Кальций (ион.). Кальций и сердце

С самого детства нам советуют есть больше молочных продуктов, поскольку они богаты полезным для костей кальцием. Но этот элемент необходим не только нашему скелету, но также крови, мышцам, нервным волокнам. Существует 2 формы кальция: ионизированная и связанная. Ионизированный кальций не связан с белками, поэтому свободно циркулирует в крови. Анализ крови на кальций играет весомую роль в диагностике состояния организма. Благодаря его информативности можно правильно подобрать дозировку лекарств. По его данным можно судить о метаболизме минеральных веществ в организме.

Связанный белками кальций не оказывает столь существенного влияния на организм. Это состояние Ca в момент транспортировки.

Для чего нужен кальций?

Кальций — один из важнейших элементов человеческого организма. Он оказывает влияние на протекание обменных процессов. Кровь содержит две фракции этого элемента – ионизированную и связанную. В состав связанной могут входить белки плазмы, цитраты, фосфаты. Такая форма кальция составляет 55% от общего объема в плазме крови. 40% из них связаны с белком, 15% приходится на фосфор и цитрат.

Получается, что на активный ионизированный кальций остается 45% плазмы крови. В этом состоянии кальций способен на многое. Вот перечень полезных функций, которые он выполняет:

Способствует росту и развитию костной ткани;

Стимулирует секрецию нейромедиатора, тем самым улучшая проводимость нервных волокон, так как без этого вещества передача нейронных импульсов по организму невозможна;

Является одним из элементов, участвующих в процессе свертывания крови;

Стабилизирует ферментную активность организма;

Влияет на интенсивность сокращений мышц и сердца;

Уменьшает проницаемость стенок сосудов, тем самым защищая их от воздействия вредных веществ.

Для организма важен уровень ионизированного кальция в крови. Именно туда он и старается отправить его в первую очередь. Поэтому если у человека начали болеть зубы или кости стали хрупкими, это явный сигнал дефицита минералов. Между прочим,кальций также играет важную роль в регулировании артериального давления. Еще одной его функцией является укрепление иммунитета и активация большинства гормонов и ферментов.

Связанная форма менее продуктивна. Специалисты считают, что отклонения в большую или меньшую сторону не всегда является симптомом сбоя в процессе обмена веществ.

В день человек должен потреблять 850-1300 мг кальция. Главное не переусердствовать, так как верхняя граница – 2500 мг. Однако бывают случаи, когда повышенное потребление этого элемента оправдано. Например, в крови у беременных женщин, или в период лактации. Повышается потребность организма в Ca и у спортсменов.

Что делать для обеспечения организма этим необходимым микроэлементом? Следует добавить в свой рацион следующие продукты:

Из злаков — это гречневая крупа;

Из фруктов – апельсины;

Молочные продукты;

Бобовые;

Помогает усвоить кальций витамин группы D. Его часто назначают педиатры для новорожденных и детей постарше.

Существуют и продукты, которые мешают усвоению ионизированного кальция. К ним относятся:

Пальмовое масло. Оно встречается в составе разных продуктов, где нужно заменить молочный натуральный жир на разный дешевый «эрзац»;

Некоторые виды животных жиров;

Сладости, имеющие щелочную реакцию. Например, некоторые конфеты.

Нормы для разных возрастных групп

Норма ионизированного минерала для каждой возрастной группы своя. В таблице ниже приведены цифры, которые должен показать анализ на кальций ионизированный. В противном случае полученное значение считается отклонением от нормы.

У ребенка Ca ионизированный повышен, если сравнивать с взрослой категорией. Это явление объясняется интенсивным ростом костей, что показывает высокую потребность организма в данном элементе. Данная ситуация длится у детей пока они не достигнут 16-его возраста.

Во время беременности;

В период лактации;

При приеме контрацептивов.

Кому следует пройти процедуру?

Чаще всего знать уровень общего кальция в крови достаточно, чтобы оценить процесс минерального метаболизма, так как соотношение свободной (45%) и связанной (55%) формы постоянно. Но в любом правиле есть свои исключения, так у некоторых людей данное соотношение нарушено. Поэтому целесообразно проводить другой тип исследования — анализ на ионизированный кальций.

Значительные колебания содержания ионов кальция имеют определенные симптомы:

Нестабильный ритм сердечной мышцы. Она то ускоряет, то замедляет свой темп;

Мышечные спазмы;

Нарушения сознания.

Показаниями для сдачи крови на исследование могут служить следующие состояния:

Раковые опухоли;

Подготовка перед операцией;

Заболевания ЖКТ;

Судороги;

Патология почек и мочевыводящих путей;

Изменения сердечно-сосудистой системы;

Болевые ощущения в мышцах и костях;

Низкий уровень белков в крови (гипопротеинемия).

Так что если вы попадаете под одну из этих категорий, то не затягивайте с исследованием, так как оно поможет правильно подобрать дозировку необходимого лекарства и сделает курс терапии более эффективным.

Подготовка и проведение анализа

Для того чтобы результат анализа на уровень кальция был нормальный и неискаженный разными факторами, необходимо к нему подготовиться. Вот небольшой список правил, которые следует соблюдать:

Сдается биоматериал натощак. Последний прием пищи должен быть 12 часов назад;

Курить можно за 1 час до посещения лаборатории;

Исключаются и тяжелые нагрузки перед сдачей анализа;

Многие препараты могут способствовать поднятию или снижению уровня кальция в организме. Поэтому за 14 дней до сдачи анализа следует воздержаться от их приема. Естественно предварительно по этому вопросу нужно проконсультироваться с лечащим врачом. Если доктор не разрешил прервать курс лечения, тогда на бланке исследования будут указываться принимаемые препараты и их дозировка.

Для проведения анализа будут брать венозную кровь. В настоящее время в медицинской практике используются две методики определения уровня свободного кальция:

  1. На общий кальций;
  2. Непосредственно на ионизированную форму.

Первый способ менее затратный, поэтому доступен практически в любой государственной лаборатории. Он финансируется полисом ОМС. Вторая методика более информативна. Она позволяет не только установить точный диагноз, но и разработать индивидуальный курс лечения.

Очень важным условием является проведение исследования в течение 2-х суток после забора крови. В противном случае, длительное взаимодействие с воздухом может исказить результаты, повысив референсное значение ионов кальция. Так что бланк с результатами анализа вы получите спустя 3-е суток.

Не последнюю роль играет и время суток, когда берется биоматериал на анализ. Предпочтительнее делать забор в утренние часы. Если биоматериал будут брать вечером, активный кальций, скорее всего, будет выше нормы.

Пониженный показатель

Если у больного уровень ионов кальция понижен, об этом говорят следующие симптомы:

При этих симптомах диагностируют гипокальцемию. Причины, вызвавшие подобное состояние разные по своему характеру:

Дефицит витаминов группы D;

Обширные ожоговые повреждения;

Нехватка магния в крови;

Период после хирургического вмешательства;

Кишечник плохо всасывает кальций;

Метаболический алкалоз (нарушение кислотно-основного состояния).

Следует знать, что такое состояние с показателем меньше 0,7 ммоль/л является критическим и грозит возможностью летального исхода.

Повышенный показатель. Гиперкальциемия

Гиперкальциемия — это заболевание, при котором повышенный кальций в крови. Результаты анализов в данном случае больше 2,6 ммоль/л. При такой концентрации образуется кальциевый осадок в сосудах, печеночной и почечной ткани, что делает их ломкими. Высока вероятность развития сердечной недостаточности. Гиперкальциемия на ранней стадии характеризуется такой симптоматикой:

Тошнота;

Отсутствие аппетита;

Интенсивная работа почек;

Ионизированный Ca представляет собой активную форму данного элемента. В организме человека он содержится в виде положительно заряженного иона Ca2+ и отвечает за многие жизненно важные процессы, с точки зрения физиологии. Важной особенностью ионизированного кальция является его способность к метаболической активности.

Помимо своей активной (свободной) формы, кальций в крови может быть связан с отрицательно заряженными ионами в виде лактатов, фосфатов, бикарбонатов и других соединений либо с белками альбуминами в сыворотке крови. Сумма всех трех форм кальция в организме имеет название кальций общий.

Кальций в крови может находиться в трех формах в следующем соотношении:

  • 55 – 58 % приходится на ионизированный кальций;
  • 35 – 38 % в связи с альбуминами;
  • 10 % в комплексной форме с низкомолекулярными анионами.

На долю активного элемента приходится более половины процентов, что показывает важность анализа на ионизированный кальций.

Норма кальция в крови у взрослых 2,0 – 2,8 ммоль/л, норма ионизированного - 1,1 – 1,4 ммоль/л.

Кальций в крови в норме также определяется по возрасту:

Ca и беременность

Норма кальция в крови у женщин 2,20 – 2,50 ммоль/л. Одной из причин физиологического дефицита элементаи отклонения от нормы у женщин является беременность. Женщинам в интересном положении положено увеличить дневную дозу потребления Ca, так как он влияет на костную систему будущего ребенка. Также высокие дозы Ca необходимы в период грудного вскармливания.

Функции Ca

Основной функцией является регуляция деятельности миоцитов, то есть клеток мышечной ткани сердца, упрочнение костной ткани, а также обеспечение сократимой способности поперечно-полосатой мускулатуры.

Другие биохимические процессы, в которых участвует Ca, это:

  • Передача электрического импульса по нервному волокну;
  • Регуляция системы гемостаза;
  • Регуляция проницаемости клеточной стенки;
  • Регуляция синтеза ферментов;
  • Регуляция синтеза гормонов железами внутренней секреции;
  • Регуляция нормальных значений железа в сыворотке крови.

Все перечисленные процессы протекают на должном уровне только при условии нормального содержания ионизированного кальция в крови и общего – в костях.

Обмен Ca в организме

Гомеостаз Ca зависит от того, как он всасывается в кишечнике, от обмена минералов в костной ткани и от обратного всасывания в почках. Выделяют три основных биологически активных вещества, регулирующих кальциевый обмен:

  1. Паратгормон, за выработку которого отвечают паращитовидные железы в ответ на повышение содержания фосфора, что приводит к повышению кальциевого уровня;
  2. Кальцитонин, вырабатываемый щитовидной железой и снижающий уровень кальция в крови, за счет его транспортировки в кости;
  3. Кальцитриол, или активированный витамин D3, который способствует всасыванию Ca в ЖКТ.

Симптомы нарушений обмена Ca

Существует два вида ненормальных значений кальция в организме - гипокальциемия, то есть пониженное содержание и гиперкальциемия, если кальций в крови повышен. Так как превысить нормальный уровень кальция у среднего человека практически невозможно (при условии отсутствия серьезной патологии), большую распространенность имеет именно гипокальциемия.

Гипокальциемия

Пациент с дефицитом Ca предъявляет общие жалобы на головную боль, частые эпизоды головокружения, слабость, вялость, сухость кожи, выпадение волос.

Характерным симптомом нарушения обмена костной ткани являются кариес из-за истончения эмали зубов, ломкость ногтей, искривление ногтевой пластины. При запущенной гипокальциемии могут возникнуть остеопороз, патологические переломы. Недостаток Ca у детей проявляется замедлением роста, деформацией костей, нарушениями осанки.

Со стороны мышечного аппарата наблюдаются повышение тонуса мышц, периодически возникающие судороги после физической нагрузки, патологические рефлексы.

Со стороны сердца и системы гемостаза отмечают тахикардию, аритмию, время остановки кровотечения увеличено, в тяжелых случаях гипокальциемия может привести к ишемической болезни сердца.

Гиперкальциемия

Если ионизированный кальций повышен, это проявляется одышкой, тошнотой, рвотой, нарушением работы сердца вследствие отложения соединений Ca, понижением тонуса мышц, повышенной свертываемостью крови с риском образования тромбов и эмболов.

Причины

Гипокальциемия

Чаще всего в основе пониженного кальциевого уровня в крови лежит гипоальбуминемия, то есть снижение уровня альбуминов крови.

Кроме того, причинами могут быть:

  • Гипопаратиреоз;
  • Дефицит витамина D;
  • Почечная патология;
  • Рахит;
  • Дефицит магния;
  • Цирроз печени;
  • Гиперплазия надпочечников;
  • Острый панкреатит и другие.

Гиперкальциемия

Наиболее распространенными причинами повышения содержания кальция в крови являются гиперпаратиреоз и злокачественные новообразования. Первый приводит к гиперкальциемии непосредственно из-за увеличения продукции паратгормона, а ЗНО вырабатывают и выбрасывают в кровь вещество, имитирующее действие паратгормона.

Кроме того, причинами могут являться:

  • Гипертиреоз;
  • Эндокринные патологии (болезнь Аддисона, акромегалия);
  • Саркоидоз;
  • Туберкулез;
  • Повышенное содержание витамина D;
  • Патология системы крови (лейкоз, эритремия);
  • Остеолизис;
  • Дегидратация и другие.

Диагностика

Диагностика основывается на сборе жалоб пациента, данных инструментальных и лабораторных исследований. Для подтверждения измененного кальциевого обмена врач назначает следующие анализы:

  • Анализ на общий кальций;
  • Анализ на кальций ионизированный;
  • Биохимический анализ крови;
  • Анализ мочи на содержание кальция;
  • Анализ на содержание фосфора;
  • Анализ на содержание магния;
  • Анализ на содержание витамина D;
  • Уровень паратгормона;

При оценке результатов анализов крови на кальций и другие элементы важно проанализировать как количественные показатели относительно нормы, так и соотношение элементов, участвующих в кальциевом обмене. В биохимическом анализе крови в первую очередь оценивают сывороточные белки альбумины.

Что следует знать пациенту, сдающему анализ крови на ионизированный кальций?

Существует ряд правил: в целях подготовки к анализу на ионизированный кальций и получения достоверных данных пациент должен исключить прием пищи за двенадцать часов до анализа, а также избегать стрессовых ситуаций, физического напряжения, курения меньше, чем за полчаса до анализа.

Ряд медицинских препаратов может изменять нормальный уровень ионизированного кальция крови. К медикаментам, вызывающим гиперкальциемию, относят:

  • Антациды;
  • Препараты аналоги гормонов;
  • «Тамоксифен».

Препараты, вызывающие гипокальциемию:

  • «Кальцитонин»;
  • «Гентамицин»;
  • Противосудорожные ЛП;
  • Соли магния;
  • Слабительные ЛП.

Лечение и профилактика

Норма кальция, потребленного в сутки с пищей, равна 800 – 1200 мг. Беременным женщинам рекомендуется потреблять не менее 1000 мг в сутки.

Что делать, если, по результатам анализа крови на кальций, диагностирована гипокальциемия? Прежде всего, с целью профилактики гипокальциемии следует изменить режим питания и соблюдать диету. Необходимо ежедневно употреблять в пищу продукты, богатые Ca.

