабричного производства микроскопов, соревнование между конкурирующими фабриками привело к удешевлению инструментов, и в сороковых годах XIX столетия микроскоп становится повседневным лабораторным инструментом, который могли иметь даже отдельные врачи и студенты.
В 1886 г. фирма К. Цейса выпустила новые объективы-апохроматы, где коррекция сферической и хроматической аберрации была доведена до предела. Как показали вычисления Э. Аббе, с изготовлением этих линз был достигнут предел разрешающей способности светового микроскопа.


Один из первых микроскопов компании Carl Zeiss. Фото: Flavio

Параллельно с совершенствованием микроскопа развивалась методика приготовления микроскопических препаратов. Долгое время она оставалась весьма примитивной - до начала XIX в. микроскописты в основном рассматривали высушенные объекты. Исследуются свежие препараты, не подвергнутые какой-либо обработке. Методов изготовления "постоянных препаратов", чем характеризуется современная микроскопия, еще не существовало, из-за этого исследователь лишался возможности длительного изучения препарата и сравнения новых препаратов со старыми.

К началу второй четверти XIX в. исследователи стали применять для изучения тканей некоторые реактивы, например, прибавление уксусной кислоты давало возможность выявления клеточных ядер. Реактивы применялись тут же, на предметном столике микроскопа.
С 80-х гг. XIX в. в практике микроскопических исследований непременным атрибутом становится микротом, изобретенный Я. Пуркинье. Применение микротома дало возможность изготавливать тонкие срезы и получать непрерывные серии срезов, что привело к успехам в изучении тонкого строения клетки.

В середине XIX в. микроскописты начинают использовать различные методы фиксации и окраски препаратов, заливки исследуемых объектов в более плотные среды. С 70-х гг. XIX в. для изготовления постоянных препаратов начинают традиционно применять канадский бальзам.

Кто в Россию ввз первый микроскоп трудно сказать. Скорее всего это было не ранее 17 века..

В Википедии такие данные:
Невозможно точно определить, кто изобрл микроскоп. Считается, что голландский мастер очков Ханс Янссен и его сын Захария Янссен изобрели первый микроскоп в 1590, но это было заявление самого Захария Янссена в середине XVII века. Дата, конечно, не точна, так как оказалось, что Захария родился около 1590 г.

Как был изобретен микроскоп

Другим претендентом на звание изобретателя микроскопа был Галилео Галилей. Он разработал occhiolino (оккиолино), или составной микроскоп с выпуклой и вогнутой линзами в 1609 г. Галилей представил свой микроскоп публике в Академии деи Линчеи, основанной Федерико Чези в 1603 г. Изображение трх пчел Франческо Стеллути было частью печати Папы Урбана VIII и считается первым опубликованным микроскопическим символом (см. Stephen Jay Gould, The Lying stones of Marrakech, 2000). Кристиан Гюйгенс, другой голландец, изобрел простую двулинзовую систему окуляров в конце 1600-х, которая ахроматически регулировалась и, следовательно, стала огромным шагом вперед в истории развития микроскопов. Окуляры Гюйгенса производятся и по сей день, но им не хватает широты поля обзора, а расположение окуляров неудобно для глаз по сравнению с современными широкообзорными окулярами. Антон Ван Левенгук (16321723) считается первым, кто сумел привлечь к микроскопу внимание биологов, несмотря на то, что простые увеличительные линзы уже производились с 1500-х годов, а увеличительные свойства наполненных водой стеклянных сосудов упоминались ещ древними римлянами (Сенека). Изготовленные вручную, микроскопы Ван Левенгука представляли собой очень небольшие изделия с одной очень сильной линзой. Они были неудобны в использовании, однако позволяли очень детально рассматривать изображения лишь из-за того, что не перенимали недостатков составного микроскопа (несколько линз такого микроскопа удваивали дефекты изображения). Понадобилось около 150 лет развития оптики, чтобы составной микроскоп смог давать такое же качество изображения, как простые микроскопы Левенгука. Так что, хотя Антон Ван Левенгук был великим мастером микроскопа, он не был его изобретателем вопреки широко распространнному мнению.http://ru.wikipedia.org/wiki/световой микроскоп

