Прокариотическая и эукариотическая клетки рисунок. Строение прокариотической клетки

На Земле существует всего два типа организмов: эукариоты и прокариоты. Они сильно различаются по своему строению, происхождению и эволюционному развитию, что будет подробно рассмотрено далее.

Вконтакте

Признаки прокариотической клетки

Прокариоты по-другому называют доядерными. У прокариотической клетки нет и других органоидов, имеющих мембранную оболочку ( , эндоплазматического ретикулума, комплекса Гольджи).

Также характерными чертами для них являются следующее:

  1. без оболочки и не образует связей с белками. Информация передаётся и считывается непрерывно.
  2. Все прокариоты – гаплоидные организмы.
  3. Ферменты располагаются в свободном состоянии (диффузно).
  4. Обладают способностью к спорообразованию при неблагоприятных условиях.
  5. Наличие плазмид – мелких внехромосомных молекул ДНК. Их функция — передача генетической информации, повышение устойчивости ко многим агрессивным факторам.
  6. Наличие жгутиков и пилей – внешних белковых образований необходимых для передвижения.
  7. Газовые вакуоли – полости. За счёт них организм способен передвигаться в толще воды.
  8. Клеточная стенка у прокариот (именно бактерий) состоит из муреина.
  9. Основными способами получения энергии у прокариот являются хемо- и фотосинтез.

К ним относятся бактерии и археи. Примеры прокариотов: спирохеты, протеобактерии, цианобактерии, кренархеоты.

Внимание! Несмотря на то, что у прокариот отсутствует ядро, они имеют его эквивалент – нуклеоид (кольцевую молекулу ДНК, лишённую оболочек), и свободные ДНК в виде плазмид.

Строение прокариотической клетки

Бактерии

Представители этого царства являются одними из самых древних жителей Земли и обладают высокой выживаемостью в экстремальных условия.

Различают грамположительные и грамотрицательные бактерии. Их главное отличие заключается в строении мембраны клеток. Грамположительные имеют более толстую оболочку, до 80% состоит из муреиновой основы, а также полисахаридов и полипептидов. При окрашивании по Граму они дают фиолетовый цвет. Большинство этих бактерий являются возбудителями заболеваний. Грамотрицательные же имеют более тонкую стенку, которая отделена от мембраны периплазматическим пространством. Однако такая оболочка обладает повышенной прочностью и гораздо сильнее противостоит воздействию антител.

Бактерии в природе играют очень большую роль:

  1. Цианобактерии (сине-зелёные водоросли) помогают поддерживать необходимый уровень кислорода в атмосфере. Они образуют больше половины всего О2 на Земле.
  2. Способствуют разложению органических останков, тем самым принимая участие в круговороте всех веществ, участвуют в образовании почвы.
  3. Фиксаторы азота на корнях бобовых.
  4. Очищают воды от отходов, к примеру, металлургической промышленности.
  5. Являются частью микрофлоры живых организмов, помогая максимально усваивать питательные вещества.
  6. Используются в пищевой промышленности для сбраживания Так получают сыры, творог, алкоголь, тесто.

Внимание! Помимо положительного значения бактерии играют и отрицательную роль. Многие из них вызывают смертельно опасные заболевания, такие как холера, брюшной тиф, сифилис, туберкулёз.

Бактерии

Археи

Ранее их объединяли с бактериями в единое царство Дробянок. Однако со временем выяснилось, что археи имеют свой индивидуальный путь эволюции и сильно отличаются от остальных микроорганизмов своим биохимическим составом и метаболизмом. Выделяют до 5 типов, самыми изученными считаются эвриархеоты и кренархеоты. Особенности архей таковы:

  • большинство из них являются хемоавтотрофами – синтезируют органические вещества из углекислого газа, сахара, аммиака, ионов металлов и водорода;
  • играют ключевую роль в круговороте азота и углерода;
  • участвуют в пищеварении в организмах человека и многих жвачных;
  • обладают более стабильной и прочной мембранной оболочкой за счёт наличия эфирных связей в глицерин-эфирных липидах. Это позволяет археям жить в сильнощелочных или кислых средах, а также при условии высоких температур;
  • клеточная стенка, в отличие от бактерий, не содержит пептидогликана и состоит из псевдомуреина.

Строение эукариотов

Эукариоты представляют собой надцарство организмов, в клетках которых содержится ядро. Кроме архей и бактерий все живые существа на Земле являются эукариотами (к примеру, растения, простейшие, животные). Клетки могут сильно отличаться по своей форме, строению, размерам и выполняемым функциям. Несмотря на это они сходны по основам жизнедеятельности, метаболизму, росту, развитию, способности к раздражению и изменчивости.

Эукариотические клетки могут превышать в размерах прокариотические в сотни и тысячи раз. Они включают в себя ядро и цитоплазму с многочисленными мембранными и немембранными органоидами. К мембранным относятся: эндоплазматический ретикулум, лизосомы, комплекс Гольджи, митохондрии, . Немембранные: рибосомы, клеточный центр, микротрубочки, микрофиламенты.

Строение эукариотов

Проведем сравнение клеток эукариотов разных царств.