Продукт Сколько Ca (мг) в 100 г продукта
Сыр Пармезан 1300
Другие твердые сыры 1000
Кунжут 780
Базилик 370
Миндаль 250
Петрушка 245
Шоколад 240
Капуста 210
Фасоль 194
Фисташки 130
Укроп 126
Молоко 120

По рекомендации врача, можно принимать препараты Ca, сочетая их с витаминами групп С и D, повышающими усвояемость кальция в организме, а также с препаратами магния. Витамин D обеспечивает лучшее всасывание элемента кишечником, участвует в биохимии Ca–P обмена.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

  • I . Введение
    • II . Общие характеристики
    • III . Клиническое значение
    • IV . Гомеостаз кальция
    • V . Гормоны, участвующие в гомеостазе кальция
    • 1. Паратиреотропный гормон
    • V. 1.1 Структура
    • V. 1.2 Участие ПТГ в минеральном гомеостазе
    • V. 1.3 Биохимия
    • V. 1.4 Механизм действия
    • V. 1.5 Патофизиология
    • V. 2 Кальцитриол [ 1,25- (OH) 2 -D 3 ]
    • V. 2 . 1 Общие положения о роли кальцитриола в гомеостазе кальция
    • V. 2.2 Биохимия
    • V. 2.3 Механизм действия
    • V. 2.4 Патофизиология
    • V. 3 Кальцитонин
    • V. 3.1 Происхождение и структура
    • V. 3.2 Регуляция секреции
    • V. 3.3 Механизм действия
    • V. 3.4 Патофизиология
    • Заключение
    • Список литературы

I. Введение

Ионы кальция регулируют ряд важнейших физиологических и биохимических процессов, в частности нейромышечное возбуждение, свертывание крови, процессы секреции, поддержание целостности мембран и транспорт через мембраны, многие ферментативные реакции, высвобождение гормонов и нейромедиаторов, внутриклеточное действие ряда гормонов. Кроме того, для минерализации костей необходимо поддержание определенных концентраций Са 2+ и РО 4 3 - во внеклеточной жидкости и надкостнице Нормальное протекание этих процессов обеспечивается тем, что концентрация Са 2+ в плазме крови поддерживается в очень узких пределах.

II. Общие характеристики

Содержание кальция в организме человека составляет примерно 1 кг.99% кальция локализовано в костях, где вместе с фосфатом он образует кристаллы гидроксиапатита, составляющие неорганический компонент скелета. Кость - это динамическая ткань, претерпевающая перестройку в зависимости от нагрузки; в состоянии динамического равновесия процессы образования и резорбции костной ткани сбалансированы. Большая часть кальция кости не может свободно обмениваться с кальцием внеклеточной жидкости (ВЖ). Итак, в дополнение к своей роли механической опоры кости служат огромным резервуаром кальция. Около 1% кальция скелета составляет легкообменивающий пул, еще 1% общего количества находится в периостальном пространстве (надкостнице), и вместе эти два источника составляют мобильный (смешанный) пул Ca 2 + .

Активный транспорт кальция происходит, главным образом, в проксимальных отделах тонкой кишки, хотя определенное количество кальция поглощается во всех ее отделах. Для всасывания кальция необходима соляная кислота, особенно для расщепления мало растворимых солей кальция, в частности карбоната кальция.

Поглощение кальция может нарушаться при заболеваниях печени и поджелудочной железы. Поступивший внутрь кальций необратимо связывается с жирными кислотам или другими компонентами пищи и выводится почками. Около 8-10 г/сут кальция фильтруется через клубочки, из которых только 2-3% появляются в моче

В плазме кальций распределен между тремя пулами в зависимости от концентрации белка, анионов, pH и многих других факторов. Около 50% всего кальция находится в свободном состоянии, 40% - связано с белками плазмы и около 10% - с разными неорганическими и органическими анионами, включая бикарбонат, лактат, фосфат и цитрат и др.

Фракция "свободного" кальция является его биологически активной формой. Его концентрация в плазме напрямую регулируется гормонами: паратгормоном, кальцитонином и кальцитриолом . Сам термин "ионизированный" кальций не вполне корректен, поскольку весь кальций плазмы или сыворотки находится в ионизированной форме, вне зависимости от того, связан ли он с белками или небольшими по размерам анионами. В этом смысле термин "свободный" кальций аналогичен понятию "свободный" гормон, например "свободный" тироксин или "свободный" тестостерон. "Свободный" кальций считают лучшим индикатором кальциевого обмена, поскольку он биологически активен и его уровень непосредственно регулируется паратгормоном и 1,25- (ОН) 2 D 3 . Хотя определение концентрации свободного кальция в сыворотке клинически более полезно, оно не может полностью вытеснить определение общего кальция.

Ион кальция и парный ему ион фосфата присутствуют в плазме крови в концентрациях, близких к пределу растворимости их соли; отсюда следует, что связывание Са 2+ с белками предупреждает возможность образования осадка и эктопической кальцификации Изменения концентрации плазменных белков (прежде всего альбумина, хотя глобулины тоже связывают кальций) сопровождаются соответствующими сдвигами уровня общего кальция в плазме крови. Например, при гипоальбуминемии падение уровня общего кальция в плазме составляет 0,8 мг % на каждый г % снижения концентрации альбумина. Соответственно при возрастании количества альбумина плазмы наблюдается противоположное явление. Связывание кальция с белками плазмы зависит от рН: ацидоз способствует переходу кальция в ионизированную форму, а алкалоз повышает связывание с белками, т.е. снижает концентрацию Са 2+ . Вероятно, этим обусловлены звон в ушах и потеря кожной чувствительности, возникающие при синдроме гипервентиляции, которая вызывает острый респираторный алкалоз.

III. Клиническое значение

Нарушения кальциевого обмена могут приводить к гипокальциемии или гиперкальциемии. Снижение концентрация общего кальция в сыворотке (гипокальциемия) может быть обусловлена уменьшением количества кальция, связанного с альбумином, или свободной фракции, либо их сочетанием.

Гипоальбуминемия является самой частой причиной псевдогипокальциемии (уменьшение общего и свободного кальция), поскольку 1 г/100 мл альбумина связывает около 0,8 мг/100 мл кальция. Концентрация альбумина в сыворотке снижена при хронических заболеваниях печени, почек, сердца и при нарушении питания. Частой причиной гипокальциемии является хроническая почечная недостаточность и гипомагниемия. При хронической почечной недостаточности гипопротеинемия, гиперфосфатемия, низкий уровень сывороточного 1,25- (ОН) 2 D 3 (замедление синтеза в результате снижения массы почек) и/или резистентности костной ткани к паратгормону вносит свой вклад в гипокальциемию. Дефицит магния приводит к нарушению секреции паратгормона и вызывает резистентность к нему тканей.

Гипопаратиреоз, часто развивающийся в результате повреждения ткани паращитовидной железы при различных операциях на шее, приводит к гипокальциемии.

При псевдогипопаратиреозе в результате резистентности клеток к паратгормону может развиваться гипокальциемия. Молекулярная основа самой часто встречающейся формы псевдогипопратиреоза I типа (наследственная остеодистрофия Олбрайта) заключается в снижении способности ГТФ-регуляторного компонента Ns активировать аденилатциклазу под влиянием паратгормона. Быстрая реминерализация костной ткани (так называемый синдром "голодной кости") после операции по поводу первичного гиперпаратиреоза, лечения гипертиреоза или заболеваний крови может привести к гипокальциемии. Острый геморрагический или отечный панкреатит часто осложняется гипокальциемией. Дефицит витамина D в организме способен привести к гипокальциемии из-за нарушения всасывания кальция в кишечнике и резистентности скелета к паратгормону.

С гиперкальциемией в клинической практике сталкиваются в тех случаях, когда поток кальция во внеклеточный пул из скелета, кишечника превышает скорость его выведения из организма.

В частности, ускоренная резорбция костной ткани при злокачественных опухолях приводит к гиперкальциемии и гиперкальциурии. Гиперкальциемия может быть вызвана увеличением всасывания кальция из кишечника (интоксикация препаратами, содержащими витамин D), задержкой выведения почками (тиазидовые мочегонные средства), ускорением резорбции костной ткани при длительной иммобилизации.

Самой частой причиной гиперкальциемии у амбулаторных больных является гиперпаратиреоз, тогда как у госпитализированных больных ее причиной являются злокачественные новообразования. Все это объясняет 90-95% всех случаев гиперкальциемии. Первичный гиперпаратиреоз характеризуется повышенной секрецией паратгормона, приводящей к гиперкальциемии. На ранних стадиях у 80% больных с гиперпартиреозом заболевание может протекать бессимптомно и диагноз часто устанавливают по результатам лабораторных исследований, если в так называемую "биохимическую" панель включено определение кальция.

Определение уровня интактного паратгормона с одновременным определением содержания общего и свободного кальция относится к самому чувствительному и надежному методу оценки функции паращитовидной железы, и результаты этих тестов являются определяющими в дифференциальной диагностике гиперкальциемии.

Пациенты с подтвержденным первичным гиперпаратиреозом подвергаются хирургическому вмешательству. При бессимптомном течении заболевания решение о его необходимости принимают в зависимости от концентрации ионизированного и общего кальция в сыворотке, моче, величины клиренса креатинина и плотности кости.

Гиперкальциемия встречается у 10-20% больных со злокачественными опухолями. Опухоли наиболее часто приводят к гиперкальциемии за счет продукции паратгормонподобного белка (PTHrP), секреция которого в кровь стимулирует рассасывание кости, и/или инвазии в кость метастатической опухоли, продуцирующей местные факторы, стимулирующие резорбцию кости. Сам PTHrP связывается с рецепторами к паратгормону, выступая основными посредником "злокачественной" гиперкальциемии. Цитокины типа интерлейкина-1, фактора некроза опухоли и PTHrP являются важными посредниками гиперкальциемии при множественной миеломе и других гематологических заболеваниях.

IV. Гомеостаз кальция

Первичный океан содержал преимущественно К + и Mg 2+ , и потому появившиеся в ходе эволюции белки функционируют наилучшим образом именно в такой среде. Со временем состав морской воды изменился так, что преобладающими ионами стали Na + и Са 2+ . В результате для обеспечения условий функционирования внутриклеточных белков потребовался механизм ограничения концентрации Na + и Са 2+ в клетках при сохранении К + и Mg 2+ . Таким механизмом стали связанные с мембраной натриевый и кальциевый насосы, способные поддерживать высокий (1000-кратный в случае Са 2+) градиент концентрации иона между цитозолем и внеклеточной жидкостью. У современных многоклеточных организмов Na + и Са 2+ -это основные ионы внеклеточной среды. Гормоны и другие биологически активные вещества вызывают быстрые кратковременные изменения тока ионов кальция через плазматическую мембрану клетки и от одного внутриклеточного компартмента к другому. В итоге ионы кальция служат внутриклеточным медиатором, воздействующим на разнообразные обменные процессы.

Переход от водной среды, богатой Са 2+ к наземной, где этот элемент относительно дефицитен, был сопряжен с развитием сложного механизма гомеостаза кальция, обеспечивающего экстракцию Са 2+ из источников питания и предотвращения резких изменений концентрации Са 2+ во внеклеточную жидкость. В этот механизм включены три гормона - паратиреоидный (ПТГ), кальцитриол и кальцитонин (КТ), - которые действуют на три органа: кости, почки и кишечник. При падении уровня ионизированного кальция в плазме крови ниже допустимой границы (< 1,1 ммоль/л) увеличивается секреция ПТГ паращитовидными железами. ПТГ стимулирует переход кальция и фосфата из костей в кровь, а также резорбцию кальция и экскрецию фосфата в почках.

Второй важный аспект действия ПТГ на почки - стимуляция образования 1,25 (OH) 2 -D 3 . Это соединение, называемое теперь кальцитриолом, - активная форма того, что раньше называли витамином D. Кальцитриол влияет на кишечник, усиливая всасывание кальция, и, по-видимому, играет пермиссивную роль в эффекте ПТГ на кости и почки. Координированные действия этих агентов направлены на увеличение уровня Са 2+ во внеклеточной жидкости при постоянстве или снижении уровня фосфата. Как только концентрация внеклеточного Са 2+ возвращается к норме, секреция ПТГ по механизму обратной связи снижается. Увеличение концентрации Са 2+ тормозит и образование кальцитриола (частично через снижение ПТГ), причем одновременно возрастает количество неактивных продуктов метаболизма этого соединения. Все это приводит к уменьшению всасывания кальция в кишечнике и снижению влияния ПТГ на почки и скелет. У некоторых животных при возрастании внеклеточного уровня Са 2+ усиливается секреция кальцитонина (КТ) К-клетками щитовидной железы или ультимобранхиальными тельцами. У человека роль КТ в гомеостазе кальция (в норме) остается неясной; по некоторым данным, полученным in vitro, КТ может тормозить резорбцию костей.

V. Гормоны, участвующие в гомеостазе кальция

1. Паратиреотропный гормон

V.1.1 Структура

ПТГ - одноцепочечный пептид, состоящий из 84 аминокислотных остатков (молекулярная масса 9500) и не содержащий углеводов или каких-либо иных ковалентно связанных компонентов. Вся биологическая активность принадлежит N-концевой трети молекулы: ПТГ 1-34 полностью активен. Область 25-34 ответственна в первую очередь за связывание с рецептором.

ПТГ синтезируется в виде молекулы-предшественника, состоящего из 115 аминокислотных остатков. Непосредственный предшественник ПТГ - это проПТГ, отличающийся от активного гормона тем, что содержит на N-конце дополнительный гексапептид с выраженными основными свойствами и неясной функцией. Первичным генным продуктом и непосредственным предшественником проПТГ оказался препроПТГ; он отличается от проПТГ наличием дополнительной N-концевой последовательности из 25 аминокислотных остатков, обладающей (как и другие лидерные или сигнальные последовательности, характерные для секреторных белков) гидрофобными свойствами.

ПрепроПТГ оказался первым идентифицированным препрогормоном. По мере того как молекулы препроПТГ синтезируются, на рибосомах, происходит их перенос внутрь цистерн эндоплазматического ретикулума. Во время переноса отщепляется препептид из 25 аминокислотных остатков (сигнальный или лидерный пептид) образуется проПТГ. Далее проПТГ транспортируется в аппарат Гольджи, где происходит ферментативное отщепление пропептида и образование конечного продукта - ПТГ. Из аппарата Гольджи ПТГ поступает в секреторные пузырьки (везикулы) и далее этот гормон может 1) накапливаться,

2) распадаться,

3) немедленно секретироваться.

V.1.2 Участие ПТГ в минеральном гомеостазе

А . Кальциевый гомеостаз .