Первый микроскоп был сконструирован отнюдь не профессиональным ученым, а любителем, торговцем мануфактурой Антони Ван Левенгуком, жившим в Голландии в XVII веке. Именно этот пытливый самоучка первым взглянул через сделанный им самим прибор на капельку воды и увидел тысячи мельчайших существ, названных им латинским словом animalculus (маленькие звери). За свою жизнь Левенгук успел описать более двухсот видов зверушек, а изучая тонкие срезы мяса, фруктов и овощей, он открыл клеточную структуру живой ткани. За заслуги перед наукой Левенгук в 1680 году был избран действительным членом Королевского общества, а чуть позже стал академиком и Французской Академии наук.

Микроскопы Левенгука, которых за свою жизнь он собственноручно изготовил более трех сотен, представляли собой небольшую, величиной с горошину, сферическую линзу, вставленную в оправу. Микроскопы имели предметный столик, положение которого относительно линзы можно было настраивать с помощью винта, а вот подставки или штатива у этих оптических приборов не было их нужно было держать в руках. С точки зрения сегодняшней оптики, прибор, который называется микроскопом Левенгука, является не микроскопом, а очень сильной лупой, поскольку его оптическая часть состоит только из одной линзы.http://www.foto.ru/articles/?article_mic…
ссылка появится после проверки модератором История микроскопа
Разработал в России первый ахроматический микроскоп (около 1784 года) Франц Ульрих Теодор Эпинус, нем. Aepinus, (2(13) декабря 1724, Росток 10(22) августа 1802, Дерпт, ныне Тарту) российский физик, член Петербургской Академии наук (1756).http://ru.wikipedia.org/wiki/Эпинус,_Фра…

Какое значение имело изобретение микроскопа? История изобретения микроскопа

Микроскопом называется уникальный прибор, призванный увеличивать микроизображения и измерять размеры объектов или структурные образования, наблюдаемые через объектив. Эта разработка удивительна, а значение изобретения микроскопа чрезвычайно велико, ведь без него не существовало бы некоторых направлений современной науки. И отсюда поподробнее.

Микроскоп — родственное телескопу устройство, которое применяется для совершенно других целей. С помощью него удается рассмотреть структуру объектов, которые невидимы глазом. Он позволяет определять морфологические параметры микрообразований, а также оценивать их объемное расположение. Потому даже сложно представить, какое значение имело изобретение микроскопа, и как его появление повлияло на развитие науки.

История микроскопа и оптики

Сегодня сложно ответить, кто первым изобрел микроскоп. Вероятно, этот вопрос будет также широко обсуждаться, как и создание арбалета. Однако, в отличие от оружия, изобретение микроскопа действительно произошло в Европе. А кем именно, пока неизвестно. Вероятность того, что первооткрывателем устройства стал Ханс Янсен, голландский мастер по производству очков, достаточно высока. Его сыном, Захарием Янсеном, в 1590 году было сделано заявление, что он вместе с отцом сконструировал микроскоп.

Но уже в 1609 году появился и еще один механизм, который создал Галилео Галилей. Он назвал его occhiolino и презентовал публике Национальной академии деи Линчеи. Доказательством того, что в тот период уже мог использоваться микроскоп, является знак на печати папы Урбана III. Считается, что он представляет собой модификацию изображения, полученного путем микроскопирования. Световой микроскоп (составной) Галилео Галилея состоял из одной выпуклой и одной вогнутой линзы.