К надцарству эукариот относятся царства:

  • простейшие. Гетеротрофы, некоторые способны к фотосинтезу (водоросли). Размножаются бесполым, половым путём и простым способом на две части. У большинства клеточная стенка отсутствует;
  • растения. Являются продуцентами, основной способ получения энергии – фотосинтез. Большая часть растений неподвижны, размножаются бесполым, половым и вегетативным путём. Клеточная стенка состоит из целлюлозы;
  • грибы. Многоклеточные. Различают низшие и высшие. Являются гетеротрофными организмами, не могут самостоятельно передвигаться. Размножаются бесполым, половым и вегетативным путём. Запасают гликоген и имеют прочную клеточную стенку из хитина;
  • животные. Различают 10 типов: губки, черви, членистоногие, иглокожие, хордовые и другие. Являются гетеротрофными организмами. Способны к самостоятельному передвижению. Основное запасающее вещество – гликоген. Оболочка клеток состоит из хитина, также как у грибов. Главный способ размножения – половой.

Таблица: Сравнительная характеристика растительной и животной клетки

Строение Клетка растения Клетка животного
Клеточная стенка Целлюлоза Состоит из гликокаликса — тонкого слоя белков, углеводов и липидов.
Местоположение ядра Расположено ближе к стенке Расположено в центральной части
Клеточный центр Исключительно у низших водорослей Присутствует
Вакуоли Содержат клеточный сок Сократительные и пищеварительные.
Запасное вещество Крахмал Гликоген
Пластиды Три вида: хлоропласты, хромопласты, лейкопласты Отсутствуют
Питание Автотрофное Гетеротрофное

Сравнение прокариот и эукариот

Особенности строения прокариотической и эукариотической клеток значительны, однако одно из главных различий касается хранения генетического материала и способа получения энергии.

Прокариоты и эукариоты фотосинтезируют по-разному. У прокариот этот процесс проходит на выростах мембраны (хроматофорах), уложенных в отдельные стопки. Бактерии не имеют фторой фотосистемы, поэтому не выделяют кислород, в отличие от сине-зелёных водорослей, которые образуют его при фотолизе. Источниками водорода у прокариот служат сероводород, Н2, разные органические вещества и вода. Основными пигментами являются бактериохлорофилл (у бактерий), хлорофилл и фикобилины (у цианобактерий).

К фотосинтезу из всех эукариот способны только растения. У них имеются специальные образования – хлоропласты, содержащие мембраны, уложенные в граны или ламеллы. Наличие фотосистемы II позволяет выделять кислород в атмосферу при процессе фотолиза воды. Источником молекул водорода служит только вода. Главным пигментов является хлорофилл, а фикобилины присутствуют лишь у красных водорослей.

Основные различия и характерные признаки прокариотов и эукариотов представлены в таблице ниже.

Таблица: Сходства и различия прокариотов и эукариотов

Сравнение Прокариоты Эукариоты
Время появления Более 3,5 млрд. лет Около 1,2 млрд. лет
Размеры клеток До 10 мкм От 10 до 100 мкм
Капсула Есть. Выполняет защитную функцию. Связана с клеточной стенкой Отсутствует
Плазматическая мембрана Есть Есть
Клеточная стенка Состоит из пектина или муреина Есть, кроме животных
Хромосомы Вместо них кольцевая ДНК. Трансляция и транскрипция проходят в цитоплазме. Линейные молекулы ДНК. Трансляция проходит в цитоплазме, а транскрипция в ядре.
Рибосомы Мелкие 70S-типа. Расположены в цитоплазме. Крупные 80S-типа, могут прикрепляться к эндоплазматической сети, находиться в пластидах и митохондриях.
Органоид с мембранной оболочкой Отсутствуют. Есть выросты мембраны — мезосомы Есть: митохондрии, комплекс Гольджи, клеточный центр, ЭПС
Цитоплазма Есть Есть
Отсутствуют Есть
Вакуоли Газовые (аэросомы) Есть
Хлоропласты Отсутствуют. Фотосинтез проходит в бактериохлорофиллах Присутствуют только у растений
Плазмиды Есть Отсутствуют
Ядро Отсутствует Есть
Микрофиламенты и микротрубочки. Отсутствуют Есть
Способы деления Перетяжка, почкование, коньюгация Митоз, мейоз
Взаимодействие или контакты Отсутствуют Плазмодесмы, десмосомы или септы
Типы питания клеток Фотоавтотрофный, фотогетеротрофный, хемоавтотрофный, хемогетеротрофный Фототрофный (у растений) эндоцитоз и фагоцитоз (у остальных)

Прокариоты или доядерные клетки - первые живые организмы на Земле. Несмотря на примитивное строение прокариотической клетки, бактерии, археи и цианобактерии смогли дожить до наших дней.

Компоненты

Прокариоты состоят из трёх компонентов:

  • оболочки;
  • цитоплазмы;
  • генетического материала.

Оболочку прокариот образуют три слоя:

  • плазмалемма - тонкая мембрана, покрывающая цитоплазму;
  • клеточная стенка - жёсткая наружная оболочка, содержащая белок муреин;
  • капсула - защитная структура, состоящая из полисахаридов или белков.

Капсула (слизистый слой, чехол) - необязательный компонент клетки. Образуется для защиты от неблагоприятных условий, например, высыхания или заморозков. Это дополнительный барьер, способный защитить клетку от вирусов (бактериофагов). У некоторых бактерий капсула служит дополнительным источником запаса веществ.

Рис. 1. Оболочка прокариот.

Цитоплазма прокариот - гелеобразное вещество, содержащее:

ТОП-2 статьи которые читают вместе с этой

  • неорганические вещества;
  • белки;
  • полисахариды;
  • метаболиты (продукты метаболизма).