На центральную роль ПТГ в обмене кальция указывает следующее наблюдение: в процессе эволюции этот гормон впервые появляется у животных, пытающихся адаптироваться к наземному существованию. В основе физиологического механизма поддержания баланса кальция лежат долгосрочные эффекты ПТГ, который регулирует всасывание кальция в кишечнике путем стимуляции образования кальцитриола. В случаях хронической недостаточности Са 2+ в пище его поступление путем всасывания в кишечнике оказывается неадекватным потребностям и тогда включается сложная регуляторная система, в которой тоже участвует ПТГ. При этом ПТГ восстанавливает нормальный уровень кальция во внеклеточной жидкости путем прямого воздействия на кости и почки и опосредованного (через стимуляцию синтеза кальцитриола) на слизистую кишечника. ПТГ 1) повышает скорость растворения кости (вымывание как органических, так и неорганических компонентов), что обеспечивает переход Са 2+ во внеклеточную жидкость;

2) снижает почечный клиренс, т.е. экскрецию кальция, тем самым способствуя повышению концентрации этого катиона во внеклеточную жидкость;

3) посредством стимуляции образования кальцитриола увеличивает эффективность всасывания Са 2+ в кишечнике. Быстрее всего проявляется действие ПТГ на почки, но самый большой эффект дает воздействие на кости. Таким образом, ПТГ предотвращает развитие гипокальциемии при недостаточности кальция в пище, но этот эффект осуществляется за счет вещества кости.

Б . Гомеостаз фосфата .

Парным кальцию ионом обычно является фосфат; кристаллы гидроксиапатита в костях состоят из фосфата кальция. Когда ПТГ стимулирует растворение минерального матрикса кости, фосфат высвобождается вместе с кальцием. ПТГ повышает также почечный клиренс фосфата. В итоге суммарный эффект ПТГ на кости и почки сводится к увеличению концентрации кальция и снижению концентрации фосфата во внеклеточной жидкости. Очень важно, что тем самым предотвращается возможность перенасыщения плазмы крови кальцием и фосфатом.

V.1.3 Биохимия

А . Регуляция синтеза .

Концентрация Са 2+ в среде не влияет на скорость синтеза проПТГ, но скорость образования и секреции ПТГ значительно возрастает при снижении концентрации Са 2+ . Оказалось, что 80-90% синтезированного проПТГ не удается обнаружить в виде ПТГ, накапливаемого в клетках, либо в среде инкубации при проведении опытов in vitro. Отсюда был сделан вывод, что большая часть синтезированного проПТГ быстро распадается. Позднее было обнаружено, что скорость процесса распада снижается при низких концентрациях Са 2+ и увеличивается при высоких. Таким образом, кальций влияет на продукцию ПТГ путем регуляции процесса распада, а не синтеза. Об уровне общего синтеза проПТГ можно судить по количеству ПТГ мРНК; оказалось, что и оно не меняется при значительных колебаниях концентраций внеклеточного Са 2+ . По-видимому, увеличение синтеза ПТГ в организме может произойти лишь в результате возрастания числа и размеров вырабатывающих ПТГ главных клеток паращитовидных желез.

Б . Регуляция метаболизма .

Распад ПТГ начинается спустя примерно 20 минут после синтеза проПТГ и на первоначальном этапе не зависит от концентрации Са 2+ ; распаду подвергаются молекулы гормона, находящиеся в секреторных везикулах. Вновь образованный ПТГ либо немедленно секретируется, либо накапливается в везикулах для последующей секреции. Процессы распада начинаются после того, как секреторные везикулы попадают в компартмент накопления.

В ходе протеолитического расщепления ПТГ образуются весьма специфические фрагменты, причем большое количество С-концевых фрагментов ПТГ поступает в кровь. Их молекулярная масса составляет около 7000. В основном это последовательность ПТГ 37-84 , в меньшей степени - ПТГ 34-84 . Большая часть новосинтезированного ПТГ подвергается протеолизу; в целом на один моль интактного ПТГ секретируются примерно два моля С-концевых фрагментов. Таким образом, ПТГ в крови представлен в основном этими молекулами. Биологическая роль С-концевых фрагментов ПТГ не выявлена, но возможно, что они удлиняют время существования гормона в кровотоке. В ткани паращитовидных желез был обнаружен ряд протеолитических ферментов, в том числе катепсины В и D. Катепсин В расщепляется ПТГ на два фрагмента - ПТГ 1- 36 и ПТГ 37 - 84 ; последний не подвергается дальнейшему протеолизу, а ПТГ 1-36 быстро последовательно расщепляется до ди- и трипептидов. ПроПТГ не поступает в кровь; ПТГ 1- 34 выходит из железы в минимальных количествах (если вообще выходит). ПрепроПТГ удалось идентифицировать путем расшифровки кодирующей последовательности гена ПТГ. Протеолиз ПТГ проходит в основном в паращитовидной железе, но, кроме того, как показано в ряде работ, секретированный ПТГ подвергается протеолизу и в других тканях. Однако вклад этого протекающего вне эндокринной железы процесса в общий протеолитический распад ПТГ не определен; неизвестно также, какие протеазы участвуют в расщеплении и насколько сходны последовательность и продукты протеолиза.

В периферическом обмене секретированного ПТГ участвуют печень и почки. После гепатоэктомии фрагменты 34-84 практически исчезают из крови, из чего следует, что печень служит основным органом, в котором они образуются. Роль почек состоит, по-видимому, в удалении из крови и экскреции этих фрагментов. Периферический протеолиз протекает главным образом в купферовых клетках, выстилающих просвет синусоидов печени. Эндопептидаза, ответственная за начальный этап протеолиза (расщепление на N - и С-концевые фрагменты), локализована на поверхности этих макрофагоподобных клеток, непосредственно контактирующих с плазмой крови. Этот фермент, который также является катепсином В, расщепляет ПТГ между 36 и 37 остатками; аналогично событиям в паращитовидной железе образовавшийся С-концевой фрагмент продолжает циркулировать в кровотоке, а N-концевой быстро распадается.

В . Регуляция секреции .

Секреция ПТГ находится в обратной зависимости oт концентрации ионов кальция и магния в среде, а также от уровня иммунореактивного ПТГ в крови. Как показано на рис.2 между содержанием ПТГ в сыворотке крови и концентрацией кальция в ней (в пределах от 4 до 10,5 мг% сыворотки) существует линейная зависимость. Присутствие биологичеки активного ПТГ в сыворотке крови в случаях, когда уровень кальция достигает 10,5 мг% и более служит признаком гиперпаратиреоза.

Рис.2. Концентрация кальцитонина и паратиреоидного гормона как функция концентрации кальция в плазме крови.

Существует также линейная зависимость между высвобождением ПТГ и уровнем сАМР в клетках паращитовидных желез. Вероятно, эта зависимость опосредована изменениями уровня Са 2+ в клетках, поскольку между внутриклеточными концентрациями Са 2+ и сАМР существует обратная связь. В основе ее может лежать хорошо известный активирующий эффект кальция на фосфодиэстеразу (через Са 2+ /кальмодулин-зависимую протеинкиназу) либо ингибирующий эффект (по аналогичному механизму) на аденилатциклазу. Фосфат не влияет на секрецию ПТГ.

В паращитовидных железах сравнительно мало накопительных гранул, и количество гормона в них может обеспечить максимальную секрецию лишь в течение 1,5 ч. Это составляет контраст с островковой тканью поджелудочной железы, где содержание инсулина достаточно для нескольких дней секреции, а также со щитовидной железой, содержащей запас гормона на несколько недель. Таким образом, процессы синтеза и секреции ПТГ должны идти беспрерывно.

V.1.4 Механизм действия

А . Рецептор ПТГ .

ПТГ связывается с мембранным рецептором, представленным простым белком с мол. массой около 70000. В клетках почек и кости рецепторы, по-видимому, идентичны; в клетках, не являющихся мишенями ПТГ, этот белок отсутствует. Взаимодействие гормона с рецептором инициирует типичный каскад событий: активация аденилатциклазы - увеличение клеточной концентрации сAMP - увеличение содержания кальция в клетке - фосфорилирование специфических внутриклеточных белков киназами - активация определенных внутриклеточных ферментов или белков, определяющих в конечном счете биологическое действие гормона. Система, отвечающая на действие ПТГ, подобно системам других белковых и пептидных гормонов, является объектом понижающей регуляции количества рецепторов; кроме того, ей свойствен феномен "десенситизации", механизм которой связан не с увеличением содержания сAMP, а с последующими реакциями каскада.

Б . Влияние ПТГ на кости .

ПТГ проявляет множественные эффекты на костную ткань, влияя, по-видимому, на разные типы ее клеток. Суммарный эффект ПТГ - деструкция кости, сопровождающаяся высвобождением кальция, фосфора и элементов органического матрикса, в том числе продуктов распада коллагена. Клетками, ответственными за этот процесс, могут быть остеокласты, относительно которых доказано, что они разрушают кость при хронической стимуляции посредством ПТГ, либо остеоциты, которые тоже способны резорбировать кость. Возможно, ПТГ стимулирует дифференцировку клеток-предшественников и их превращение в клетки, резорбирующие кость. В низких концентрациях. вероятно соответствующих физиологическим, ПТГ оказывает анаболический эффект и ответственен за перестройку кости. При воздействии этих концентраций гормона наблюдается увеличение числа остеобластов, возрастание активности щелочной фосфатазы, свидетельствующее о формировании новой костной ткани, и повышенное включение радиоактивной серы (в виде сульфата) в хрящ. В действии ПТГ на кость пермиссивную роль может играть кальцитриол.

Внутриклеточным посредником ПТГ служит, видимо, Са 2+ . Первое проявление эффекта ПТГ состоит в снижении концентрации Са 2+ в перицеллюлярном пространстве и возрастании его внутри клетки. Увеличение внутриклеточного кальция стимулирует синтез РНК в клетках кости и высвобождение ферментов, участвующих в резорбции кости. Эти процессы, по-видимому, опосредованы присоединением кальция к кальмодулину. В отсутствие внеклеточного кальция ПТГ по-прежнему повышает концентрацию сAMP, но уже не стимулирует резорбцию кости. Таким образом, важным условием для проявления стимулирующего действия ПТГ на резорбцию кости может быть парадоксальное увеличение входа ионизированного кальция в резорбирующие кость клетки.

В . Влияние ПТГ на почки .

ПТГ оказывает на почки целый ряд эффектов, а именно он влияет на транспорт некоторых ионов и регулирует синтез кальцитриола. В нормальных условиях свыше 90% Са 2+ , содержащегося в клубочковом фильтрате, подвергается ресорбции (реабсорбции), но ПТГ увеличивает эту величину до 98% и более. Ресорбция фосфата в норме составляет 75-90% в зависимости от диеты и некоторых других факторов; ПТГ тормозит ресорбцию фосфата независимо от ее базального уровня. ПТГ ингибирует также транспорт ионов натрия, калия и бикарбоната. Эффект ПТГ на метаболизм кальцитриола осуществляется, видимо, через те же участки (сайты) клеток, что и действие на минеральный обмен.

При вливании ПТГ наблюдается быстрое увеличение концентрации сАМР в почечных клетках и выведение сAMP с мочой. Этот эффект предшествует характерной для действия ПТГ фосфатурии и, очевидно, ответствен за нее. ПТГ-стимулируемая аденилатциклаза находится в базолатеральной части клеток, расположенных в кортикальных участках почечных канальцев; она отличается от аденилатциклазы почек, стимулируемой кальцитонином, катехоламином и АДГ. Внутриклеточные белки-рецепторы сАМР (т.е., как принято считать, протеинкиназы) - выявляются в щеточной каемке этих клеток, на люминальной поверхности канальцев. Следовательно, сАМР, синтезированная под влиянием ПТГ, мигрирует от базолатеральной области клетки к ее поверхности, обращенной в просвет канальца, где и оказывает эффект на транспорт ионов.

Кальций, видимо, вовлечен в механизм действия ПТГ на почки. В самом деле, первый физиологический эффект введения ПТГ - снижение содержания Са 2+ во внеклеточной жидкости и увеличение его внутри клетки. Однако эти сдвиги происходят после изменения внутриклеточной концентрации сАМР, так что в почках связь между током Са 2+ в клетки и действием ПТГ не столь отчетлива, как в кости.

Г . Влияние ПТГ на слизистую кишечника .

ПТГ по-видимому, не оказывает прямого эффекта на транспорт Са 2+ через слизистую кишечника, но он служит решающим фактором регуляции биосинтеза кальцитриола и оказывает безусловно важное непрямое действие на кишки.

V.1.5 Патофизиология

Недостаток ПТГ приводит к гипопаратиреозу. Биохимические признаки этого состояния - сниженный уровень ионизированного кальция и повышенный уровень фосфата в сыворотке крови. К числу симптомов относится высокая нейромышечная возбудимость, вызывающая (при умеренной тяжести) судороги и тетанические сокращения мышц. Тяжелая острая гипокальциемия ведет к тетаническому параличу дыхательных мышц, ларингоспазму, сильным судорогам и смерти. Длительная гипокальциемия сопровождается изменениями в коже, развитием катаракт и кальцификацией базальных ганглиев мозга. Причиной гипопаратиреоза обычно служит случайное удаление или повреждение паратиреоидных желез при операциях на шее (вторичный гипопаратиреоз), но иногда болезнь возникает вследствие аутоиммунной деструкции паратиреоидных желез (первичный гипопаратиреоз).

При псевдогипопаратиреозе эндокринная железа продуцирует биологически активный ПТГ, но органы-мишени к нему резистентны, т.е. он не оказывает эффекта. В результате возникают те же биохимические сдвиги, что и при гипопаратиреозе. Они сопряжены обычно с такими нарушениями развития, как малый рост, укороченные пястные и плюсневые кости, задержка умственного развития. Существует несколько типов псевдогипопаратиреоза; их связывают 1) с частичным дефицитом регуляторного G s -белка аденилатциклазного комплекса либо 2) с нарушением какого-то этапа, не относящегося к механизму образования сAMP.

Гиперпаратиреоз, т.е. избыточная продукция ПТГ, возникает, как правило, вследствие аденомы паратиреоидных желез, но может быть обусловлен и их гиперплазией либо эктопической продукцией ПТГ злокачественной опухолью. Биохимические критерии гиперпаратиреоза - повышенные уровни ионизированного кальция и ПТГ и сниженный уровень фосфата в сыворотке крови. В запущенных случаях гиперпаратиреоза можно наблюдать выраженную резорбцию костей скелета и различные повреждения почек, включая камни в почках, нефрокалъциноз, частое инфицирование мочевых путей и (в отдельных случаях) снижение функции почек. Вторичный гиперпаратиреоз, характеризующийся гиперплазией паратиреоидных желез и гиперсекрецией ПТГ можно наблюдать у больных с почечной недостаточностыо. Считается, что развитие гиперпаратиреоза у этих больных обусловлено снижением синтеза 1,25- (OH) 2 -D 3 из 25-OH-D 3 в патологически измененной паренхиме почек и, как следствие, нарушением всасывания кальция в кишечнике; это нарушение в свою очередь вызывает вторичное высвобождение ПТГ как компенсаторную реакцию организма, направленную на поддержание нормальных уровней кальция во ВЖ.

