Клиническое значение и коррекция эндотелиальной дисфункции.

В настоящее время растет интерес к роли функции эндотелия в патогенезе сердечно-сосудистых заболеваний.

Эндотелий – это монослой эндотелиоцитов, выполняющий функции транспортного барьера между кровью и сосудистой стенкой, реагирующий на механическое воздействие потока крови и напряжение сосудистой стенки, чувствительный к различным нейро-гуморальным агентам. Эндотелием непрерывно вырабатывается огромное количество важнейших биологически активных веществ. По существу он является гигантским паракринным органом в человеческом организме. Его главная роль определяется поддержанием кардиоваскулярного гомеостаза путем регуляции равновесного состояния важнейших процессов:

а) тонуса сосудов (вазодилатация/вазоконстрикция);

б) гемоваскулярного гемостаза (выработка прокоагулянтных/антикоагулянтных медиаторов);

в) клеточной пролиферации (активация/ингибирование факторов роста);

г) местного воспаления (выработка про- и противовоспалительных факторов) (табл.1) .

Среди изобилия биологически активных веществ, вырабатываемых эндотелием, важнейшим является оксид азота – NO. Оксид азота – мощный вазодилататор, кроме того, он является медиатором выработки других биологически активных веществ в эндотелии; короткоживущим агентом, эффекты которого проявляются только местно. Оксид азота играет ключевую роль в кардиоваскулярном гемостазе не только благодаря регуляции сосудистого тонуса, но также ингибируя адгезии и агрегации циркулирующих тромбоцитов, предотвращая пролиферацию клеток гладкой мускулатуры сосудов, различные окислительные и миграционные процессы атерогенеза .

Таблица 1

Функции и медиаторы эндотелия

Медиаторы эндотелия

Вазорегуляторная

(секреция вазоактивных медиаторов)

Вазодилататоры (NO, простациклин, брадикинин)

Вазоконстрикторы (эндотелин-1, тромбоксан А2, ангиотензин II, эндопероксиды)

Участие в гемостазе

(секреция факторов свертывания и фибринолиза)

Прокоагулянты (тромбин, ингибитор активатора плазминогена)

Антикоагулянты (NO, простациклин, тромбомодулин, тканевой активатор плазминогена)

Регуляция пролиферации

Секреция эндотелиального фактора роста, тромбоцитарного фактора роста, фактора роста фибробластов)

Секреция гепариноподобных ингибиторов роста, NO

Регуляция воспаления

Секреция факторов адгезии, селектинов

Выработка супероксидных радикалов

Ферментативная активность

Секреция протеинкиназы С, ангиотензин-превращающего фермента

В настоящее время дисфункцию эндотелия определяют как нарушение равновесия противоположно действующих медиаторов, возникновение «порочных кругов», нарушающих кардиоваскулярный гомеостаз. С дисфункцией эндотелия ассоциируются все основные сердечно-сосудистые факторы риска: курение, гиперхолестеринемия, АГ и сахарный диабет . Нарушения в функции эндотелия, по-видимому, занимают одно из первых мест в развитии многих сердечно-сосудистых заболеваний – АГ, ИБС, хронической сердечной недостаточности, хронической почечной недостаточности. Дисфункция эндотелия – самый ранний этап в развитии атеросклероза. В многочисленных проспективных исследованиях показана взаимосвязь между дисфункцией эндотелия и развитием неблагоприятных сердечно-сосудистых осложнений у больных с ИБС, АГ, периферическим атеросклерозом . Именно поэтому в настоящее время сформулирована концепция об эндотелии как органе-мишени для профилактики и лечения сердечно-сосудистых заболеваний .

У больных с АГ дисфункция эндотелия проявляется прежде всего нарушенной эндотелий-зависимой вазодилатацией (ЭЗВД) в артериях различных регионов, включая кожу, мышцы, почечные и коронарные артерии, микроциркуляторное русло . В механизме развития дисфункции эндотелия при АГ лежит гемодинамический и оксидативный стресс, повреждающий эндотелиоциты и разрушающий систему оксида азота .