Главной особенностью строения прокариотической клетки является отсутствие ядра. Генетическая информация в виде кольцевой ДНК хранится непосредственно в цитоплазме и образует нехарактерную для эукариотов структуру - нуклеоид.
Помимо нуклеоида в цитоплазме прокариот постоянно находятся:

  • рибосомы - структуры, состоящие из двух субъединиц, которые осуществляют биосинтез белка;
  • мезосома - складка плазмалеммы, осуществляющая репликацию ДНК и клеточное дыхание (аналог митохондрии);
  • органеллы движения - длинные жгутики, состоящие из белка флагеллина, и короткие пили, образованные белком пилином.

В цитоплазме помимо органелл могут находиться запасы веществ - включения:

  • гликоген;
  • крахмал;
  • волютин (метахроматин) - гранулы полифосфорной кислоты;
  • жировые капли;
  • сера.

Плазмиды - непостоянные структуры прокариот. Состоят из небольших отдельных молекул ДНК, которыми бактерии могут обмениваться в ходе горизонтального переноса генов.

Рис. 2. Органоиды доядерной клетки.

Деление

Прокариоты размножаются прямым или бинарным делением - амитозом. К этому процессу клетка никак не подготавливается. Деление начинается с удвоения кольцевой ДНК на мезосоме без образования хромосом.
Процесс условно можно разделить на две стадии:

  • кариокинез - репликация и расхождение ДНК;
  • цитокинез - разделение путём перетяжки всего содержимого клетки.

Каждой дочерней клетке достаётся по одному кольцу ДНК. Однако остальные структуры распределяются неравномерно.

Рис. 3. Деление бактерии.

ДНК бактерий, составляющая нуклеоид, может включать несколько миллионов нуклеотидов. Однако бактерии быстро приспосабливаются к неблагоприятным условиям благодаря постоянному обмену генами, находящимися в коротких ДНК плазмид.

Что мы узнали?

Из урока 10 класса узнали о строении и функциональном назначении органелл прокариотической клетки. К прокариотам относятся бактерии, цианобактерии и археи. Они не имеют ядра, генетическая информация располагается непосредственно в цитоплазме в виде спутанной структуры - нуклеоида. Помимо одной кольцевой ДНК в клетках могут находиться небольшие молекулы ДНК в виде плазмид. Прокариоты размножаются посредством амитоза и способны обмениваться генами.

Тест по теме

Оценка доклада

Средняя оценка: 3.9 . Всего получено оценок: 227.

Прокариоты – древнейшие организмы, образующие самостоятельное царство. К прокариотам относятся бактерии, сине-зеленые «водоросли» и ряд других мелких групп.

Клетки прокариот не обладают, в отличие от эукариот, оформленным клеточным ядром и другими внутренними мембранными органоидами (за исключением плоских цистерн у фотосинтезирующих видов, например, у цианобактерий). Единственная крупная кольцевая (у некоторых видов – линейная) двухцепочечная молекула ДНК, в которой содержится основная часть генетического материала клетки (так называемый нуклеоид) не образует комплекса с белками-гистонами (так называемого хроматина). К прокариотам относятся бактерии, в том числе цианобактерии (сине-зелёные водоросли). Также к ним можно условно отнести постоянные внутриклеточные симбионты эукариотических клеток – митохондрии и пластиды.

Эукариоты (эвкариоты) (от греч. eu– хорошо, полностью иkaryon– ядро) – организмы, обладающие, в отличие от прокариот, оформленным клеточным ядром, отграниченным от цитоплазмы ядерной оболочкой. Генетический материал заключён в нескольких линейных двухцепочечных молекулах ДНК (в зависимости от вида организмов их число на ядро может колебаться от двух до нескольких сотен), прикрепленных изнутри к мембране клеточного ядра и образующих у подавляющего большинства (кроме динофлагеллят) комплекс с белками-гистонами, называемый хроматином. В клетках эукариот имеется система внутренних мембран, образующих, помимо ядра, ряд других органоидов (эндоплазматическая сеть, аппарат Гольджи и др.). Кроме того, у подавляющего большинства имеются постоянные внутриклеточные симбионты-прокариоты – митохондрии, а у водорослей и растений – также и пластиды.

2. Клетки эукариот. Строение и функции

К эукариотам относятся растения, животные, грибы.

Клеточной стенки у клеток животных нет. Она представлена голым протопластом. Пограничный слой клетки животных – гликокаликс – это верхний слой цитоплазматической мембраны, «усиленный» молекулами полисахаридов, которые входят в состав межклеточного вещества.

Митохондрии имеют складчатые кристы.

В клетках животных есть клеточный центр, состоящий из двух центриолей. Это говорит о том, что любая клетка животных потенциально способна к делению.

Включение в животной клетке представлено в виде зерен и капель (белки, жиры, углевод гликоген), конечных продуктов обмена, кристаллов солей, пигментов.

В клетках животных могут быть сократительные, пищеварительные, выделительные вакуоли небольших размеров.

В клетках нет пластид, включений в виде крахмальных зерен, крупных вакуолей, заполненных соком.