V.2 Кальцитриол

V.2.1 Общие положения о роли кальцитриола в гомеостазе кальция

А . История вопроса

Рахит - заболевание детей, характеризующееся нарушением минерализации скелета и сильно выраженными, уродующими деформациями костей, - был широко распространен в Северной Америке и Западной Европе в начале века. Результаты серии исследований позволили предположить, что рахит обусловлен недостаточностью какого-то компонента диеты. После того как было обнаружено, что рахит можно предотвратить добавлением в пищу жира тресковой печени, но при этом не витамин А является ее активным компонентом, этот фактор предупреждения рахита обозначили как жирорастворимый витамин D. Примерно в то же время было показано, что ультрафиолетовое облучение (искусственное или солнечным светом) также предупреждает развитие заболевания. В последующем было выявлено заболевание взрослых, эквивалентное рахиту, а именно остеомаляция. Это заболевание, характеризующееся нарушением минерализации костей, также поддавалось лечению витамином D. В развитии дальнейших исследований ключевую роль сыграли данные, показавшие, что лечение витамином D больных, имевших повреждения печени или почек, не давало ожидаемого эффекта. На протяжении последних 50 лет велось изучение структуры витамина D и механизма его действия, причем особенно быстро оно продвинулось в последнее десятилетие.

Б . Роль в гомеостазе .

Основная биологическая роль кальцитриола - это стимуляция всасывания кальция и фосфата в кишечнике. Кальцитриол - единственный гормон, способствующий транспорту кальция против концентрационного градиента, существующего на мембране клеток кишечника. Поскольку продукция кальцитриола очень строго регулируется (рис.3), очевидно, что существует тонкий механизм, поддерживающий уровень Са 2+ во ВЖ, несмотря на значительные колебания в содержании кальция в пище. Этот механизм поддерживает такие концентрации кальция и фосфата, которые необходимы для образования кристаллов гидроксиапатита, откладывающихся в коллагеновых фибриллах кости. При недостаточности витамина D (кальцитриола) замедляется формирование новых костей и нарушается обновление (ремоделирование) костной ткани. В регуляции этих процессов участвует в первую очередь ПТГ, воздействующий на клетки кости, но при этом необходим и кальцитриол в небольших концентрациях. Кальцитриол способен также усиливать действие ПТГ на реабсорбцию кальция в почках.

Рис. 3. Образование и гидроксилирование витамина D 3.2 5 - Гидроксилирование происходит в печени, гидроксилирование по иным положениям - в почках. Вполне вероятно образование 25, 26- (ОН) 2 -D 3 . Изображены формулы 7-дегидрохолестерола, витамина D 3 и 1,25- (ОН) 2 -D 3 .

V.2.2 Биохимия

А . Биосинтез .

Кальцитриол - это во всех отношениях гормон. Он образуется в сложной последовательности ферментативных реакций, которая включает перенос кровью молекул-предшественников, поступающих в различные ткани. (рис.3). Далее активное соединение - кальцитриол-транспортируется в другие органы, где активирует определенные биологические процессы по механизму, сходному с механизмом действия стероидных гормонов.

1. Кожа. Небольшие количества витамина D содержатся в продуктах питания (жир, печень рыб, желток яйца), но большая часть витамина D, используемого в синтезе кальцитриола, образуется в мальпигиевом слое эпидермиса из 7-дегидрохолестерола в ходе неферментативной. зависимой от ультрафиолетового света реакции фотолиза. Активность процесса находится в прямой зависимости от интенсивности облучения и в обратной - от степени пигментации кожи. С возрастом содержание 7-дегидрохолестерола в эпидермисе снижается, что может иметь прямое отношение к развитию отрицательного баланса кальция у стариков.

2. Печень. Специфический транспортный белок называемый D-связывающим белком, связывает витамин D 3 и его метаболиты и переносит D от кожи или кишечника в печень, где он подвергается 25-гидроксилированию, составляющему первый обязательный этап в образовании кальцитриола. Гидроксилирование происходит в эндоплазматическом ретикулуме в ходе реакции, протекающей с участием магния, NADPH, молекулярного кислорода и неидентифицированного цитоплазматического фактора. В реакции участвуют два фермента: NADPH-зависимая цитохром Р-450-редуктаза и цитохром Р-450. Реакция не регулируется; она протекает не только в печени, но (с малой интенсивностью) также в почках и кишках. Продукт реакции OH-D 3 поступает в плазму крови (составляя основную форму витамина D, присутствующего в крови) и при посредстве D-связывающего белка транспортируется в почки.

3. Почки. .25-OH-D 3 является слабым агонистом. Для проявления полной биологической активности соединение должно быть модифицировано путем гидроксилирования при С-1. Это происходит в митохондриях проксимальных извитых почечных канальцев в ходе сложной монооксигеназной реакции, протекающей при участии NADPH, Mg 2+ , молекулярного кислорода и по крайней мере трех ферментов:

1) почечной ферредоксин-редуктазы (флавопротеин),

2) почечного ферредоксина (железосодержащий сульфопротеин) и 3) цитохрома Р-450. В этой системе образуется 1,25- (OH) 2 -D 3 - самый активный из природных метаболитов витамина D.

4. Другие ткани. В плаценте содержится 1б-гидроксилаза, которая, по-видимому, играет важную роль как источник внепочечного кальцитриола. Активность этого фермента выявляется и в других тканях, включая костную, однако физиологическое значение фермента этих тканей минимально, судя по тому, что у небеременных животных после нефроэктомии уровень кальцитриола очень низок.

Б . Регуляция метаболизма и синтеза .

Подобно другим стероидным гормонам, кальцитриол является объектом жесткой регуляции по механизму обратной связи (рис.3 и табл.1).

Табл. 1. Регуляция почечной 1б-гидроксилазы.

У интактных животных низкое содержание кальция в пище и гипокальциемия вызывают значительное повышение 1б-гидроксилазной активности. В механизме этого эффекта участвует ПТГ, который также высвобождается в ответ на гипокальциемию. Роль ПТГ при этом пока не ясна, но установлено, что он стимулирует 1б-гидроксилазную активность как у D - авитаминозных животных, так и у животных, получавших витамин D. Недостаток фосфора в диете и гипофосфатемия тоже индуцируют 1б-гидроксилазную активность, но служат, видимо, более слабым стимулом, чем гипокальциемия.

Кальцитриол - важный регулятор своего собственного продуцирования. Повышение уровня кальцитриола тормозит 1б-гидроксилазу почек и активирует синтез 24-гидроксилазы, что ведет к образованию побочного продукта - 24,25- (OH) 2 -D 3, лишенного, по-видимому, биологической активности. Эстрогены, прогестероны и андрогены значительно увеличивают количество 1б-гидроксилазы у овулирующих птиц. Какую роль в синтезе кальцитриола играют эти гормоны (наряду с инсулином, гормоном роста и пролактином) у млекопитающих, остается неясным.

Стерольная структура, составляющая основу кальцитриола, может подвергаться модификациям в альтернативных метаболитечких последовательностях, а именно гидроксилироваться по положениям 1, 23, 24, 25 и 26 с образованием различных лактонов. Было обнаружено свыше 20 метаболитов, но ни для одного из них не удалось однозначно доказать наличие биологической активности.

V.2.3 Механизм действия

Действие кальцитриола на клеточном уровне аналогично действию других стероидных гормонов (рис.4) В исследованиях, проведенных с радиоактивным кальцитриолом, было показано, что он накапливается в ядре клеток кишечных ворсинок и крипт, а также остеобластов и клеток дистальных почечных канальцев. Кроме того, он был обнаружен в ядре клеток, в отношении которых и не предполагалось, что они являются клетками-мишенями кальцитриола; речь идет о клетках мальпигиевого слоя кожи и островков Лангерганса поджелудочной железы, некоторых клетках головного мозга, а также некоторых клетках гипофиза, яичников, семенников, плаценты, матки, грудных желез, тимуса, клетках-предшественниках миелоидного ряда. Связывание кальцитриола было обнаружено и в клетках паращитовидных желез, что крайне интересно, так как указывает на возможное участие кальцитриола в регуляции обмена ПТГ.

Рис. 4. Кальцитриол (К) функционирует подобно другим стероидным гормонам. Он индуцирует генные продукты, обеспечивающие перенос кальция из просвета кишечника во внеклеточную жидкость. КСБ - кальций-связывающий белок.

А . Рецептор кальцитриола .

Присутствующий в клетках кишечника белок с мол. массой 90000-100000 связывает кальцитриол с высокой степенью сродства и малой емкостью. Связывание насыщаемо, специфично и обратимо. Таким образом, этот белок отвечает основным критериям, характеризующим рецептор; он обнаружен во многих из перечисленных выше тканей. Если при анализе используют физиологические концентрации солей, то большая часть незанятого рецептора выявляется в ядре в связанном с хроматином виде. Это аналогично локализации рецепторов если не всех стероидных гормонов, то во всяком случае прогестерона и Т 3 . Остается не ясным, требуется ли для связывания с хроматином предварительная активация комплекса кальцитриол-рецептор, как это имеет место с типичными стероид-рецепторными комплексами.

Б . Кальцитриол-зависимые генные продукты .

Как известно уже на протяжении ряда лет, изменение процессов транспорта в кишечных клетках в ответ на добавление кальцитриола требует участия РНК и синтеза белка. Исследования, показавшие связывание в ядре рецепторов калъцитриола с хроматином, позволили предположить, что кальцитриол стимулирует транскрипцию генов и образование специфических мРНК. Действительно, удалось выявить один такой пример, а именно индукцию мРНК, кодирующей кальций-связывающий белок (КСБ).

Существует несколько цитозольных белков, связывающих Са 2+ с высокой степенью сродства. Часть из них принадлежит к группе кальцитриол-зависимых. В группу входит несколько белков, различающихся по молекулярной массе, антигенности и тканевому происхождению (кишки, кожа, кость). Из этих белков лучше всего изучен КСБ клеток кишечника. У D-авитаминозных крыс КСБ в таких клетках практически отсутствует; в целом концентрация КСБ в высокой степени коррелирует с количеством кальцитриола ядерной локализации.

В . Влияние кальцитриола на слизистую кишечника .

Для переноса Са 2+ и РО 3 - через слизистую кишки необходимы 1) захват и перенос через мембрану щеточной каемки и микроворсинок,

2) транспорт через мембрану клетокво слизистой,

3) выведение через базальную латеральную мембрану во ВЖ Совершенно очевидно, что кальцитриол активирует один или более из этих этапов, но конкретный механизм его действия не установлен. Предполагалось, что непосредственное участие в этом принимает КСБ, но впоследствии было показано, что перенос Са 2+ происходит через 1-2 ч после введения калъцитриола, т.е. задолго до увеличения концентрации КСБ в ответ на кальцитриол. Вероятно, КСБ, связывая Са 2+ , защищает от него клетки слизистой в периоды активного транспорта этого иона. Некоторые исследователи продолжают поиски белков, могущих участвовать в транспорте Са 2+ , тогда как другие считают, что этот процесс, в особенности начальное увеличение тока Ca 2+ , может быть опосредован изменением заряда мембраны. Обсуждается также роль метаболитов полифосфоинозитидов.

Г . Влияние кальцитриола на другие ткани .

О действии кальцитриола на иные ткани известно гораздо меньше. Его ядерные рецепторы выявлены в клетках кости, причем показано, что обусловленное кальцитриолом увеличение концентрации Са 2+ сопряжено с синтезом РНК и белка. Однако генные продукы предположительно индуцируемые кальцитриолом не идентифицированы; не известен также механизм связи между кальцитриолом и ПТГ в их действии на клетки кости.

Любопытное указание на роль кальцитриола в клеточной дифференцировке получено в исследованиях, продемонстрировавших, что этот гормон способствует превращению клеток промиелоцитарной лейкемии в макрофаги. Поскольку, как предполагают, остеокласты либо являются родственными макрофагам клетками, либо непосредственно происходят из них, вполне вероятно, что кальцитриол учавствует в этом процессе, способствуя дифференцировке клеток кости.

V.2.4 Патофизиология

Рахит - заболевание детского возраста, которое характеризуется низким уровнем кальция и фосфата в плазме крови и нарушением минерализации костей, ведущим к деформациям скелета. Чаще всего рахит вызывается недостатком витамина D. Различают два типа наследственного витамин D-зависимого рахита. Тип I обусловлен аутосомным рецессивным геном, детерминирующим нарушение превращения 25-OH-D 3 в кальцитриол. Тип II представляет собой аутосомный рецессивный дефект, при котором, по всей видимости, отсутствуют рецепторы кальцитриола.

У взрослых недостаточность витамина D вызывает остеомаляцию. При этом наблюдается снижение как всасывания кальция и фосфата, так и уровня этих ионов во ВЖ. Вследствие этого нарушается минерализация остеоида и формирование кости; такая недостаточная минерализация костей обусловливает их структурную слабость. В случаях, когда значительная часть паренхимы почек повреждена патологическим процессом или утрачена, образование кальцитриола снижается и соответственно уменьшается всасывание кальция. Последующая гипокальциемия вызывает компенсаторное увеличение секреции ПТГ, который воздействует на костную ткань таким образом, чтобы вызвать увеличение уровня Са 2+ во ВЖ. Этому сопутствует интенсивное обновление костей, их структурные изменения; развиваются симптомы заболевания, известного как почечная остеодистрофия. Своевременное, на ранней стадии лечение витамином D позволяет ослабить проявление болезни.

V.3 Кальцитонин

V.3.1 Происхождение и структура

Кальцитонин (КТ) - пептид, состоящий из 32 аминокислотных остатков (рис.5); у человека он секретируется парафолликулярными К-клетками щитовидной железы (реже - паращитовидной железы или тимуса), а у других видов - аналогичными клетками, расположенными в ультимобранхиальных железах. Эти клетки происходят из нервного гребешка и в биологическом отношении родственны клеткам многих других эндокринных желез.

Рис. 5. Структура кальцитонина человека.

Для проявления биологической активности необходима вся молекула КТ целиком, включая 7-членную N-концевую петлю, образованную с помощью цистеинового мостика Существует огромная межвидовая вариабельность в аминокислотной последовательности кальцитонинов (в КТ человека и свиньи имеется только 14 общих аминокислотных остатков из 32), но несмотря на различия, они проявляют перекрестно-видовую биологическую активность (т.е. КТ одного вида животных биологически активен при введении животным других видов). Самый активный из природных КТ был выделен из лосося.

V.3.2 Регуляция секреции

Уровни секреции КТ и ПТГ связаны обратной зависимостью и регулируются концентрацией ионизированного кальция (и, вероятно, магния) во ВЖ. Секреция КТ возрастает пропорционально концентрации Са 2+ при изменении последней в пределах от 9,5 до 15 мг %. Мощными стимуляторами секреции КТ служат глюкагон и пентагастрин, причем последний используется в качестве провоцирующего агента при диагносцирующем тестировании модулярной тиреокарциномы (злокачественное перерождение парафолликулярных К-клеток).