Диагностика дисфункции эндотелия

Методы исследования функции эндотелия периферических артерий основываются на оценке способности эндотелия продуцировать NO в ответ на фармакологические (ацетилхолин, метахолин, брадикинин, гистамин) или физические (изменение кровотока) стимулы, прямом определении уровня NO и других NO-зависимых медиаторов, а также на оценке «суррогатных» показателей эндотелиальной функции. Для этого используются следующие методы:

  • веноокклюзионная плетизмография;
  • коронарография;
  • магнитно-резонансная томография;
  • ультразвуковое дуплексное сканирование периферических артерий с проведением проб;
  • оценка микроальбуминурии.
  • Наиболее удобным в практическом отношении неивазивным методом является дуплексное сканирование периферических артерий, в частности оценка изменения диаметра плечевой артерии до и после кратковременной ишемии конечности .

    Методы коррекции дисфункции эндотелия

    Терапия эндотелиальной дисфункции направлена на восстановление равновесия описанных выше факторов, ограничении действия одних эндотелиальных медиаторов, компенсации дефицита других и восстановлении их функционального баланса. В связи с этим большой интерес представляют данные о влиянии различных лекарственных средств на функциональную активность эндотелия. Наличие способности влиять на NO-зависимую вазодилатацию показано для нитратов, ингибиторов АПФ, антагонистов кальция, а также для новых b-адреноблокаторов последнего поколения, обладающих дополнительными вазодилатирующими свойствами.

    Небиволол – первый из b-адреноблокаторов, вазодилатирующее действие которого связано с активацией высвобождения из эндотелия сосудов NO . В сравнительных клинических исследованиях этот препарат повышал вазодилатирующую активность эндотелия, тогда как b-адреноблокаторы второго поколения (атенолол) не влияли на сосудистый тонус . При изучении фармакологических свойств небиволола было показано, что он представляет собой рацемическую смесь D- и L-изомеров, причем D-изомер оказывает b-адреноблокирующее действие, а L-изомер стимулирует выработку NO.

    Сочетание блокады b-адренорецепторов и NO-зависимой вазодилатации обеспечивает не только гипотензивный эффект небиволола, но и благоприятное влияние на систолическую и диастолическую функцию миокарда. Ранние исследования вазодилатирующего действия небиволола у здоровых добровольцев показали, что при остром внутривенном или внутриартериальном введении он вызывает дозозависимую вазодилатацию артериальных и венозных сосудов, опосредованную через NO. Вазодилатирующий эффект небиволола проявлялся в различных регионах сосудистого и микроциркуляторного русла и сопровождался увеличением эластичности артерий, что было подтверждено и у пациентов с АГ . Доказательства NO-зависимого механизма вазодилатирующего эффекта небиволола были получены не только в экспериментальных исследованиях, но и в клинических условиях с помощью тестов с ацетилхолином, ингибитором аргинин/NO системы . Гемодинамическая разгрузка миокарда, оказываемая небивололом, снижает потребность миокарда в кислороде, способствует повышению сердечного выброса у больных с диастолической дисфункцией миокарда и сердечной недостаточностью . Именно способность модулировать сниженную продукцию оксида азота, обладающего ангиопротективными и вазодилатирующими свойствами, является основой антиатеросклеротического действия препарата.

    В современных исследованиях, посвященных изучению вазодилатирующего эффекта небиволола у больных с АГ, было показано, что небиволол в дозе 5 мг в сутки в сравнении с бисопрололом в дозе 10 мг или атенололом в дозе 50 мг в сутки вызывает достоверное снижение индекса сосудистой резистентности, увеличение сердечного индекса, повышение микрососудистого кровотока в различных отделах сосудистого русла, при отсутствии различий в степени снижения АД и отсутствии этих эффектов у атенолола и бисопролола .

    Таким образом, небиволол обладает клинически значимыми преимуществами среди других b-адреноблокаторов. Наличие NO-зависимого вазодилатирующего эффекта небиволола у больных с АГ может иметь большое значение с позиции протективной роли оксида азота против кардиоваскулярных факторов риска и особенно развития атеросклероза. Восстанавливая равновесие в системе оксида азота, небиволол может устранять дисфункцию эндотелия у больных с АГ как в артериальном, так и микроциркуляторном русле и оказывать органопротективное действие, что явилось целью нашего исследования.

    Изучение вазопротективного действия небиволола

    Изучение вазопротективного эффекта небиволола в сравнении с ингибитором АПФ квинаприлом проводилось у 60 пациентов с АГ (cредний возраст 56 лет). Вазопротективный эффект оценивался по динамике вазодилатирующей функции эндотелия с помощью неинвазивных вазодилатационных проб с реактивной гиперемией (эндотелий-зависимая вазодилатация) и нитроглицерином (эндотелий-независимая вазодилатация) и состояния комплекса интима-медиа стенки сонных артерий области бифуркации.