3. Сопоставление прокариотической и эукариотической клеток

Наиболее важным отличием эукариот от прокариот долгое время считалось наличие оформленного ядра и мембранных органоидов. Однако к 1970 – 1980-м гг. стало ясно, что это лишь следствие более глубинных различий в организации цитоскелета. Некоторое время считалось, что цитоскелет свойственен только эукариотам, но в середине 1990-х гг. белки, гомологичные основным белкам цитоскелета эукариот, были обнаружены и у бактерий. (Таблица 16).

Именно наличие специфическим образом устроенного цитоскелета позволяет эукариотам создать систему подвижных внутренних мембранных органоидов. Кроме того, цитоскелет позволяет осуществлять эндо- и экзоцитоз (как предполагается, именно благодаря эндоцитозу в эукариотных клетках появились внутриклеточные симбионты, в том числе митохондрии и пластиды). Другая важнейшая функция цитоскелета эукариот – обеспечение деления ядра (митоз и мейоз) и тела (цитотомия) эукариотной клетки (деление прокариотических клеткок организовано проще). Различия в строении цитоскелета объясняют и другие отличия про- и эукариот. Например, постоянство и простоту форм прокариотических клеток и значительное разнообразие формы и способность к её изменению у эукариотических, а также относительно большие размеры последних.

Так, размеры прокариотических клеток составляют в среднем 0,5 – 5 мкм, размеры эукариотических – в среднем от 10 до 50 мкм. Кроме того, только среди эукариот попадаются поистине гигантские клетки, такие как массивные яйцеклетки акул или страусов (в птичьем яйце весь желток – это одна огромная яйцеклетка), нейроны крупных млекопитающих, отростки которых, укрепленные цитоскелетом, могут достигать десятков сантиметров в длину.

По своей структуре организмы могут одноклеточными и многоклеточными. Прокариоты преимущественно одноклеточны, за исключением некоторых цианобактерий и актиномицетов. Среди эукариот одноклеточное строение имеют простейшие, ряд грибов, некоторые водоросли. Все остальные формы многоклеточны. Считается, что одноклеточными были первые живые организмы Земли.

Клетка - элементарная структурно-функциональная единица строения и жизнедеятельности всех организмов, которая обладает собственным обменом веществ и способна к самостоятельному существованию, самовоспроизведению. Организмы, состоящие из одной клетки, называются одноклеточным. К одноклеточным организмам можно отнести многие простейшие (саркодовые, жгутиконосцы, споровики, инфузории) и бактерии. Каждая клетка в своем составе имеет до 80% воды, и только остальное приходится на массу сухого вещества.

Особенности строения клеток

Все клеточные формы жизни на основании особенностей строения составляющих их клеток можно разделить на два вида (надцарствия):
1. Прокариоты (доядерные) - возникшие раньше в процессе эволюции и более простые по строению. Это одноклеточные живые организмы, не обладающие оформленным клеточным ядром и другими внутренними мембранными органоидами. Средний диаметр клетки составляет 0,5-10 мкм. Имеет одну кольцевую молекулу ДНК расположенную в цитоплазме. Обладает простым бинарным делением. При этом веретено деления не образуется;
2. Эукариоты (ядерные) - возникшие позже более сложные клетки. Все организмы, кроме бактерий и архей, являются ядерными. Каждая ядерная клетка содержит ядро. Средний диаметр клетки составляет 10-100 мкм. Обычно имеет несколько линейных молекул ДНК (хромосом) находящихся в ядре. Обладает делением мейоз или митоз. Образует веретено деления.

В свою очередь эукариоты можно также разделить на два вида (царства):
1. Растительные клетки;
2. Животные клетки.

 

Особенности строения животной клетки можно увидеть на картинке выше. Клетку можно разделить на следующие составляющие части:
1. Клеточная мембрана ;
2. Цитоплазма или цитазоль ;
3. Цитоскелет ;
4. Центриоли ;
5. Аппарат гольджи ;
6. Лизосома;
7. Рибосома;
8. Митохондрия;


11. Ядро;
12. Ядрышко;
13. Пероксисома.


Особенности строения растительной клетки можно также увидеть на картинке расположенной выше. Клетку можно разделить на следующие составляющие части:
1. Клеточная мембрана ;
2. Цитоплазма или цитазоль ;
3. Цитоскелет ;
4. Поры;
5. Аппарат гольджи ;
6. Центральная вакуоль;
7. Рибосома;
8. Митохондрия;
9. Шероховатый эндоплазматический ретикулум;
10. Гладкий эндоплазматический ретикулум;
11. Ядро;
12. Ядрышко.

Особенности строения клеток эукариот и прокариот

Об особенностях строения клеток эукариот и прокариот можно написать целую статью, но всё же постараемся выделить только важные части и разберём отличие одного надцарствия над другим. Описывать различие начнём двигаясь к ядру.

Сравнительная таблица клеток
Сравнение Клетка прокариот (доядерные) Клетка эукариот (ядерные)
Размер клетки 0.5-10 мкм 10-100 мкм
Молекула ДНК Одна кольцевая молекула находящаяся в цитоплазме Несколько линейных молкул ДНК находящаяся в ядре
Деление клетки Простое бинарное Мейоз или митоз
Клеточная стенка Есть состоящая из полимерных белковоуглеводных молекул Есть у растительных клеток состоящая из целлюлозы. У животных клеток нет.
Клеточная мембрана Есть Есть
Цитоплазма Есть Есть
ЭПР* Нет Есть
Аппарат Гольджи Нет Есть
Митохондрии Нет Есть
Вакуоли Нет Есть у большинства клеток
Цитоскелет Нет Есть
Центриоль Нет Есть у животных клеток
Рибосомы Есть Есть
Лизосомы Нет Есть
Ядро Нуклеарная область с отсутствием ядерной мембраны Есть окружено мембраной

* ЭПР - Эндоплазматический ретикулум

Урок

«Органоиды клетки. Особенности клеток прокариот и эукариот»

(Слайд 1)

Цель урока : знакомство с особенностями строениями и функционирования постоянных компонентов клеток (органоидов); сравнение особенностей клеток прокариот и эукариот

Оборудование: мультимедийные презентации «Органоиды клетки», «Клетки прокариот и эукариот», рабочая тетрадь по биологии (11 класс), с.61-64, раздаточный материал

Организационный момент.