Совершенствование и внедрение в практику

Уже через 10 лет после изобретения Галилея Корнелиус Дреббель создает составной микроскоп, имеющий две выпуклые линзы. А позже, то есть уже к концу 1600-х годов, Кристиан Гюйгенс разработал двухлинзовую систему окуляров. Они производятся и сейчас, хотя им не хватает широты обзора. Но, что важнее, при помощи такого микроскопа в 1665 году Робертом Гуком было проведено исследование среза пробкового дуба, где ученый увидел так называемые соты. Результатом эксперимента стало введение понятия "клетка".

Другой отец микроскопа — Антони ван Левенгук — лишь переизобрел его, но сумел привлечь к прибору внимание биологов. И после этого стало понятно, какое значение имело изобретение микроскопа для науки, ведь это позволило развиваться микробиологии. Вероятно, упомянутый прибор существенно ускорил развитие и естественных наук, ведь пока человек не увидел микробов, он верил, что болезни зарождаются от нечистоплотности. А в науке царствовали понятия алхимии и виталистические теории существования живого и самозарождения жизни.

Микроскоп Левенгука

Изобретение микроскопа является уникальным событием в науке Средневековья, потому как благодаря устройству удалось найти множество новых предметов для научного обсуждения. Более того, множество теорий разрушилось благодаря микроскопированию. И в этом большая заслуга Антони ван Левенгука. Он смог усовершенствовать микроскоп так, чтобы он позволял детально увидеть клетки. И если рассматривать вопрос в этом контексте, то Левенгук действительно является отцом микроскопа такого типа.

Структура прибора

Сам световой микроскоп Левенгука представлял собой пластинку с линзой, способной многократно увеличивать рассматриваемые объекты. Эта пластинка с линзой имела штатив. Посредством него она монтировалась на горизонтальный стол. Направляя линзу на свет и располагая между нею и пламенем свечи исследуемый материал, можно было разглядеть бактериальные клетки. Причем первым материалом, который Антони ван Левенгук исследовал, был зубной налет. В нем ученый увидел множество существ, назвать которые пока не мог.

Уникальность микроскопа Левенгука поражает. Имеющиеся тогда составные модели не давали высокого качества изображения. Более того, наличие двух линз только усиливало дефекты. Потому потребовалось более 150 лет, пока составные микроскопы, изначально разработанные Галилеем и Дреббелем, начали давать такое же качество изображения, как устройство Левенгука. Сам же Антони ван Левенгук все равно не считается отцом микроскопа, но по праву является признанным мастером микроскопирования нативных материалов и клеток.

Изобретение и совершенствование линз

Само понятие линзы существовало уже в Древнем Риме и Греции. Например, в Греции при помощи выпуклых стекол удавалось разжигать огонь. А в Риме давно заметили свойства стеклянных сосудов, наполненных водой. Они позволяли увеличивать изображения, хотя и не во много раз. Дальнейшее развитие линз неизвестно, хотя очевидно, что прогресс на месте стоять не мог.

Известно, что в 16 веке в Венеции вошло в практику применение очков. Подтверждением этого являются факты о наличии станков для шлифовки стекла, что позволяло получать линзы.

Кто изобрёл микроскоп?

Также имелись чертежи оптических приборов, представляющих собой зеркала и линзы. Авторство данных работ принадлежит Леонардо да Винчи. Но еще раньше люди работали с увеличительными стеклами: еще в 1268 году Роджер Бэкон выдвинул идею создания подзорной трубы. Позже она была реализована.

Очевидно, что авторство линзы никому не принадлежало. Но это наблюдалось до того момента, пока оптикой не занялся Карл Фридрих Цейс. В 1847 году он приступил к производству микроскопов. Затем его компания стала лидером в разработке оптических стекол. Она существует до сегодняшнего дня, оставаясь главной в отрасли. С ней сотрудничают все компании, которые занимаются производством фото- и видеокамер, оптических прицелов, дальномеров, телескопов и прочих устройств.