V.3.3 Механизм действия

История изучения КТ уникальна. За семь лет (1962-1968) КТ был открыт, выделен, секвенирован и синтезирован, но его роль в физиологии человека до сих пор не вполне ясна. Удаление щитовидной железы у животных не вызывает гиперкальциемии, а введение КТ здоровым испытуемым не приводит к заметному снижению уровня кальция в крови.

В тест-системах первичной мишенью КТ служит кость, где этот гормон тормозит резорбцию матрикса и тем самым снижает высвобождение кальция и фосфата. Этот эффект КТ не зависит от ПТГ. КТ увеличивает содержание сАМР в кости, влияя, по-видимому, на те клетки, которые не являются мишенями ПТГ.

Кт оказывает также значительный эффект на метаболизм фосфата. Он способствует входу фосфата в клетки кости и периостальную жидкость, снижая при этом выход кальция из костей в плазму крови. Этот вход фосфата может сопровождаться и входом кальция, судя по тому, что гипокальциемический эффект КТ зависит от фосфата. Такое действие КТ наряду с его способностью тормозить опосредованную остеокластами резорбцию костей позволяет объяснить эффективность применения данного гормона в борьбе с гиперкальциемией при раке.

V.3.4 Патофизиология

Клинические проявления недостаточности КТ не выявлены. Избыточность КТ наблюдается при медуллярной тиреокарциноме (МТК) - заболевании, которое может быть спорадическим или семейным. Уровень КТ при МТК нередко в тысячи раз превышает норму, однако это очень редко сопровождается гипокальциемией. Хотя биологическое значение такого возрастания уровня КТ не понятно, сам по себе этот факт важен в диагностическом отношении. Измерение КТ в плазме крови, причем часто на фоне провоцирующих секрецию агентов - кальция или пентагастрина, позволяет диагностировать это тяжелое заболевание на ранней стадии, когда оно поддается лечению.

Заключение

Итак, кальций внутри клетки играет ключевую роль в обеспечении многих важных физиологических функций, включая сокращение мышц, секрецию гормонов, активацию многих внутриклеточных процессов. Внутриклеточная концентрация его в цитоплазме клеток низкая - менее 10-6 моль/л, что, практически, в 1000 раз меньше, чем во внеклеточной жидкости (10-3 моль/л). Внеклеточный кальций участвует в обеспечении кальцием клетки, обеспечивает процессы минерализации костей, свертывания крови, влияет на проводимость и возбудимость мембран.

Регуляция кальциевого обмена достаточно сложный механизм. В него включены три гормона - паратиреотропный, кальцитонин и кальцитриол, которые действуют на три органа - кости, почки и кишечник. Координированные действия ПТГ и кальцитриола направлены на увеличение уровня Са 2+ во внеклеточной жидкости при постоянстве или снижении уровня фосфата. Как только концентрация внеклеточного Са 2+ возвращается к норме, секреция ПТГ по механизму обратной связи снижается. Увеличение концентрации Са 2+ тормозит и образование кальцитриола (частично через снижение ПТГ), причем одновременно возрастает количество неактивных продуктов метаболизма этого соединения. Все это приводит к уменьшению всасывания кальция в кишечнике и снижению влияния ПТГ на почки и скелет. У некоторых животных при возрастании внеклеточного уровня Са 2+ усиливается секреция кальцитонина (КТ) К-клетками щитовидной железы или ультимобранхиальными тельцами. У человека роль КТ в гомеостазе кальция (в норме) остается неясной; по некоторым данным, полученным in vitro, КТ может тормозить резорбцию костей.

Список литературы

1. Cohn D. V., Elting J. Biosynthesis, processing, and secretion of parathormone and secretory protein-1, Recent Prog. Horm. Res., 1983, 39, 181.

Подобные документы

    Кальциевые потенциалы действия. Описание процессов активации и инактивации каналов. Вклад открытых калиевых каналов в реполяризацию. Результаты экспериментов на аксоне кальмара с фиксацией потенциала. Роль кальция и натрия в возбуждении мембраны клетки.

    контрольная работа , добавлен 26.10.2009

    Знакомство с особенностями метаболизма кальция в организме. Роль кальция в формировании кратковременной памяти и обучающих навыков. Рассмотрение основных причин разрушения костей. Остеопороз как системное заболевание скелета. Анализ препаратов с кальцием.

    презентация , добавлен 21.11.2014

    Строение мембран. Мембраны эритроцитов. Миелиновые мембраны. Мембраны хлоропластов. Внутренняя (цитоплазматическая) мембрана бактерий. Мембрана вирусов. Функции мембран. Транспорт через мембраны. Пассивный транспорт. Активный транспорт. Ca2+ –насос.

    реферат , добавлен 22.03.2002

    Анализ роли кальция в обмене веществ, формировании костей, зубов, в процессах деления клеток и синтеза белка. Обзор регуляторов образования костной ткани, работы желез внутренней секреции, продуцирующих гормон, участвующий в регуляции кальциевого обмена.

    реферат , добавлен 14.12.2011

    Живая протоплазма клеток организма. Состав гемоглобина крови. Элементы, которые содержатся в организме человека в относительно больших количествах. Процессы возбудимости и расслабления. Значение кальция в обмене веществ. Регуляция водного равновесия.

    презентация , добавлен 11.01.2014

    Обзор особенностей структуры, биосинтеза, транспорта, рецепции, действия и метаболизма мужских половых гормонов андрогенов. Изучение полового поведения и агрессивности у самцов млекопитающих. Характеристика регуляции сперматогенеза и гомеостаза кальция.

    реферат , добавлен 20.04.2012

    Клиническое применение фотодинамической терапии. Механизм действия фотосенсибилизаторов на клеточном уровне. Роль митохондрий и ионов кальция в фотодинамически индуцированном апоптозе. Участие сигнальных процессов и защитных белков в реакциях клеток.

    контрольная работа , добавлен 19.08.2015

    Паратирин как основной гормон паращитовидных желез, анализ эффектов. Характеристика механизмов регуляции обмена кальция в организме. Знакомство с гормонами поджелудочной железы: инсулин, глюкагон, соматостатин. Рассмотрение схемы головного мозга человека.

    презентация , добавлен 08.01.2014

    Химический состав и строение биологических мембран. Процессы трансформации и запасания энергии путем фотосинтеза и тканевого дыхания. Транспорт веществ через клеточные мембраны, способность генерировать биоэлектрические потенциалы и проводить возбуждение.

    реферат , добавлен 06.02.2015

    Единственный витамин, действующий и как витамин, и как гормон. Влияние на клетки кишечника, почек и мышц. Гормональная регуляция обмена кальция и фосфора. Онкозаболевания, повышение иммунитета организма. Витамин Д и костно-мышечная система человека.

играют важную роль в регуляции жизнедеятельности организма. Проникая в клетки, они активируют внутриклеточные биоэнергетические процессы (превращение АТФ в цАМФ, фосфорилирование белков и др.), обеспечивающие реализацию физиологических функций этих клеток. Трансмембранный транспорт ионов кальция происходит через специальные каналы, представляющие собой макромолекулярные белки, рассекающие пептидные биослои клеточной мембраны, и содержащие специфические участки (рецепторы), распознающие ионы кальция. Называют их кальциевыми или «медленными», каналами (в отличие от «быстрых» каналов, через которые транспортируются другие ионы). В организме поток Са2+ через мембраны регулируется рядом эндогенных факторов (нейрогенными, медиаторами — ацетилхолином, катехоламинами, серотонином, гистамином и др.). В конце 60-х годов текущего столетия была обнаружена способность некоторых экзогенных фармакологических веществ тормозить прохождение Са2+ через «медленные» каналы. Первыми такими веществами были производные фенилалкиламина — прениламин (дифрил) и верапамил, предложенные первоначально в качестве коронарорасширяющих средств. В настоящее время известен ряд соединений, оказывающих подобное действие. Их объединяют под групповым названием «блокаторы кальциевых каналов», «блокаторы „медленных“ каналов», «блокаторы входа кальция» и др.

Принято название «антагонисты ионов кальция». Основными (типичными) представителями этой группы являются в настоящее время препараты верапамил, нифедипин (фенигидин), дилтиазем. В соответствии с химической структурой эти и родственные им препараты делят на 3 подгруппы:

1) фенилалкиламины (верапамил, галлопамил и др.);

2) дигидропиридины (нифедипин, никардипин и др.);

3) бензотиазепины (дилтиазем и др.). К антагонистам ионов кальция относят также циннаризин (см.), флунаризин (см.) и другие лекарственные средства, однако в связи с неизбирательностью действия их не относят к «типичным» препаратам этой группы. В последние годы антагонисты ионов кальция нашли широкое применение в различных областях медицины. Широкий спектр их действия объясняется многообразием регулируемых ионами кальция физиологических процессов. Ионы кальция способствуют усилению сократимости миокарда, влияют на активность синусного узла и атриовентрикулярную проводимость, вызывают сужение сосудов и повышение сосудистого сопротивления, способствуют повышению тонуса бронхов и органов желудочно-кишечного тракта, мочеточников и мочевыводящих путей; стимулируют секрецию гормонов гипофиза и высвобождение надпочечниками катехоламинов, а также агрегацию тромбоцитов и др. Ионы кальция участвуют в процессе выделения нейромедиаторов пресинаптическими нервными окончаниями. При патологических состояниях ( , гипоксия и др.) ионы Са"+, особенно при повышенной их концентрации, могут чрезмерно усиливать процессы клеточного метаболизма, повышать потребность тканей в кислороде и вызывать различные деструктивные процессы. В этих условиях антагонисты ионов кальция могут оказывать патогенетический фармакотерапевтический эффект. Несмотря на общность основного свойства (блокада «медленных» каналов), антагонисты Са2+ различаются по фармакологическому действию, что связано с особенностями их химической структуры и физико-химических свойств, способностью непосредственно влиять на внутриклеточные процессы. В настоящее время выделяют различные типы кальциевых каналов (L, Т, N, Р), обладающих разными биофизическими свойствами. Полагают, что различные типы каналов содержат дискретные рецепторы для разных групп антагонистов ионов кальция, с чем в определенной степени связаны особенности их действия на физиологические процессы. В наиболее общем виде различия в действии основных антагонистов Са2+ на сердечно-сосудистую систему выражаются в более сильном влиянии верапамила на атриовентрикулярную проводимость и в меньшей на гладкие мышцы сосудов; нифедипин же больше воздействует на мышцы сосудов и меньше — на проводящую систему сердца; дилтиазем примерно в равной степени влияет на мышцы сосудов и проводящую систему; нитренA дипин почти избирательно влияет на периферические сосуды и не влияет на возбудимость и проводящую систему сердца.

ИОНИЗИРОВАННЫЙ КАЛЬЦИЙ, СЕРДЦЕ И ФУНКЦИИ ГЕМОДИНАМИКИ

Ион кальция абсолютно необходим для нормального процесса сокращения миокарда. Это было установлено более 100 лет назад Ringer, а досконально изучено McLean and Hastings в 1934 году, когда они показали, что кальций увеличивает сократительную способность изолированного сердца амфибии. В клинике использование препаратов кальция широко распространено: в Massachusets General Hospital ежегодно используется более 30000 доз кальция, эквивалентных одной ампуле. Соли кальция обладают положительным инотропным эффектом, а также влияют на тонус гладкой мускулатуры сосудов. В связи с тем, что ион кальция необходим для сокращения гладких мышц сосудов, он участвует в регуляции артериального давления путем действия на периферические сосуды, что определяет как полезные, так и вредные стороны применения кальция. Это может быть очень важным при наличии у больного гиперкалиемии и гиперкальциемии.
Цель данной публикации - предоставить обзор современных взглядов на ионизированный кальций крови, его измерений и их интерпретаций, влияния кальция на сердце и периферические сосуды, а также на ограничения и области применения кальция в терапии. Хотя блокаторы кальциевых каналов в данный момент пристально изучаются в связи с их важными фармакодинамическими эффектами при лечении многих сердечно-сосудистых заболеваний, данная проблема не является темой настоящего обзора.

Концентрация общего кальция и концентрация ионизированного кальция.

Кальций, находящийся в крови - это источник внеклеточного кальция, который способен взаимодействовать с клетками. Кальций в крови находится в нескольких формах: связанный (или в комплексе) и свободный (или ионизированный). Это деление представляет определенный физиологический интерес, поскольку только ионизированная форма физиологически активна, как это впервые показали McLean и Hustings в 1934 году. Эти авторы сделали вывод, что ионизированный кальций необходим для ритмичной механической активности изолируемого перфузируемого сердца лягушки. Четыре десятилетия спустя это было подтверждено на изолированном сердце собаки, когда было показано, что хотя одновременная инфузия кальция глюконата и цитрата натрия повышали общую концентрацию кальция в сыворотке крови, уровень ионизированного кальция и сократительная способность миокарда параллельно снижались.
Данная работа также привела к получению номограммы, которая стала краеугольным камнем в клинической оценке концентраций ионизированного кальция в сыворотке. Эта номограмма позволяет получить концентрации ионизированного кальция при известной общей концентрации кальция и общей концентрации белка, предполагая, что рН равно 7.35 и отношение альбумины/глобулины составляет 1.8. В настоящее время, в связи с тем, что прямое измерение концентрации ионов кальция не везде доступно, такая или подобная номограммы могут помочь оценить концентрацию ионизированного кальция у больных как терапевтического, так и хирургического профиля. Данная методика до сих пор используется для оценки кальциевого гомеостаза. Однако, в связи с возможными отклонениями в балансе кальция возможны неточности. Измерение концентраций ионизированного кальция необходимы для понимания влияния на гемодинамику гипер- или гипокальциемии.

Клиническое определение ионизированного кальция в крови

Ионизированный кальций плазмы может быть определен двумя способами: непрямым, как корреляция либо с общей концентрацией кальция при помощи номограммы, либо с продолжительностью интервала P-Q ЭКГ или прямым способом, с помощью селективной системы электродов.
Непрямые методы дают весьма приблизительные результаты, которые могут правильно, а могут и неправильно отражать количество ионов кальция у данного конкретного больного. При использовании номограмм во внимание принимается корреляция между ионизированной и неионизированной формами кальция в организме. Однако на нескольких группах больных было доказано, что данные показатели могут изменяться независимо друг от друга, что и определяет разницу между результатами подсчета кальция по номограммам и результатом его прямого измерения. Хотя на протяжении десятилетий корреляция между продолжительностью сегмента ST ЭКГ и концентрацией кальция в крови больного подтверждалась при обследованиях больных с хроническим нарушениями кальциевого обмена, острые изменения концентрации кальция в крови больных не могут быть точно определены по изменениям интервала Q-T, как это доказано в клинике и в эксперименте. Только прямое измерение концентрации ионов кальция может обеспечить картину ионного статуса больного, что очень часто необходимо при лечении больного.