Ход урока:

План урока: (Слайд 2 )

    Органоиды клетки

    Немембранные органоиды

    Мембранные органоиды

    Клетки прокариот и эукариот

Изучение нового материала:

    Органоиды клетки

Органоидами (органеллами) (Слайд 3 ) называют постоянные компоненты клетки, выполняющие в ней конкретные функции и обеспечивающие осуществление процессов и свойств, необходимых для поддержания ее жизнедеятельности.

Органоиды могут иметь как мембранное, так и немембранное строение.

Классификация органоидов (Слайд 4) Работа по заполнению схемы классификации: вспоминают материал, изученный в 9 классе (желательна запись в тетрадь).

ЗАДАНИЕ (распечатки на каждой парте): Используя объяснения учителя и материалы учебника, заполнить таблицу:

Органоид

Особенность строения

Наличие нуклеиновых кислот

Немембранные органоиды

Рибосомы

Клеточный центр

Микротрубочки

Микрофиламенты

Хромосомы

Одномембранные органоиды

Эндоплазматическая сеть

Комплекс Гольджи

Лизосомы

Двумембранные органоиды

Митохондрии

Пластиды

    Немембранные органоиды

РИБОСОМЫ (Слайд 5).

Рибосома - важнейший органоид живой клетки сферической или слегка овальной формы, диаметром 100-200 ангстрем, состоящий из большой и малой субъединиц (Слайд 6). Рибосомы служат для биосинтеза белка из аминокислот по заданной матрице на основе генетической информации, предоставляемой матричной РНК, или мРНК. Этот процесс называется трансляцией . В эукариотических клетках рибосомы располагаются на мембранах эндоплазматического ретикулума, хотя могут быть локализованы и в неприкрепленной форме в цитоплазме. Нередко с одной молекулой мРНК ассоциировано несколько рибосом, такая структура называется полирибосомой (Слайд 7 ) . Синтез рибосом у эукариот происходит в специальной внутриядерной структуре - ядрышке.

Рибосомы эукариот включают четыре молекулы рРНК

Рибосомы впервые были описаны как уплотненные частицы, или гранулы, клеточным биологом румынского происхождения Джорджем Паладе в середине 1950-х годов. Термин "рибосома" был предложен Ричардом Робертсом в 1958 вместо "рибонуклеобелковая частица микросомальной фракции".

КЛЕТОЧНЫЙ ЦЕНТР (ЦЕНТРОСОМА) (Слайд 8).

Центриоли представляют собой цилиндрические белковые структуры, расположенные вблизи ядра клеток животных (у растений центриолей нет). Центриоль представляет собой цилиндр, боковая поверхность которого образована девятью наборами микротрубочек. Количество микротрубочек в наборе может колебаться для разных организмов от 1 до 3.

Вокруг центриолей находится так называемый центр организации цитоскелета, район в котором группируются минус концы микротрубочек клетки.

Перед делением клетка содержит две центриоли, расположенные под прямым углом друг к другу. В ходе митоза они расходятся к разным концам клетки, формируя полюса веретена деления. После цитокинеза каждая дочерняя клетка получает по одной центриоли, которая удваивается к следующему делению. Удвоение центриолей происходит не делением, а путем синтеза новой структуры, перпендикулярной существующей.

МИКРОТРУБОЧКИ (Слайд 9)

Это белковые внутриклеточные структуры, входящие в состав цитоскелета.

Микротрубочки представляют собой цилиндры диаметром 25 нм с полостью внутри. Их длина может быть от нескольких микрометров до, вероятно, нескольких миллиметров в аксонах нервных клеток. Микротрубочки полярны: на одном конце происходит самосборка микротрубочки, на другом - разборка. В клетках микротрубочки играют роль структурных компонентов и участвуют во многих клеточных процессах, включая митоз, цитокинез и везикулярный транспорт.

Динамическая нестабильность микротрубочек играет важную физиологическую роль. Например, при делении клетки микротрубочки растут очень быстро и способствуют правильной ориентации хромосом и образованию митотического веретена.

Микротрубочки в клетке используются в качестве "рельсов" для транспортировки частиц. По их поверхности могут перемещаться мембранные пузырьки и митохондрии. Транспортировку по микротрубочкам осуществляют белки, называемые моторными.

МИКРОФИЛАМЕНТЫ (Слайд 10 ).

Сократимые элементы цитоскелета, образованы нитями актина и других сократительных белков. Участвуют в формировании цитоскелета клетки, амебоидном движении и др. Нуклеиновых кислот нет

ХРОМОСОМЫ (Слайд 11 ) – учащиеся отвечают на поставленный вопрос, вспоминая материал предыдущего урока, а затем на слайде открывается ответ.