Совершенствование микроскопии

История изобретения микроскопа поражает при ее детальном изучении. Но не менее интересной является и история дальнейшего совершенствования микроскопии. Начали появляться новые виды микроскопов, а научная мысль, порождающая их, погружалась все глубже. Теперь целью ученого было не только изучение микробов, но и рассмотрение более мелких составляющих. Оными являются молекулы и атомы. Уже в 19 веке их удавалось исследовать посредством рентгеноструктурного анализа. Но наука требовала большего.

Итак, уже в 1863 году исследователем Генри Клифтоном Сорби для исследования метеоритов был разработан поляризационный микроскоп. А в 1863 году Эрнстом Аббе была разработана теория микроскопа. Она была успешно перенята на производстве Карла Цейса. Его компания за счет этого развилась до признанного лидера отрасли оптических приборов.

Но вскоре наступил 1931 год — время создания электронного микроскопа. Он стал новым видом аппарата, позволяющим видеть намного больше, чем световой. В нем для просвечивания применялись не фотоны и не поляризованный свет, а электроны — частицы куда более мелкие, нежели самые простые ионы. Именно изобретение электронного микроскопа позволило развиваться гистологии. Теперь ученые обрели полную уверенность, что их суждения о клетке и ее органеллах действительно правильные. Впрочем, лишь в 1986 году создателю электронного микроскопа Эрнсту Руска была присуждена Нобелевская премия. Более того, уже в 1938 году Джеймс Хиллер строит просвечивающий электронный микроскоп.

Новейшие виды микроскопов

Наука после успехов многих ученых развивалась все быстрее. А потому целью, продиктованной новыми реалиями, стала необходимость разработки высокочувствительного микроскопа. И уже в 1936 году Эрвином Мюллером выпускается полевой эмиссионный прибор. А в 1951 году производится еще одно устройство — полевой ионный микроскоп. Его важность чрезвычайна, потому как он впервые позволил ученым видеть атомы. А вдобавок к этому в 1955 году Ежи Номарский разрабатывает теоретические основы дифференциальной интерференционно-контрастной микроскопии.

Совершенствование новейших микроскопов

Изобретение микроскопа еще не является успехом, потому как заставить ионы или фотоны проходить через биологические среды, а потом рассматривать полученное изображение, в принципе, нетрудно. Вот только вопрос повышения качества микроскопии был действительно важным. И после этих умозаключений ученые создали пролетный масс-анализатор, который получил название сканирующего ионного микроскопа.

Это устройство позволяло сканировать отдельно взятый атом и получать данные о трехмерной структуре молекулы. Вместе с рентгеноструктурным анализом этот метод позволил значительно ускорить процесс идентификации многих веществ, встречающихся в природе. А уже в 1981 году был введен сканирующий туннельный микроскоп, а в 1986 — атомно-силовой. 1988 — это год изобретения микроскопа сканирующего электрохимического туннельного типа. А самым последним и наиболее полезным является силовой зонд Кельвина. Он был разработан в 1991 году.

Оценка глобального значения изобретения микроскопа

Начиная с 1665 года, когда Левенгук занялся обработкой стекла и производством микроскопов, отрасль развивалась и усложнялась. И задаваясь вопросом о том, какое значение имело изобретение микроскопа, стоит рассмотреть основные достижения микроскопирования. Итак, этот метод позволил рассмотреть клетку, что послужило очередным толчком развития биологии. Затем прибор позволил разглядеть органеллы клетки, что дало возможность сформировать закономерности клеточной структуры.

Затем микроскоп позволил увидеть молекулу и атом, а позднее ученые смогли сканировать их поверхность. Более того, посредством микроскопа можно увидеть даже электронные облака атомов. Поскольку электроны движутся со скоростью света вокруг ядра, то рассмотреть эту частицу совершенно невозможно. Несмотря на это, следует понимать, какое значение имело изобретение микроскопа. Он дал возможность увидеть нечто новое, что нельзя видеть глазом. Это удивительный мир, изучение которого приблизило человека к современным достижениям физики, химии и медицины. А это стоит всех трудов.