Система электродов для определения кальция

Как и другие часто исследуемые электролиты (натрий, калий и ионы водорода), активность иона кальция в образцах цельной крови, плазмы, сыворотки и водных растворов может быть измерена с помощью системы электродов, которые являются высокоспецифичными и чувствительными к данному иону. Детальное описание ион-селективных электродов находится вне пределов настоящего обзора, но общие вопросы конструкции электродов и их функции будут обсуждены здесь.
Кальциевая ион-селективная система электродов состоит из ион-селективной мембраны и внешнего стандартного электрода, оба присоединяются к вольтметру со шкалой с высоким входным импендансом. Поскольку оба электрода также находятся в контакте с раствором, содержащим электролиты, система является электрической цепью.
Любая ион-селективная мембрана генерирует мембранный потенциал. Потенциал диффузии, который формируется неравными скоростями диффузии заряженных частиц электролита, был описан более ста лет назад. Электрохимические свойства мембран были открыты в 1890 году, при этом использовалась концепция полупроницаемой мембраны, то есть такой мембраны, которая проницаема для определенного вида ионов и ни для какого другого. Мембранная теория электрохимии клеток и тканей была разработана в начале столетия, и до сих пор она остается основой концепции биоэлектрических потенциалов. Исследование компактных твердых мембран привело к изобретению селективного на ионы водорода стекла и изобретению водородного электрода в 1920-е годы. В настоящее время теоретические аспекты применения этого электрода и его практическое использование хорошо изучены и разработаны. Кальциевый электрод был изобретен в 1898 году, в течение последних пятидесяти лет были разработаны еще несколько типов электродов. Эти электроды практически не используются в связи с их низкой селективностью и низкой стабильностью в белковосодержащих растворах. Кальциевый электрод, пригодный для медико-биологических исследований, был изобретен в 1967 году.
Механизм действия кальциевого электрода такой же, как и у электрода для измерения рН - это механизм ионного обмена, который включает в себя прохождение через мембрану свободной фракции ионов в омывающий раствор.
Кальциевая селективная мембрана разделяет два неорганических раствора, содержащих кальций: один из них, раствор хлорида кальция, известного и постоянного состава называется внутренним заполняющим раствором, в который погружен хлор-серебряный электрод с серебряным покрытием (внутренний калибровочный элемент) и другой раствор - это образец, в котором необходимо измерить активность иона кальция в присутствии других ионов. Кальциевый электрод был изобретен в 1967 году и прекрасно подходит для клинического исследования различных жидкостей, то есть кальций-селективная мембрана пригодна для исследования вязких органических жидкостей. Органические жидкости, содержащие кальций, растворяются в специальном органическим растворителе. Другие органические производные кальция с высоким молекулярным весом растворяются в поливиниловой матрице, что значительно увеличивает чувствительность электродов. Конструкция электродов также была усовершенствована.
Внутри каждой фазы, водного раствора и мембраны, существует электронейтральность, то есть одинаковое количество положительно и отрицательно заряженных частиц. В противоположность этому, при наличии органической мембраны и неорганического раствора электролитов, уравнение заряда смещается, поскольку ионы кальция на мембране и ионы кальция в водной фазе среды могут свободно обмениваться, органофильные фосфат-ионы имеют сродство к мембране, поскольку в воде они нерастворимы и неподвижны. Толщина мембраны имеет особое значение, поскольку именно от нее будет зависеть граница разделения двух сред, и транспорт ионов кальция из водной фазы в мембрану, где ионы кальция теряют свою гидрофильную оболочку и создают комплексы с органическими фосфатами. Однако, общее количество транспортированных ионов кальция зависит от количества их даже в самом разведенном растворе. Ионы кальция образуют комплекс с фосфороорганическими соединениями мембраны и образуют концентрационный градиент между внешним и внутренними растворами, вследствие чего на мембране образуется разность потенциалов и возникает электрический ток. Движение комплексов ионов кальция через мембрану происходит до тех пор, пока на мембране не останется ни одного свободного фосфороорганическрого соединения, доступного для ионов кальция. В результате этого процесса в электроде происходят необратимые изменения и его нужно заменять.
Хотя именно кальций-селективная мембрана в электроде определяет разность потенциалов, эта разность потенциалов не может быть измерена без внешнего калибровочного электрода. Он является ртутно-хлоридным, покрытым ртутью, и его помещают в высококонцентрированный раствор хлорида кальция, после чего он начинает генерировать потенциал. В результате этого появляется возможность зарегистрировать потенциал измерительного электрода.

Ионная селективность

В идеале кальциевый электрод должен отвечать только на активность ионов кальция в образце, то есть данный электрод должен быть кальций-специфичным. Однако присутствие в растворе других катионов ограничивает чувствительность электрода к ионам кальция. Эта проблема возникает при анализах крови, которая представляет собой смешанный раствор электролитов, в котором также содержатся белки и ионы натрия, активность которых примерно в 150 раз больше активности ионов кальция. Селективность электрода определяется константой селективности. Когда селективность электрода по отношению к другим катионам велика, то реакция электрода на данные катионы минимальна. Основной проблемой в данном случае является наличие в анализируемом растворе ионов натрия.
Ионы водорода создают проблемы только в том случае, если рН анализируемого раствора меньше 5,5, или меньше 6,0, однако данные значения рН практически никогда не встречаются при анализе биологических субстратов в клинике. Однако даже при физиологических значениях рН его изменение вызывает также изменение концентрации ионов кальция, возможно, в связи с тем, что при изменении рН изменяется аффинитет ионов кальция к белковым структурам. Поэтому в идеале измерение концентрации ионов кальция должно производится таким образом, чтобы из анализируемого раствора не происходила утечка углекислого газа, поскольку это может привести к вторичным изменениям рН. Влияние изменения концентрации ионов магния на концентрацию ионов кальция практически сводится к нулю, так как специфичность электродов на сегодняшний день довольно велика и концентрация данных ионов в растворе невелика.

Активность и концентрация

Ионы в очень разведенных растворах должны рассматриваться как молекулы газа, но при более высоких концентрациях данное правило недействительно, поскольку межионные электростатические взаимодействия ограничивают их подвижность. Определение давления паров жидкости, кондуктивности и точки замерзания подтвердили мысль о том, что определенное количество свободных ионов (активность) в растворах меньше того, которое определяется из теоретических расчетов молярной концентрации, если считать диссоциацию солей полной. Точное количество несвязанных ионов определяется как ионная активность, которая связана с концентрацией следующей формулой:

где А - это активность, у - коэффициент активности и С- это молярная концентрация.
Ион - селективные электроды больше зависят от активности иона, нежели от его концентрации. Поэтому для калибровки электродов должны быть приняты определенные стандарты активности. Разработка таких стандартов требует знания коэффициента активности иона кальция в растворе. Однако в данной области существует две серьезные проблемы. Первая: активность одного иона в растворе не может быть определена в отсутствие соответствующего аниона. Активность иона кальция обычно рассчитывается при анализе раствора хлорида кальция. Вторая: на активность иона во многом влияет ионная сила раствора. Обычно к калибровочному раствору добавляют раствор хлорида натрия, для того чтобы уравнять ионную силу калибровочного раствора с ионной силой плазмы крови, однако нельзя исключать собственную активность ионов натрия и влияние ее на ионный состав раствора. Поэтому растворы для калибровки приготовляются из высокоочищенного кристаллического хлорида кальция на дистиллированной воде. Концентрация кальция в этих растворах выражается в миллимолях.
В аналитическом цикле системы кальциевого электрода стандартный раствор и анализируемая плазма крови движутся через электрод, после чего концентрация ионов кальция в этих растворах уравнивается. Подгонка ионной силы калибровочного раствора в соответствии с ионной силой плазмы крови с помощью раствора хлорида натрия приводит к появлению добавочного потенциала неизвестной мощности и искажает результаты исследования. В связи с этим в моче нельзя определить кальций с помощью данной системы электродов.
Изменения ионной силы раствора в разных образцах плазмы практически незначительны, за исключением довольно редко встречающихся тяжелой гипернатриемии и гипонатриемии.

Использование кальциевых электродов в лаборатории.

В клинической лаборатории калибровка электрода производится различными растворами с различными концентрациями иона кальция. При исследовании образцов электрод генерирует потенциал, который затем по калибровочной кривой пересчитывается в результат в миллимолях. Данный метод довольно точен и позволяет определить даже минимальные значения концентрации ионов кальция в растворе.

Интерпретация полученных результатов.

Для того, чтобы интерпретировать результаты, нужно знать средние колебания концентрации кальция у человека. Однако, это значение достаточно вариабельно (среднее значение, по данным различных источников составляет от 0.96 до 1.27 миллимоль). Такой широкий разброс может привести к ошибочной интрепретации результатов.
В недавних исследованиях говорится о том, что нужно больше внимания уделять деталям процесса измерения концентрации кальция и стандартизации процесса.
При оценке концентраций кальция в крови больных нужно иметь в виду некоторые детали самого процесса измерения, поскольку они могут несколько изменять аналитические результаты. Важным фактором является сама система электродов для измерения концентрации кальция. Хотя технология изготовления электродов везде практически одинакова, при использовании инструментов двух различных производителей была отмечена достоверная разница в результатах. По данным разных исследователей, между инструментами разных производителей обычно отмечается разница до 15%.
Другим фактором, определяющим результат, является рН. Поскольку сдвиги рН вызывают изменения в растворах, содержащих белки, то анализ концентрации кальция нужно обязательно выполнять в анаэробных условиях, чтобы предотвратить потерю углекислого газа и вторичные изменения рН. Изменения могут быть также вызваны конкуренцией между ионами кальция и ионами водорода за место прикрепления к белкам плазмы крови.
В третьих, концентрация белка в плазме крови очень важна, поскольку белки плазмы - это главное место фиксации ионов кальция. Разница между общей концентрацией кальция и концентрацией ионизированного кальция объясняется в первую очередь связью кальция с белками. Клиническое значение аффинитета белков к плазме крови иллюстрируется тем, что у реципиентов, которым быстро вводят растворы альбумина, наблюдается преходящее понижение уровня ионизированного кальция.
Гепарин, который может снижать концентрацию кальция как вследствие присоединения иона кальция к молекуле гепарина, так и вследствие разведения образца раствором гепарина, в принципе можно не принимать во внимание, если его концентрация ниже 10 единиц на миллилитр цельной крови. Итак, измерение концентрации кальция можно производить в сыворотке, плазме и цельной крови. Место взятия крови (артерия или вена) в принципе значения не имеет, поскольку разница в концентрации кальция в разных сосудах практически очень незначительна для того, чтобы на нее обращать внимание в клинике.

Кальций и сердце

Активность клеток-пейсмейкеров

Во всех клетках сердца имеется фосфолипидная мембрана, которая отделяет цитоплазму от межклеточной среды. Согласно современным представлениям, в мембране имеются специфические белковые комплексы, которые выполняют функцию ион-селектимвных каналов. Каждый канал с той или иной специфичностью контролирует прохождение ионов натрия, калия и кальция. Таким образом осуществляется контроль за распределением ионов внутри клетки и снаружи нее. Это приводит к возникновению разницы потенциалов, который измеряется как мембранный потенциал между цитоплазмой и межклеточной жидкостью. Цикл открытия и закрытия ион-селективных каналов приводит к перемещению ионов относительно клеточной мембраны, что завершается деполяризацией и электрической активацией. Движение ионов в клетку и из клетки, в том числе и выброс натрия из клетки возвращает мембранный потенциал к исходному уровню. Характеристиками трансмембранного ионного тока являются: направление (в клетку или из клетки) и переносимый ион (натрий, калий, кальций или ионы хлора). Электрозависимые изменения трансмембранного транспорта происходят во время деполяризации и реполяризации мембраны и могут быть зарегистрированы как потенциалы действия сердца, которые отличаются в зависимости от того отдела сердца, где снимали запись. Поэтому их форма, амплитуда и продолжительность отличаются в разных отделах сердца. Например, в синоатриальном отделе и атриовентрикулярном отделе потенциал действия проявляется как пологая низкоамплитудная кривая, имеющая плато, которая в первую очередь зависит от кальция (медленных кальциевых каналов). Таким образом, ион кальция совершенно необходим для поддержания автоматизма сердца. В волокнах Пуркинье и волокнах миокарда общие характеристики потенциала действия таковы: быстрая деполяризация, которая сопровождается длительным плато. Это плато является результатом медленного тока туда и обратно калия, который определяет деполяризацию.
Существует две гипотезы, объясняющие разную форму потенциала в разных отделах сердца. Первая - это гипотеза быстрого тока, при котором из клетки быстро выводится натрий и это вызывает появления начального спайка в потенциале действия. Вторая - это гипотеза медленного тока ионов внутрь клетки, которая принципиально характеризуется медленным током в клетку кальция во время фазы плато потенциала действия. Итак, ион кальция необходим для проведения возбуждения и сокращения сердечной мышцы. Если уровень внеклеточного кальция падает до нуля, то фаза медленной реполяризации будет осуществляться за счет ионов натрия. Выход кальция из клетки сопровождается двумя принципиальными механизмами: обмен кальция на натрий и работой кальциевого насоса. Оба механизма являются энергозависимыми и требуют АТФ для того, чтобы провести ион кальция против 10000 - кратного трансмембранного градиента.

Сопряжение возбуждения и сокращения

Вход ионов кальция во время фазы плато является фазным моментом в процессе сопряжения процессов возбуждения и сокращения в клетках рабочего миокарда. Итак, ион кальция является важным связующим звеном между такими событиями, как то, что происходит на поверхности клетки (деполяризация) и то, что происходит внутри (работа сократительного аппарата). Сопряжение возбуждения и сокращения в сердечной мышце зависит от быстро заменяемого пула внутриклеточного кальция, и поэтому сокращения волокон кардиомиоцитов абсолютно зависимы от внеклеточного кальция. Впервые этот феномен был описан Ringer, который обнаружил, что сокращения изолированного сердца лягушки прекращаются через несколько минут после начала его перфузии раствором без ионов кальция.
Кальций является универсальным фактором, обеспечивающим процесс сопряжения возбуждения и реакции на него в различных типах клеток. Таким образом, кальций является ключевым фактором в связях между деполяризацией мембраны, например и синтезом и экскрецией вторичных мессенждеров и клеточных гормонов и энзимов. Таким образом регулируется секреция и выброс инсулина, альдостерона, вазопрессина, простагландинов, ренина и нейротрансмиттеров. Снижение количества кальция в крови, например, приводит к замедлению синтеза инсулина. Кальций также активирует ферменты в каскаде свертывания крови, и играет центральную роль в механизме действия гормонов и многих лекарственных препаратов.