Органоиды ядра эукариот, каждая хромосома образована одной молекулой ДНК и молекулами белков. Состоит из двух нитей – хроматид, соединенных центромерой. Являются носителями генетической информации.

    Мембранные органоиды

Одномембранные органоиды

ПЛАЗМОЛЕММА (Слайд 12 ) - учащиеся отвечают на поставленный вопрос, вспоминая материал предыдущего урока, а затем на слайде открывается ответ.

Это жидкостно-мозаическую модель, где липидные слои мембраны пронизаны белковыми молекулами. Она обеспечивает разграничительную функцию по отношению к внешней для клетки среде и выполняет транспортную функцию. Нуклеиновых кислот нет.

ЭНДОПЛАЗМАТИЧЕСКАЯ СЕТЬ (ЭПС ) (Слайд 13)

В эукариотической клетке существует система переходящих друг в друга мембранных отсеков (трубок и цистерн), которая называется эндоплазматическим ретикулумом (или эндоплазматическая сеть, ЭПР или ЭПС). Ту часть ЭПР, к мембранам которого прикреплены рибосомы, относят к гранулярному (или шероховатому ) (Нажать кнопкой мышки) эндоплазматическому ретикулуму, на его мембранах происходит синтез белков. Те компартменты, на стенках которых нет рибосом, относят к гладкому (или агранулярному ) ЭПР (Нажать кнопкой мышки ), принимающему участие в синтезе липидов. Внутренние пространства гладкого и гранулярного ЭПР не изолированы, а переходят друг в друга и сообщаются с просветом ядерной оболочки. Нуклеиновых кисло нет.

КОМПЛЕКС ГОЛЬДЖИ (ПЛАСТИНЧАТЫЙ КОМПЛЕКС) (Слайд 14 ) – нажать кнопку мыши.

Это мембранная структура эукариотической клетки, в основном предназначенная для выведения веществ, синтезированных в эндоплазматическом ретикулуме (Слайд 15). Комплекс Гольджи был назван так в честь итальянского учёного Камилло Гольджи, впервые обнаружившего его в 1898 году (Слайд 16 ).

В цистернах Аппарата Гольджи созревают некоторые белки, синтезированные на мембранах гранулярного ЭПР и предназначенные для секреции или образования лизосом. Аппарат Гольджи асимметричен - цистерны располагающиеся ближе к ядру клетки (цис -Гольджи) содержат наименее зрелые белки, к этим цистернам непрерывно присоединяются мембранные пузырьки - везикулы , отпочковывающиеся от эндоплазматического ретикулума. По-видимому, при помощи таких же пузырьков происходит дальнейшее перемещение созревающих белков от одной цистерны к другой. В конце концов от противоположного конца органеллы (транс -Гольджи) отпочковываются пузырьки, содержащие полностью зрелые белки.

ЛИЗОСОМЫ (Слайд 17 )

Это мембранные пузырьки величиной до 2 мкм. Внутри лизосом содержатся гидролитические ферменты, способные переваривать белки, липиды, углеводы, нуклеиновые кислоты. Лизосомы образуются из пузырьков, отделяющихся от комплекса Гольджи, причем предварительно на шероховатом эн до плазматическом ретикулуме синтезируются гидролитические ферменты.

Сливаясь с эндоцитозными пузырьками, лизосомы образуют пищеварительную вакуоль (вторичная лизосома) , где происходит расщепление органических веществ до составляющих их мономеров. Последние через мембрану пищеварительной вакуоли поступают в цитоплазму клетки. Именно так происходит, например, обезвреживание бактерий в клетках крови - нейтрофилах .

Вторичные лизосомы, в которых закончился процесс переваривания, практически не содержат ферментов. В них находятся лишь непереваренные остатки.

Лизосомы участвуют также в разрушении материалов клетки, например запасных питательных веществ, а также макромолекул и целых органелл, утративших функциональную активность (аутофагия ). При патологических изменениях в клетке или ее старении мембраны лизосом могут разрушаться: ферменты выходят в цитоплазму, и осуществляется самопереваривание клетки - автолиз . Иногда с помощью лизосом уничтожаются целые комплексы клеток и органы. Например, когда головастик превращается в лягушку, лизосомы, находящиеся в клетках хвоста, переваривают его: хвост исчезает, а образовавшиеся во время этого процесса вещества всасываются и используются другими клетками тела.

ВАКУОЛИ

Это крупные мембранные пузырьки или полости в цитоплазме, заполненные клеточным соком. Вакуоли образуются в клетках растений и грибов из пузыревидных расширений эндоплазматического ретикулума или из пузырьков комплекса Гольджи. В меристематических клетках растений вначале возникает много мелких вакуолей. Увеличиваясь, они сливаются в центральную вакуоль (Слайд 18) , которая занимает до 70-90% объема клетки и может быть пронизана тяжами цитоплазмы.

Содержимое вакуолей - клеточный сок. Он представляет собой водный раствор различных неорганических и органических веществ. Химический состав и концентрация клеточного сока очень изменчивы и зависят от вида растений, органа, ткани и состояния клетки. В клеточном соке содержатся соли, сахара (прежде всего сахароза, глюкоза, фруктоза), органические кислоты (яблочная, лимонная, щавелевая, уксусная и др.), аминокислоты, белки. Эти вещества являются промежуточными продуктами метаболизма, временно выведенными из обмена веществ клетки в вакуоль. Они являются запасными веществами клетки.