    Больным проводилось общеклиническое обследование, оценка офисного АД и СМАД, дуплексное сканирование сонных артерий с определением толщины комплекса «интима-медиа» (ТИМ), оценка эндотелий-зависимой вазодилатации (ЭЗВД) и эндотелий-независимой вазодилатации (ЭНЗВД) при проведении ультразвукового исследования плечевой артерии. За нормальную ЭЗВД принимали показатели прироста дилатации артерии на 10 %, за нормальную ЭНЗВД – прирост более 15 %; кроме того, оценивался индекс вазодилатации (ИВД) – отношение степени прироста ЭНЗВД к приросту ЭЗВД (нормальный индекс 1,5-1,9). При оценке ТИМ – до 1,0 мм принимали за норму, 1,0-1,4 мм – утолщение, более 1,4 мм расценивали как формирование атеросклеротической бляшки.

    Данные «офисного» АД через 6 месяцев лечения

    небивололом и квинаприлом

    Через 6 месяцев лечения снижение САД/ДАД на фоне терапии небивололом составило 17/12,2 мм рт. ст., на фоне терапии квинаприлом – 19,2/9,2 мм рт. ст. Небиволол показал более выраженное снижение уровня ДАД: по данным офисного измерения ДАД достигло 86,8 против 90 мм рт. ст. (р

    Анализ вазодилатирующей функции плечевой артерии

    Исходно у больных с АГ наблюдались значительные нарушения вазодилатирующей функции плечевой артерии преимущественно в виде снижения ЭЗВД: нормальный показатель ЭЗВД в пробе с реактивной гиперемией (прирост диаметра артерии более 10 %) был зафиксирован только у одной больной; нормальные исходные показатели ЭНЗВД в нитроглицериновой пробе (прирост диаметра артерии более 15 %) имели 22 больных (36 %), при этом ИВД составил 2,4 ± 0,2.

    Через 6 месяцев терапии диаметр плечевой артерии в покое увеличился на 1,9 % в группе небиволола и на 1,55 % в группе квинаприла (p = 0,005), что является проявлением вазодилатирующего действия препаратов. Улучшение вазодилатирующей функции сосудов отмечалось в большей степени за счет ЭЗВД: прирост диаметра сосуда в пробе с реактивной гиперемией достиг 12,5 и 10,1 % на фоне терапии небивололом и квинаприлом соответственно. Выраженность действия небиволола на ЭЗВД была большей как по степени прироста ЭЗВД (p = 0,03), так и по частоте нормализации показателей ЭЗВД (у 20 больных (66,6 %) против 15 больных (50 %) в группе квинаприла). Улучшение ЭНЗВД было менее выражено: лишь у 10 % пациентов отмечен прирост вазодилатации в пробе с нитроглицерином в обеих группах (рис. 1). ИВД к концу лечения составил в группе небиволола 1,35 ± 0,1 и в группе квинаприла – 1,43 ± 0,1.

    Результаты изучения комплекса интима-мадиа сонных артерий

    Исходно нормальные показатели комплекса интима-медиа сонных артерий в области бифуркации (ТИМ 1,4 мм).

    Через 6 месяцев лечения количество больных, имеющих атеросклеротические бляшки, не изменилось; у остальных наблюдалось уменьшение ТИМ на 0,06 мм (7,2 %, p

    При анализе корреляционных взаимосвязей между ЭЗВД и ЭНЗВД и уровнем исходного «офисного» АД выявлена статистически значимая отрицательная корреляция между уровнем САД и ДАД и степенью прироста ЭЗВД и ЭНЗВД. Это говорит о том, что чем выше исходный уровень АД у больных АГ, тем меньше способность сосудов к нормальной вазодилатации (табл. 2). При анализе взаимосвязей между ЭЗВД и ЭНЗВД и выраженностью гипотензивного эффекта к 6 месяцам терапии выявлена статистически значимая отрицательная корреляция между достигнутым уровнем ДАД и степенью прироста ЭЗВД и ЭНЗВД, свидетельствующая о роли нормализации ДАД в обеспечении вазодилатирующей функции сосудов, причем данная зависимость имела место только в отношении небиволола и отсутствовала для квинаприла.