Внутриклеточные взаимодействия кальция и белков

В процессе мышечного сокращения участвуют четыре главных группы белков: сократительные белки актин и миозин и регуляторные белки тропонин и тропомиозин. Тропонин состоит из трех субъединиц: тропонин Т, тропонин I и тропонин С. В соответствии с моделью взаимодействия кальция с сократительным аппаратом, кальций прикрепляется к тропонину С, который является рецепторным белком для кальция на миофибрилл и открывается точка присоединения миозина к актину. Используя энергию гидролиза АТФ, актин оставляет миозиновый филамент и саркомер сокращается или напрягается.
Количество кальция, находящееся в цитоплазме, является главной детерминантой адекватности доставки ионов кальция к сократительным белкам, этот фактор также определяет скорость натяжения мышечных волокон. Эта связь была доказана и для сердечной миофибриллы, в которой была удалена сарколемма, так, что саркоплазматический ретикулум оставался интактным и таким образом, подвергался прямому воздействию попадающих извне ионов кальция. В таком препарате сокращения не происходило, то есть отсутствовала связь между актином и миозином при концентрации ионов кальция 10 в минус седьмой степени и максимальное натяжения волокна происходило при концентрации ионов кальция 10 в минус пятой степени. Однако концентрация кальция в крови (и соответственно, в межклеточной жидкости) составляет примерно 10 в минус третьей степени. Таким образом, было установлено, что трансмембранный градиент кальция колеблется от 100 до 10000, в зависимости от стадии электрической активации.
Необходимая для стимуляции сократительного аппарата концентрация кальция в цитозоле и ее подъем обеспечивается тремя главными механизмами: введением ионов кальция из внеклеточных источников во время фазы плато потенциала действия, выбросом кальция из внутриклеточных хранилищ кальция и обменом кальция и натрия.
Из всех этих механизмов выброс кальция из внутриклеточных хранилищ является самым важным, поскольку трансмембранный ток при сокращении слишком мал для обеспечения полноценного сокращения. Трансмембранный ток необходим для постоянного пополнения внутриклеточных запасов, которые находятся преимущественно в цистернах саркоплазматического ретикулума.

Расслабление мышц.

Присоединение кальция к тропонину С обратимо, таким образом, расслабление мышц происходит, когда комплекс тропонин-С - кальций диссоциирует. Эта диссоциация происходит, когда концентрация кальция в клетке понижается за счет внешних потерь и закрытия каналов в цистернах. Удаление кальция из точек его присоединения является энергозависимым процессом и требует наличия АТФ. При дефиците АТФ процесс расслабления мышц ухудшается.

Роль циклического аденозинмонофосфата в сопряжении процессов возбуждения и сокращения.

Кроме ионов кальция для сопряжения процессов возбуждения и сокращения необходим циклический нуклеотид- аденозин 3-5 монофосфат (цАМФ). Он является вторичным мессенждером в процессе сокращения. Кальций и цАМФ связаны друг с другом. Кальций регулирует скорость синтеза цАМФ и его распада, тогда как цАМФ контролирует вход в клетку ионов кальция. цАМФ также контролирует внутриклеточные процессы связывания кальция и выброса запасенного кальция, и таким образом цАМФ является регулятором цикла сокрашения и расслабления мышцы.
Современные исследования свидетельствуют о том, что сердечная мышца сокращается и что для этого сокращения требуется окислительное фосфорилирование, чтобы обеспечить процессы активации медленных кальциевых каналов и тока кальция. Затем путем процесса фосфорилирования при участии нескольких органелл клентки кальций обеспечивает процесс сокращения. Данные процессы такжде регулируются такими веществами, как аденилатциклаза, цАМФ и протеинкиназы. Угнетение активности медленных кальциевых каналов в связи с недостаточным снабжением энергией может объяснить, почему сократительная способность миокарда падает не только вследствие ишемии при закупорке коронарной артерии, но и вследствие недостатка кальция.

Кальций как медиатор действия лекарственных препаратов и гормонов

Очень важная роль кальция в обеспечении ритмичной сократительной активности сердечной мышцы и гладкой мускулатуры становится ясной, когда при гипокальциемии понижается сократительная способность как миокарда, так и периферической гладкой мускулатуры. Напротив, блокаторы медленных кальциевых каналов замедляют ток кальция во время фазы плато и тем самым снижают натяжение и силу напряжения волокон, в результате чего снижается потребность миокарда в кислороде. Например, нифедипин снижает сократимость миокарда и гладких мышц сосудов, тогда как снижение сократительной способности миокарда очень трудно поддержать лидофлазином в терапевтических дозах.
Другие препараты, действие которых зависит от тока кальция весьма разнообразны: это сердечные гликозиды группы наперстянки, симпатомиметические амины и анестетики. Современная концепция механизма действия дигиталиса связывает ее действие либо с ферментом, необходимым для работы натриевого насоса, либо со снижением выхода кальция из клетки в результате этого процесса, или с изменением натриево - кальциевого гомеостаза в клетке. Оба механизма приводят к увеличению внутриклеточного пула кальция и улучшению взаимодействия кальция с сократительными элементами. Бета - адреномимететики увеличивают количество функционирующих кальциевых каналов. Альфа - адреномиметики (например, норадреналин) вызывают периферическую вазоконстрикцию в связи с тем, что в клетки гладких мышц сосудов входит больше кальция и мобилизация кальция из цистерн эндоплазматического ретикулума также увеличивается. Ингаляционные анестетики угнетают миокард. Например, фторотан угнетает нагнетательную функцию левого желудочка, поэтому снижается сердечный индекс при любом конечном диастолическом давлении. Подобные эффекты наблюдаются при использовании энфлурана, метоксифлурана и закиси азота.
Было предложено несоколько гипотез, объясняющих, почему фторотан угнетает миокард. Первая: фторотан в клинически используемых концентрациях понижает ток кальция через угнетение транспорта кальция через медленные кальциевые каналы. Во - вторых, фторотан может также влиять на выброс кальция из цистерн цитоплазматического ретикулума, его избыток также может влиять на уровень АТФ внутри клетки. Оба этих механизма влияют на доставку кальция к сократительным элементам. В соответствии с идеей, что анестетики взаимодействуют с доставкой кальция к сократительным белкам, существует следующее наблюдение: болюсное введение кальция, повышающее уровень внеклеточного кальция, снимает угнетающие влияния анестетиков на сократительный аппарат. Это имеет определенное клиническое значение, поскольку использование мощных ингаляционных анестетиков угнетает миокард, а следовательно можно нейтрализовать или ослабить данное влияние путем введения препаратов кальция.

Ионы кальция и функция сердца.

Использование в анестезиологии солей кальция достаточно широко. Здесь мы приводим статистику Больницы общего профиля штата Массачусетс, где было использовано примерно 7500 ампул кальция (смесь хлорида и глюконата кальция) во время хирургических операций за один год, из них примерно 2500 назначены больным во время кардиохирургических вмешательств (которых проводится примерно 1200 каждый год) и 5000 -больным, которым делали другие операции (их проводится примерно 20000 каждый год).
Хотя общие ограничения экстараполирования экспериментальных данных на человека и должны быть предусмотрены, изменения гемодинамики и сердечной деятельности под влиянием кальция, полученные у собак, довольно хорошо соответствуют тем данным, которые были получены у людей.
Было уже давно известно, что болюсное введение кальция сопровождается повышением сократительной способности миокарда. Однако клиническое использование этой находки ограничено по двум причинам: во-первых, у человека сократительную способность миокарда прямым методом оценить невозможно. Напротив, насосную функцию сердца, то есть аспект сердечной деятельности, непосредственно касающийся сердечного выброса, и, таким образом, перфузии жизненно важных органов, можно оценить практически у всех больных с помощью специального катетера с баллончиком, помещенного в легочную артерию. В операционной и отделении интенсивной терапии насосную функцию левого желудочка оценивают путем определения сердечного выброса по отношению к конечному диастолическому давлению в левом желудочке. Вторая производная от величин колебания стенки желудочка является показателем сократимости миокарда в плане скорости сокращения волокон миокарда в изоволемической фазе систолы. Изменения пика этой величины могут указывать на изменение насосной функции сердца особенно, если оценивать ее вместе с фракцией изгнания. Например, при использовании инотропных поддержек (то есть катехоламинов), и при возникновении ситуации, когда преобладает отрицательный инотропный эффект (например, при инфаркте миокарда) существует диспропорция между скоростью и силой сокращения мышечного волокна. Такая диспропорция может возникать и при введении кальция. Однако в клинике такое увеличение работы сердца у больного с ишемической болезнью чревато резким повышением потребности миокарда в кислороде и декомпенсацией.
Теперь понятно, что и сердце и гладкая мускулатура периферических сосудов реагируют изменением гемодинамики как на гиперкальциемию, так и на гипокальциемию. При интактной системе кровообращения, если введение кальция увеличивает сердечный выброс, то сосудистая реакция на введение кальция может и не развиться. Напротив, если сердечный выброс не изменяется, то введение кальция может увеличить периферическое сосудистое сопротивление. Это необходимо знать для понимания противоречивых гемодинамических эффектов гипокальциемии и гиперкальциемии.

Гиперкальциемия

В операционной острая гипокальциемия может возникнуть у больных с гиперфункцией паращитовидных желез и при быстром внутривенном введении кальция. Именно эта форма гиперкальциемии и служит предметом дальнейшего обсуждения.

Кинетика ионов кальция при болюсном введении растворов солей кальция.

Применяемые в клинике и рекомендуемые дозы хлорида кальция для болюсной инъекции выражаются в миллиграммах соли кальция, а не в дозе чистого кальция и варьируют от 3 до 15 мг на кг в минуту, что представляет собой довольно-таки широкий разброс. У взрослых внутривенное введение кальция хлорида в дозе 5-7 мг/кг увеличивает концентрацию ионизированного кальция в крови на 0.1-0.2 миллимоль примерно на 3-15 минут с последующим снижением, но не до исходного уровня. То, что концентрация кальция в крови после внутривенного болюсного введения повышается только на короткое время, имеет важное клиническое значение, особенно при быстром обмене кальция на мембране сократительных элементов клетки, реакции сердца и сосудов в данном случае также носят кратковременный характер, как это показано в эксперименте и в клинике. При дозе хлорида кальция 15 мг/кг пик концентрации кальция в крови наблюдается через две минуты, но и концентрация его в этом случае будет падать быстрее.
Скорости увеличения и уменьшения концентрации ионов кальция в плазме подвержены влиянию нескольких факторов. Во-первых, уровень биодоступности ионов кальция (а следовательно, ионизация соли кальция) в препарате вместе с дозой и временем, за которое она была введена, являются важнейшими определяющими факторами. И хлорид, и глюконат кальция явялются 10% растворами соответствующих солей, выпускаемых в ампулах объемом 10 миллилитров. Однако, несмотря на одинаковую концентрацию растворов солей и одинаковый объем, собственно кальция в хлориде будет больше, чем в глюконате, поскольку элементарное содержания кальция в хлориде - 27%, а в глюконате - 9%. К тому же, хлорид кальция в растворе полностью ионизируется. Итак, реакция на введение одинакового количество таких растворов будет разной вследствие неодинакового содержания в них кальция. За исключением разного количества кальция в этих солях и слабокислых свойств хлорида кальция, преимуществ одной соли перед другой зарегистрировано не было. Однако точной сравнительной информации об этих двух солях кальция опубликовано до сих пор не было.
Второй детерминантой увеличения концентрации ионов кальция в плазме после внутривенного введения препаратов кальция является скорость его распределения, перераспределения и забора из крови. Хотя данных о распределении кальция в организме после его внутривенного введения у нас нет, мы считаем, что при низком сердечном выбросе (который приводит к снижению скорости распределения) в клинической практике должны использоваться низкие дозы препаратов кальция, для того, чтобы избежать слишком высокого подъема концентрации кальция, чтобы не нарушить ритм сердца и проводимость, особенно в присутствии терапевтических доз дигиталиса.

Действие на сердце.

В отсутствие ишемии, кривые функции левого желудочка, записанные при разных уровнях гиперкальциемии, практически не отличаются от нормальных. Даже если концентрация ионов кальция составит 1.7 ммоль/л, что явялется верхним пределом измеренной в клинике концентрации кальция, существенных изменений в насосной функции сердца не происходит. Таким образом, при обычно применяемых в клинике дозах кальция существенных изменений насосной функции левого желудочка не происходит.
При наличии ишемии миокарда, увеличение концентраций ионов кальция в крови до 1.7 ммоль улучшает функцию сердца в целом, на что указывает 20% увеличение ударной работы при заданном конечном диастолическом давлении. Хотя вызванное кальцием улучшение работы сердца в ишемизированной зоне связано не только с повышением уровня кальция самого по себе, но и с взаимодействиями между разными отделами сердца (то есть с изменениями геометрии левого желудочка), региональная механическая функция улучшается именно за счет гиперкальциемии как в нормальных, так и в ишемизированных участках. Когда ударный объем, частота сердечных сокращений и среднее артериальное давление остаются постоянными, гиперкальциемия будет сочетаться со снижением конечно-диастолической и конечно-систолической длины мышечного волокна как в контрольной, так и в ишемизированной зоне и систолическая диссоциация, которая характеризует сегментарное нарушение функций миокарда гораздо менее выражена при гиперкальциемии, чем при нормокальциемии. Регионарное систолическое укорочение увеличивается, а следовтельно увеличивается работа сердца.
Недостаток инфузии кальция - это увеличение потребности миокарда в кислороде без увеличения коронарного кровотока, несмотря на увеличение сократимости. Несмотря на это, улучшение функции левого желудочка при введении кальция допускает использование препаратов кальция у больных с ишемической болезнью сердца, хотя нужно обязательно принимать во внимание невозможность прямой экстраполяции экспериментальных данных на клинику, особенно тогда, когда система кровообращения интактна и реакции артериального давления и сердца на внутривенное введение препаратов кальция весьма разнообразны. Нужно обязательно помнить, что у введения препаратов кальция есть свои недостатки, но в принципе при применении других инотропных поддержек неизбежны те же проблемы. При принятии решения о том, использовать кальций или нет для стимуляции сердца, нужно учитывать скорость и характер развития его действия на сердце (оно особенно выражено, когда исходный уровень кальция низок, как это обсуждено ниже), экстракардиальные эффекты и указанные выше недостатки введения кальция. Таким образом, нужно оценивать, что перевешивает: польза или вред, а также оценивать перспективу применения других инотропных поддержек. Например, сравнительные данные (хлорид кальция и катехоламины), полученные в эксперименте на собаках при контролируемых условиях гемодинамики показали, что при одинаковом усилении насосной функции левого желудочка, увеличение потребности миокарда в кислороде вследствие применения изопротеренола превышает таковое при использовании кальция примерно в три раза.

Гипокальциемия

Хотя термин "гипокальциемия" в общем определяется, как тотальное снижение общей концентрации кальция в крови, тяжелые нарушения гомеостаза ионизированного кальция могут происходить и в отсутствие серьезных изменений общей концентрации кальция. Это доказывает необходимость прямого измерения концентрации ионов кальция в плазме в клинических условиях, когда предполагается гипокальциемия и необходимость заместительной терапии. В операционной, гипокальциемия может возникнуть после трансфузии свежецитратной крови, или при переливании фабричных растворов альбумина, после завершения искусственного кровообращения. В отделении интенсивной терапии гипокальциемия может наблюдаться у больных с панкреатитом, сепсисом, во время состояний, сопровождающихся длительным низким сердечным выбросом, после рентгенологических исследований с применением внутривенного введения контрастных веществ и у тех больных, которым требуется проведение гемодиализа.