Помимо запасных веществ, которые могут вторично использоваться в метаболизме, клеточный сок содержит фенолы, танины (дубильные вещества), алкалоиды, антоцианы, которые выводятся из обмена в вакуоль и таким путем изолируются от цитоплазмы.

Танины особенно часто встречаются в клеточном соке (а также в цитоплазме и оболочках) клеток листьев, коры, древесины, незрелых плодов и семенных оболочек. Алкалоиды присутствуют, например, в семенах кофе (кофеин), плодах мака (морфин) и белены (атропин), стеблях и листьях люпина (люпинин) и др. Считается, что танины с их вяжущим вкусом, алкалоиды и токсичные полифенолы выполняют защитную функцию: их ядовитый (чаще горький) вкус и неприятный запах отталкивают растительноядных животных, что предотвращает поедание этих растений.

В вакуолях также часто накапливаются конечные продукты жизнедеятельности клеток (отходы). Таким веществом для клеток растений является щавелевокислый кальций, который откладывается в вакуолях в виде кристаллов различной формы.

В клеточном соке многих растений содержатся пигменты, придающие клеточному соку разнообразную окраску. Пигменты и определяют окраску венчиков цветков, плодов, почек и листьев, а также корнеплодов некоторых растений (например, свеклы).

Клеточный сок некоторых растений содержит физиологически активные вещества - фитогормоны (регуляторы роста), фитонциды, ферменты . В последнем случае вакуоли действуют как лизосомы. После гибели клетки мембрана вакуоли теряет избирательную проницаемость, и ферменты, высвобождаясь из нее, вызывают автолиз клетки.

Функции центральной вакуоли:

    Накопление питательных веществ, метаболитов и пигментов;

    Удаление из цитоплазмы продуктов метаболизма;

    Регуляция водно-солевого обмена;

    Поддержание тургорного давления;

    Участие в разрушении макромолекул и клеточных структур.

Пищеварительные вакуоли (Слайд 19 ) животных клеток содержат литические (расщепляющие) ферменты и пищевые частицы. Здесь идет внутриклеточное пищеварение.

Выделительные вакуоли простейших содержат воду и растворенные в ней продукты метаболизма. Функция – осморегуляция, удаление жидких продуктов метаболизма.

Двумембранные органоиды

МИТОХОНДРИИ (Слайд 20)

Двумембранные органеллы продолговатой формы. Они являются энергетическими станциями клеток. Митохондрии - особые органеллы клетки, основной функцией которых является синтез АТФ - универсального носителя энергии. Дыхание (поглощение кислорода и выделение углекислого газа) происходит также за счет энзиматических систем митохондрий.

Митохондрии имеют наружную мембрану состоящую из двух слоёв, разделённых пространством в 60-80 ангстрем. От внутреннего слоя в полость митохондрии выступают выпячивания - кристы (нажать кнопку мыши ) . Пространство между кристами заполнено веществом, называемым матриксом (нажать кнопку мыши ).

В матриксе содержатся различные ферменты, принимающие участие в дыхании и синтезе АТФ. Центральное значение для синтеза АТФ имеет водородный потенциал внутренней мембраны митохондрии. Содержат ДНК и РНК.

ПЛАСТИДЫ.

Пластиды - органоиды эукариотических растений и некоторых фотосинтезирующих простейших. Покрыты двойной мембраной. Содержат ДНК и РНК. Совокупность пластид клетки образует пластидом . По окраске и выполняемой функции выделяют три основных типа пластид (Слайд 21 ) :

Лейкопласты - неокрашенные пластиды, как правило, выполняют запасающую функцию. В лейкопластах клубней картофеля накапливается крахмал. Лейкопласты высших растений могут превращаться в хлоропласты или хромопласты.

Хромопласты - пластиды, окрашенные в жёлтый, красный или оранжевый цвет. Окраска хромопластов связана с накоплением в них каротиноидов. Хромопласты определяют окраску осенних листьев, лепестков цветов, корнеплодов, созревших плодов.

Хлоропласты - пластиды, несущие фотосинтезирующие пигменты - хлорофиллы. Имеют зелёную окраску у высших растений, харовых и зелёных водорослей. Набор пигментов, участвующих в фотосинтезе (и, соответственно, определяющих окраску хлоропласта) различен у представителей разных таксономических отделов. Хлоропласты имеют сложную внутреннюю структуру

    Клетки прокариот и эукариот

(в качестве домашнего задания с объяснением задания в классе)

Задание (Слайд 22 ):

    Рассмотреть таблицу 2 на с.118

    Заполнить рабочую тетрадь на с.63-64

    Заполнить таблицу, расставив знаки «+» и «-»

Клеточные структуры

Прокариотическая клетка

Эукариотическая клетка

Клеточная стенка

Плазмолемма

Хромосомы

Эндоплазматическая сеть

Комплекс Гольджи

Лизосомы

Мезосома

Рибосомы

Включения

Информационные источники:

    Гигани О.Б. Общая биология.9-11: Таблицы:схемы/О.Б.гигани. – М.: Гуманитар.изд.центр ВЛАДОС, 2007.