    Таблица 2

    Корреляционный анализ взаимосвязи между АД и вазодилатирующей функцией сосудов

    Показатели

    n
    Spearman
    p
    Прирост ЭЗВД и САД офисное исходно

    Прирост ЭЗВД и ДАД офисное исходно

    Прирост ЭНЗВД и САД офисное исходно
    Прирост ЭНЗВД и ДАД офисное исходно
    Прирост ЭЗВД и САД офисное через 6 месяцев
    Прирост ЭНЗВД и САД офисное через 6 месяцев

    Прирост ЭЗВД и ДАД офисное через 6 месяцев

    Прирост ЭНЗВД и ДАД офисное через 6 месяцев

    Таким образом, в нашем исследовании было показано, что практически у всех больных с АГ отмечается дисфункция эндотелия в виде замедленного и недостаточного вазодилатирующего эффекта при пробе с реактивной гиперемией, что свидетельствует о нарушенной ЭЗВД, при незначительном снижении ЭНЗВД (у одной трети больных ЭНЗВД оставалась нормальной), что коррелировало со степенью повышения АД. В результате лечения в группе небиволола наблюдались более выраженные изменения вазодилатируюшей функции сосудов, причем преимущественно ЭЗВД, что может свидетельствовать о наличии у препарата NO-зависимых механизмов действия. Кроме того, влияние на эндотелиальную функцию сопровождалось и более выраженным гипотезивным действием небиволола, особенно на уровень ДАД, что является дополнительным подтверждением вазодилатирующего эффекта у этого b-блокатора. Нормализуя эндотелиальную функцию, небиволол уменьшал ТИМ у больных с АГ и способствовал торможению прогрессирования атеросклеротических бляшек. Этот эффект небиволола был сопоставим с наиболее высоколипофильным и тканеспецифичным ингибитором АПФ – квинаприлом, антиатерогенные свойства которого были показаны в крупном исследовании QUIET.

    Изучение нефропротективного действия небиволола

    Дисфункция эндотелия является пусковым патогенетическим механизмом развития нефропатии у больных с АГ. Повышение системного АД и нарушение внутриклубочковой гемодинамики, повреждая эндотелий сосудов клубочков, увеличивает фильтрацию белков через базальную мембрану, что на ранних этапах проявляется микропротеинурией, а в дальшейшем – развитием гипертонического нефроангиосклероза и ХПН. Наиболее значимыми медиаторами развития нефроангиосклероза являются ангиотензин II и неполноценный предшественник NO – аномальный диметиларгинин, способствующий развитию дефицита образования оксида азота. Поэтому восстановление функции эндотелиоцитов клубочков может обеспечивать нефропротективное действие на фоне гипотензивной терапии. В этой связи нами проводилось изучение возможностей действия небиволола на микропротеинурию у 40 больных с АГ (cредний возраст 49,2 лет) в сравнении с квинаприлом.

    По данным офисных измерений АД гипотензивный эффект небиволола и квинаприла через 6 месяцев терапии был сопоставимым: 138/85 и 142/86 мм рт. ст соответственно. Однако достижение целевого уровня АД к концу лечения наблюдалось у 41 % больных, получавших небиволол, и лишь у 24 % больных, получавших квинаприл, а добавление ГХТ потребовалось в 6 и 47 % случаев соответственно.

    Исходно микропротеинурия была выявлена у 71 % пациентов с АГ, причем у этих пациентов уровень АД оказался достоверно более высокий, чем у больных, не имеющих микропротеинурии. На фоне лечения небивололом и квинаприлом наблюдалось снижение экскреции альбумина до нормальных показателей как в суточной, так и в утренней порциях мочи; уровень экскреции b2-микроглобулина в течение всего периода лечения сохранялся повышенным в обеих группах (рис. 2).

    Таким образом, оба препарата эффективно улучшали клубочковую фильтрацию и, как результат, уменьшали альбуминурию у больных с АГ. Известно, что механизмом нефропротективного действия ингибитора АПФ квинаприла является устранение повреждающего действия ангиотензина II; для небиволола, не имеющего прямого влияния на ангиотензин II, нефропротективное действие реализуется только за счет прямого вазодилатирующего действия через систему NO.

    Заключение

    Небиволол – представитель нового поколения b-адреноблокаторов с вазодилатирующим действием – относится к классу современных вазоактивных препаратов, регулирующих эндотелиальную функцию через систему NO. Небиволол показал выраженные органопротективные свойства у больных с АГ. Учитывая клиническую значимость дисфункции эндотелия в развитии сердечно-сосудистых заболеваний, небиволол может быть альтернативой ингибиторам АПФ.