Кинетика ионов кальция при инфузиях цитрата.

Когда больному переливают кровь, стабилизированную цитратом натрия, изменения концентрации ионов кальция в крови и гемодинамики минимальны. Однако, быстрые трансфузии со скоростью 1.5 мл/кг/мин могут вызывать уже регистрируемые, но транзиторные степени гипокальциемии и гемодинамические нарушения.

Действие на сердце.

При уменьшении концентрации ионов кальция в сыворотке до 50% от первоначальной резко ухудшается ударная работа сердца при любом конечном диастолическом давлении, при конечном диастолическом давлении в левом желудочке в 10 мм рт. ст. это уменьшение составляет примерно 55%.
При регионарной ишемии кажется, что угнетение, вызываемое гипокальциемией, вызывается более легко, чем в неишемизированнои миокарде, тогда как при неишемизированном миокарде компенсация сохраняется до того, как концентрация ионов кальция в крови понизится до 50% от первоначального уровня, а при наличии регионарной ишемиии компенсация сохраняется только при снижении концентрации ионов кальция в крови до 70 % от исходного. Кривые работы левого желудочка смещаются влево, что характеризуется уровнем угнетения его работы. При гипокальциемии как в нормальном, так и в ишемизированном миокарде резко угнетаются все функции: увеличивается как конечно-систолическая, так и конечно-диастолическая длина волокон миокарда, наблюдается систолическая диссоциация в левом желудочке, систолическое укорочение уменьшается и кривые регионарных функций смешаются вправо и вниз. Гипокальциемия также сопровождается расширением коронарных артерий.
Изменения функции сердца, вызванные тяжелой гипокальциемией (снижение уровня кальция на 30-50 % от исходного уровня), как это показано в эксперименте, подтверждают необходимость использования препаратов кальция для лечения больных с ишемией миокарда и умеренной или тяжелой гипокальциемией. Такая ситуация может возникнуть сразу после окончания искусственного кровообращения и использование кальция при этих условиях обсуждается ниже, однако такая тактика применяется не во всех больницах.
Следует также учитывать, что повторном применении кальция развивается резистентность, эти наблюдения были сделаны впервые еще 50 лет назад. Однако истинный механизм этого явления еще не выяснен.

Спорные аспекты реакции сердца на гипокальциемию и гиперкальциемию.

Гиперкальциемия

Появилось несколько сообщений относительно инфузий кальция в клинически применяемых дозах, в которых обсуждается проблема необходимости использования препаратов кальция при отсутствии возможности измерить сердечный выброс. Мы постараемся объяснить причину их появления. В одном исследовании не была приведена сравнительная статистика функции левого желудочка при гипокальциемии (то есть до введения препаратов кальция) и после инфузии кальция. В другом исследовании сердечный выброс и артериальное давление повышалось в течении одной минуты после инфузии кальция, в соответствии с транзиторными эффектами болюсной инфузии кальция. Если концентрация ионов кальция до инфузии препарата кальция была нормальной, то изменения сердечного выброса менее выражены, чем при изначально низкой концентрации кальция. Во многих исследованиях неправильно производилась оценка концентрации ионов кальция в плазме крови, или неполная оценка профиля гемодинамики. Эффект кальция в присутствии мощных ингаляционных анестетиков, разительно отличается от результатов, которые были получены у пациентов с нейролептоанальгезией. Наконец, клинические данные позволяют предположить, что наличие предшествующего угнетения сердечной деятельности в связи с патологией коронарных аретрий при введении кальция дает увеличение сердечного выброса, тогда как у больных без кардиальной патологии инфузия кальция связана с повышением периферического системного сосудистого сопротивления.

Гипокальциемия

Примерно тридцать лет назад начались разработки методов измерения сердечного выброса во время инфузии цитрата и был введен термин "интоксикация цитратом". Было проведено множество экспериментальных и клинических исследований, которые подтвердили идею о том, что введение цитрата вызывает гипокальциемию и угнетение сердечно-сосудистой системы. Хотя интенсивность цитратной интоксикации и обсуждалась, возникновение тяжелой, хотя и транзиторной гипокальциемии при быстрой инфузии свежецитратной крови нигде не обсуждалось.
Некоторые исследователи предполагают, что изменения в артериальном давлении и функции сердца в связи с инфузией цитратной крови минимальны и не важны в клинике. Чтобы объяснить данную точку зрения, детерминирующим фактором в данной проблеме нужно считать не общее количество перелитой крови, а скорость инфузии. Также при гипокальциемии угнетается функция сердца, и это происходит значительно быстрее при наличии других угнетающих факторов, например, при приеме бета-блокаторов, ишемии миокарда, денервации сердца, или при наличии гиповолемии перед введением цитрата. Насчет ингаляционных анестетиков в этом плане ничего не известно.
Хотя вызванная цитратом гипокальциемия в одно время предотвращалась инфузией крови, стабилизированной кислым фосфатом декстрозы, его гемодинамические влияния были отрицательными и более серьезными по сравнению с кровью, стабилизированной цитратом натрия.

Кальций и гладкая мускулатура периферических сосудов.

Хотя роль кальция в регуляции функции гладкой мускулатуры периферических сосудов была изучена десятилетия назад, ее не обсуждали в сообщениях о гемодинамическом действии кальция. Ион кальция необходим для процесса сопряжения возбуждения и сокращения в гладкой мускулатуре периферических сосудов, и поэтому периферические кровеносные сосуды реагируют на изменения концентрации ионов кальция в крови.

Реакция периферических сосудов на острую гипо- и гиперкальциемию.

Поскольку повышение концентрации ионов кальция в крови связана с повышением сократимости гладких мышц, гиперкальциемия приводит к повышению сопротивления кровотоку в периферических артериях, почечных, коронарных и мозговых сосудах. Такая реакция не регистрировалась в сосудах малого круга. Гипокальциемия связанна в понижением сопротивления периферических сосудов, что является важным патогенетическим фактором в развитии гипотонии при гипокальциемии.
Два главных механизма участвуют в создании сосудистой реакции на введение кальция. Первый: это прямое действие препаратов кальция на гладкие мышцы сосудов и их тонус. Это подтверждается наблюдение, что тонус периферических сосудов падает при приеме блокаторов кальциевых каналов.
Второй: существует эффект, производимый через симпатическую нервную систему, путем выброса катехоламинов или стимуляции адренергических рецепторов. Выброс катехоламинов в связи с введением кальция происходит поскольку ион кальция связан с сопряжением процессов возбуждения и секреции. Гиперкальциемия действует как стимул для выброса катехоламинов как из мозгового вещества надпочечников, так и из периферических вегетативных нервных окончаний. Недавно проведенные эксперименты на собаках, например, показали, что вызванное кальцием увеличение ОПСС резко снижается после адреналэктомии. Экспериментальные данные позволяют предположить, что гиперкальциемия может также стимулировать альфа- и бета- адренорецепторы. После применения бета- блокаторов повышение ОПСС более выражено, чем в обычных условиях. При применении одновременно альфа- и бета- блокаторов, изменения ОПСС при гиперкальциемии варьируют. Эти находки могут объяснить разную реакцию сердечно-сосудистой системы при гиперкальциемии в различных обстоятельствах.

Противоречивые аспекты реакции гладких мышц периферических сосудов на гипер- и гипокальциемию.

Гиперкальциемия

Поскольку при гиперкальциемии может повышаться сократимость сердца и гладких мышц периферических сосудов, увеличение артериального давления чаще всего и отмечается после введения препаратов кальция. Однако, в тексте есть упоминание о неопубликованном наблюдении снижения артериального давления при введении кальция. Тогда как некоторые экспериментальные и клинические данные показали, что ОПСС повышается при инфузии кальция, другие показали, что оно наоборот, уменьшается. Ясно, что кальций может вызывать изменения как в сердце, так и в сосудах. Что получится при введении кальция - зависит от начальной концентрации ионов кальция в крови, сократительной способности миокарда и исходной активности симпатической нервной системы. Более того, обратив внимание на деталь - запись разных параметров гемодинамики в разных исследованиях, становится понятным, почему получаются столь пестрые результаты. Наконец, состояние адренергической системы влияет на гемодинамическую реакцию на кальций, как это обсуждалось выше.

Гипокальциемия

Снижение артериального давления было зарегистрировано во время гипокальциемии у больных более двадцати лет назад. Однако, важная роль магистральных сосудов в развитии гипокальциемической гипотонии была хотя и документирована, но не распознана. Эти исследователи зарегистрировали резкое снижение сердечного выброса и работы сердца, а также снижение артериального давления, однако они не указали, что снижение системного артериального давления могло быть связано со снижением тонуса магистральных сосудов. Поскольку артериальное давление включено как одна из переменных в уравнение для расчета работы сердца, работа сердца уменьшалась. Итак, нельзя считать работу сердца в условиях гипотонии точным показателем сердечного выброса, более того, интерпретация роли функции сердца и функции периферических сосудов во время гипокальциемической гипотонии невозможна, если не производятся измерения насосной функции левого желудочка и ее важнейших детерминант, или если у больного еще и гиповолемия (основное показание для гемотрансфузии) и гипокальциемия вместе взятые.

Терапевтическое применение кальция.

В операционной и отделении интенсивной терапии поддержка гемодинамики осуществляется с помощью катехоламинов и солей кальция. Симпатомиметические амины с очень коротким временем жизни вводятся с помощью длительных инфузий, то есть скорость их введения может быть подобрана для каждого конкретного больного в отдельности для поддержания стабильной гемодинамики. В противоположность этому, соли кальция обычно используются как болюсные инъекции. Их не вводят с помощью длительных инфузий, поскольку для этого потребовалась бы система для определения концентрации ионов кальция в крови прямо у кровати больного - настолько часто это пришлось бы делать, поскольку если скорость инфузии препарата кальция постоянна и сердечный выброс по каким- либо причинам не реагирует на введение кальция, то могут возникнуть опасно высокие концентрации ионов кальция в крови, что приведет к серьезным нарушениям ритма сердца.

Показания и дозы

Взрослые

Поскольку гипокальциемия при инфузии цитратной крови у разных больных варьирует, обычно невелика и быстро проходит, то при обычной гемотрансфузии нужды в введении кальция нет. Однако, когда гемотрансфузия производится быстро в течение длительного времени (то есть 1.5 мл/кг/мин в течение 5 минут или более), нужно ввести кальций внутривенно. Угнетение сократительной способности миокарда при сочетании гипокальциемии и применения бета- блокаторов более сильное, чем при наличии только гипокальциемии, поэтому применение кальция также оправдано при гемотрансфузиях в умеренном темпе у больных, принимающих бета- блокаторы. Доза кальция зависит от степени гипокальциемии, обычно начальная доза составляет 5-7 мг/кг хлорида кальция, которую повторяют через несколько минут, если в этом есть необходимость, подтвержденная измерением концентрации иона кальция в крови.
Если цитратная кровь используется для заполнения оксигенатора АИКа, то в раствор может быть добавлен хлорид кальция (в дозе примерно 500 мг/л) для того, чтобы уменьшить гемодинамические нарушения вследствие гипокальциемии в начале искусственного кровообращения. В этом случае также требуется и гепарин.
В некоторых медицинских центрах хлорид кальция используется у больных при кардиохирургических вмешательствах после окончания искусственного кровообращения. Приблизительная доза при этом варьирует от 7 до 15 мг/кг в течение 30-60 секунд, а затем ее при необходимости повторяют. Мы считаем, что в этом случае необходим мониторинг концентрации ионов кальция в крови, чтобы организовать рациональное терапевтическое применение кальция. Хлорид кальция также обычно используется у больных с асистолией или остановкой сердца в дозе от 5 до 12 мг/кг. Хотя мы не имеем сравнительных данных, доза глюконата кальция при этом должна быть в 2.5-3 раза больше дозы хлорида кальция, для равного повышения концентрации ионов кальция в крови.

Новорожденные и дети.

По международному соглашению в педиатрической практике используется только глюконат кальция, поскольку он безопаснее хлорида кальция в отношении провоцирования сердечых артимий. Однако, безопасность введения препарата кальция зависит от его количества и скорости введения, от биодоступности иона кальция в данном препарате и объема его исходного распределения. Вторая причина использования только глюконата кальция в педиатрической практике - это меньшие нарушения кислотно-щелочного равновесия при его введении, нежели при введении хлорида кальция, но это не является проблемой при кратковременном использовании препаратов кальция.
Применение препаратов кальция показано при обширных хирургических вмешательствах у детей с большой кровопотерей когда кровопотеря и объем замещения оцениваются, как приблизительный ОЦК у данного ребенка. Доза глюконата кальция составляет примерно 100 мг на каждые 100 мл инфузируемой крови, однако при этом необходимы частые определения концентрации ионов кальция в крови, поскольку при таком темпе введения кальция возможна гипокальциемия. Итак, доза и предпочтительное время введение препарата кальция нуждаются в строгом определении.
Кальций также применяется при заменных переливаниях крови у новорожденных. Хотя рекомендуемая доза составляет 100 мг глюконата кальция на 100-150 мл инфузируемой крови, она может оказаться недостаточной для предотвращения гипокальциемии. Поэтому опять же необходим тщательный мониторинг концентрации ионов кальция в крови новорожденного. При гипокальциемии у новорожденного глюконат кальция в дозе 200 мг/кг рекомендуется только тогда, когда возникает тетания или судороги вследствие резкого понижения уровня кальция в крови. При остановке сердца у ребенка глюконат кальция применяется в дозе 10 мг/кг.

Осложнения применения кальция

Наиболее драматическое описание осложнений при инфузии кальция было опубликовано 60 лет назад. Автору данного сообщения ввели болюсную дозу хлорида кальция и он испытал тошноту, дискомфорт, судороги, синкопе и дыхательную недостаточность. Точных деталей в сообщении нет, однако на ЭКГ видна синоатриальная блокада и заметная брадикардия. Массаж сердца через брюшную стенку был эффективен (опыт был проведен на добровольце).
Даже если зафиксирована гипокальциемия, то назначение кальция в терапевтических дозах может привести к серьезным нарушениям: синусовой аритмии, брадикардии, А-В диссоциации и появлению эктопических фокусов. Потенциальный риск болюсного введения кальция имеется и у больных, леченных наперстянкой, об этом говорилось выше.
Осложнением введения кальция, которое не опасно для жизни, однако неприятно для больного, является раздражение стенки сосуда и некроз подкожной клетчатки при случайном введении хлорида или глюконата кальция мимо вены. Поэтому препараты кальция вводят в вены возможно большего диаметра, тщательно фиксируя иглу. Безопасно ли введение препаратов кальция в аорту новорожденным? Этот вопрос нуждается в дальнейшем обсуждении.

Anesthesia and analgesia
1985,64, 432-51
Lambertus J. Drop, MD, PhD