    Кольман Я., Рем К.-Г. Наглядная биохимия: Пер. с нем. - М.: Мир, 2000. http://yanko.lib.ru/books/biolog/nagl_biochem/04.htm

    Википедия - ru.wikipedia.org

    priroda.clow.ru/text/1190.htm – Энциклопедия «Растения и животные»

    biology.asvu.ru/page.php?id=17

    www.college.ru/.../paragraph4/theory.html

    shkola.lv/index.php?mode=lsntheme&themeid=104

Дополнительный материал для учителя (Гигани О.Б, 2007)

Органоид

Строение

Функции

Наличие нуклеиновых кислот

Немембранные органоиды

Рибосомы

Образованы двумя субъединицами (большой и малой), сформированными молекулами рРНК и белков

Участие в синтезе белка

Клеточный центр (центросома)

Состоит из двух центриолей, каждая представляет собой полый цилиндр, образованный девятью триплетами микротрубочек.

Входят в состав митотического аппарата клетки, участвуют в делении клетки

Микротрубочки

Полые цилиндрические структуры

Образуют цитоскелет клетки, веретено деления, центриоли, жгутики и реснички

Микрофиламенты

Сократимые элементы цитоскелета, образованы нитями актина и других сократительных белков

Участие в формировании цитоскелета клетки, амебоидном движении, эндоцитозе, циклозе

Хромосомы

Органоиды ядра эукариотических клеток, каждая хромосома образована одной молекулой ДНК и молекулами белков

Носители генетической информации

Одномембранные органоиды

Плазмолемма (цитолемма)

Эндоплазматическая сеть

    Гладкая (агранулярная) ЭПС

    Шероховатая (гранулярная) ЭПС

Элементарная мембрана, покрывающая клетку снаружи

Система мембран, образующих канальца, пузырьки, цистерны, трубочки. Соединена с плазмолеммой и ядерной мембраной.

На поверхности мембран располагаются ферменты, катализирующие синтез липидов и углеводов.

На поверхности мембран располагаются рибосомы.

Поддержание формы клетки, защита от неблагоприятных внешних воздействий, транспорт веществ в клетку и из нее, рецепторная (благодаря различным молекулам, встроенным в мембрану, воспринимает сигналы окружающей среды)

Транспорт веществ в клетке, разделение клетки на отсеки, посттрансляционная модификация белков.

Синтез липидов и углеводов, накопление и удаление ядовитых веществ

Синтез белков на прикрепленных к мембране рибосомах, объединенных в комплексы - полисомы

Комплекс Гольджи (пластинчатый комплекс)

Строение в клетках разных организмов сильно различается. Структурно-функциональная единица комплекса Гольджи – диктиосома – стопка из 5-20 плоских цистерн, переходящих в сеть трубочек и пузырьков

Модификация веществ; упаковка их в мембранные пузырьки, которые затем используются клеткой или удаляются из нее; синтез некоторых веществ; формирование клеточных мембран; формирование лизосом

Лизосомы

Мембранные пузырьки округлой формы, содержат литические (расщепляющее) ферменты

Участие в формировании пищеварительных вакуолей (внутриклеточное пищеварение); разрушение крупных молекул клетки; лизис (разрушение) отдельных клеточных структур (автолиз) и всей клетки; устранение провизорных органов

    Центральная вакуоль растительной клетки

    Пищеварительные вакуоли животных клеток

    Выделительные вакуоли простейших

Полости, окруженные мембраной и содержащие водянистую жидкость с различными растворенными веществами.

Ограничена тонопластом – мембраной. Заполнена клеточным соком (растворенными органическими и неорганическими веществами, пигментами, метаболитами). Формируется при участии ЭПС.

Накопление питательных веществ, метаболитов и пигментов; удаление из цитоплазмы продуктов метаболизма; регуляция водно-солевого обмена; поддержание тургорного давления; участие в разрушении макромолекул и клеточных структур.

Внутриклеточное пищеварение

Осморегуляция, удаление жидких продуктов метаболизм

Двумембранные органоиды

Митохондрии

Наружная мембрана гладкая, внутренняя – образует выросты – кристы. Внутри находится матрикс – полужидкое вещество, содержащее ферменты, кольцевые молекулы ДНК, молекулы РНК, рибосомы

Синтез АТФ

Пластиды

    Протопластиды

    Хлоропласты

    Хромопласты

    Лейкопласты

Наружная мембрана гладкая, внутренняя мембрана погружена в строму – полужидкое вещество. Содержат кольцевые молекулы ДНК, молекулы РНК и рибосомы

Не имеют окраски

Внутренняя мембрана образует уплощенные мешочки – тилакоиды, в которых располагаются молекулы пигментов (хлорофилла, каротиноидов), группа тилакоидов образует граны

Внутренняя мембрана образует немногочисленные тилакоиды

Пластиды, из которых формируются все виды пластид (хлоропласты, лейкопласты, хромопласты)

Фотосинтез, могут превращаться в хромопласты

Окраска лепестков цветков, плодов, листьев, иногда корней

Синтез и накопление крахмала, масло, белков, могут превращаться в хлоропласты и хромопласты

Сравнительная характеристика прокариотических и эукариотических клеток

Клеточные структуры

Прокариотическая клетка

Эукариотическая клетка

Клеточная стенка

У клеток растений и грибов

Плазмолемма

Хромосомы

- (есть нуклеотид – 1 кольцевая молекула ДНК)

Эндоплазматическая сеть

Комплекс Гольджи

Лизосомы

Двумембранные органоиды (пластиды, митохондрии)

Мезосома

Рибосомы

Включения