    Литература
    1. Vane J.R., Anggard E.E., Botting R.M. Regulatory functions of the vascular endothelium // N.Engl. J. Med. 1990. V. 323. P. 27-36.
    2. Gimbrone M.A. Vascular endothelium: an integrator of pathophysiologic stimuli in atherosclerosis // Am. J. Cardiol. 1995. V. 75. P. 67B-70B.
    3. Drexler H. Endothelial dysfunction: clinical implications // Prog.Cardiovascular Dis. 1997. V. 39. P. 287-324.
    4. Heitzer T., Schlinzig T., Krohn K. et al. Endothelial dysfunction, oxidative stress and risk of cardiovascular events in patients with coronary disease // Circulation 2001. V. 104. P. 263-268.
    5. Perticone F., Ceravolo R., Pujia A. et al. Prognostic significance of endothelial dysfunction in hypertensive patients // Circulation. 2001. V. 104. P. 191-196.
    6. Lucher T.F., Noll G. The pathogenesis of cardiovascular disease: role of the endothelium as a target and mediator // Atherosclerosis.1995. V. 118(suppl.). S81-90.
    7. Lind L, Grantsam S, Millgard J. Endothelium-dependent vasodilation in hypertension – A review // Blood Pressure. 2000. V. 9. P. 4-15.
    8. Taddei S., Salvetti A. Endothelial dysfunction in essential hypertension: clinical implications // J.Hypertens. 2002. V. 20. P. 1671-1674.
    9. Panza JA, Casino PR, Kilcoyne CM, Quyyumi AA. Role of endothelium-derived nitric oxide in the abnormal endothelium-dependent vascular relaxation of patients with essential hypertension // Circulation. 1993. V. 87. P. 468-474.
    10. Cadrillo C, Kilcoyne CM, Quyyumi A, et al. Selective defect in nitric oxide synthesis may explain the impaired endothelium-dependent vasodilation in essential hypertension // Circulation. 1998. V. 97. P. 851-856.
    11. Broeders M.A.W., Doevendans P.A., Bronsaer R., van Gorsel E. Nebivolol : A Third- Generation ß-Blocker That Augments Vascular Nitric Oxide Release Endothelial ß2-Adrenergic Receptor-Mediated Nitric Oxide Production // Circulation. 2000. V. 102. P. 677.
    12. Dawes M., Brett S.E., Chowienczyk P.J. et al. The vasodilator action of nebivolol in forearm vasculature of subjects with essential hypertension // Br. .J Clin. Pharmacol. 1994. V. 48. P. 460-463.
    13. Kubli S., Feihl F., Waeber B. Beta-blocade with nebivolol enhances the acetylcholine-induced cutaneus vasodilation. // Clin.Pharmacol.Therap. 2001. V. 69. P. 238-244.
    14. Tzemos N., Lim P.O., McDonald T.M. Nebivolol reverses endothelial dysfunction in essential hypertension. A randomized, double-blind, cross-over study // Circulation. 2001. V. 104. P. 511-514.
    15. Kamp O., Sieswerda G.T., Visser C.A. Favourable effects on systolic and diastolic left ventricular function of nebivolol in comparison to atenolol in patients with uncomplicated essential hypertension // Am.J.Cardiol. 2003. V. 92. P. 344-348.

    16. Brett S.E., Forte P., Chowienczyk P.J. et al. Comparison of the effects of nebivolol and bisoprolol on systemic vascular resistance in patients with essential hypertension // Clin.Drug Invest. 2002. V. 22. P. 355-359.

    17. Celermajer DS, Sorensen KE, Gooch VM, et al. Non-invasive deteсtion of endothelial dysfunction in children and adults at risk of atherosclerosis // Lancet. 1992. V. 340. P. 1111-1115.

    В настоящее время подавляющее большинство патологов считает, что пусковым моментом для развития атеросклероза сосудов является повреждение (десквамация) сосудистого эндотелия. Основные повреждающие факторы представлены на рисунке.

    Основные этиологические факторы, вызывающие повреждение эндотелия сосудов

    Гипертензия является мощным фактором повреждения эндотелия сосудов, особенно в местах их бифуркации. Это явление хорошо иллюстрирует приводимый ниже рисунок.

    Роль гипертензии в повреждении сосудистого эндотелия

    В участке «а» давление крови наибольшее, напряжение сдвига максимальное. Именно здесь и происходит разрушение эндотелиоцитов и их десквамация (слущивание) с поверхности сосуда. В участке «б» давление крови наименьшее. Повреждение эндотелия на этих участках не происходит. Как известно, гипертоническая болезнь и атеросклероз - это два патологических процесса, тесно связанные между собою, или, точнее, способствующие развитию друг друга.

    Связь между курением и атеросклерозом известна давно. Помимо приведенных на рисунке проатеросклеротических факторов, связанных с курением, следует иметь в виду, что у курильщиков усиленно продуцируются многие цитокины - активаторы воспаления. Таким образом, косвенно курение способствует поддержанию воспалительного процесса в местах повреждения сосудистого эндотелия.

    О возможном влиянии на повреждение эндотелия и развитие атеросклероза некоторых инфекционных агентов было уже сказано. Стоит добавить, что антигены микробов и вирусов, внедрившиеся в эндотелиоциты и гладкомышечные клетки, способствуют активации соответствующих клеточных и гуморальных факторов иммунитета, что, в свою очередь, провоцирует и поддерживает воспалительный процесс.

    В разделе лекции, посвященном истории изучения атеросклероза была уже описана роль гомоцистеина (точнее, гипергомоцистеинемии) в развитии атеросклероза. Основным повреждающим фактором гипергомоцистеинемии является значительное увеличение образования свободных радикалов. По отношению к сосудистому эндотелию этот фактор, безусловно, является повреждающим.

    Вы также можете найти интересующую информацию в научном поисковике Otvety.Online. Воспользуйтесь формой поиска:

    Еще по теме Повреждение сосудистого эндотелия - пусковой механизм развития атеросклероза:

    1. 1. Неспецифические формы повреждения клетки, их виды и механизмы развития.
    2. Тромбофилии, связанные с повышением активности тромбоцитов и повреждением сосудистой стенки.
    3. Из истории изучения атеросклероза. Теории атеросклероза
    4. Механизмы кровоточивости, связанные с тромбоцитами (тромбоцитопении и тромбоцитопатии) и сосудистой стенкой.

    Нарушение функционального состояния эндотелия сосудов в клинических условиях можно диагностировать по биохимическим и функциональным маркерам. К биохимическим маркерам поврежденного эндотелия относятся повышение концентрации в крови биологически активных веществ, синтезируемых эндотелием или экспрессируемых на его поверхности.

    Наиболее значимые из них:

    Фактор Виллебранда;

    Эндотелии-1;

    Молекулы адгезии (Е-селектин, Р-селектин, VCAM-1 и др.);

    Тканевой активатор плазминогена;

    Тромбомодулин;

    Фибронектин.

    Фактор Виллебранда (vWf) - это гликопротеин, синтезируемый эндотелиальными клетками сосудов. Его концентрация в плазме крови в норме не превышает 10 мкг/мл. Фактор Виллебранда необходим для нормального функционирования фактора VIII свертывания крови. Другой важной функцией фактора VIII является образование агрегатов из тромбоцитов в местах поврежденного эндотелия. В этих случаях происходят связывание vWf с субэндотелием и образование мостика между поверхностью субэндотелия и тромбоцитами. Значение vWf в регуляции системы гемостаза подтверждается также тем, что при врожденной неполноценности или дисфункции этого белка развивается достаточно часто наблюдаемое заболевание - болезнь Виллебранда. В ряде проспективных исследований, выполненных в последние годы, показано, что высокий уровень vWf у лиц с сердечно-сосудистой патологией может быть важным для прогноза вероятности инфаркта миокарда и летального исхода. Считается, что уровень vWf отражает степень поражения сосудистого эндотелия. Вопеи и соавт. первыми предложили определять уровень vWf в плазме для оценки степени повреждения сосудистого эндотелия. Предложенная ими гипотеза основывалась на том, что у больных с облитерирующим атеросклерозом конечностей или септицемией повышенный уровень vWf прямо отражал обширность сосудистого поражения. В последующих исследованиях показано повышение уровня vWf при разных клинических состояниях с повреждением эндотелиальных клеток и обнажением субэндотелиального слоя (при АГ, острой и хронической почечной недостаточности, ДН и васкулите).

    Данные, полученные в отделении нефропатии ГУ ЭНЦ РАМН, указывают на то, что по мере нарастания тяжести АГ и диабетического поражения почек увеличивается концентрация vWf в плазме крови, что свидетельствует о тяжелом повреждении сосудистого эндотелия (рис. 5.3).

    Эндотепин-l. В 1988 г. М. Yanagisawa и соавт. охарактеризовали вазоконстриктор эндотелиального происхождения как пептид, состоящий из 21 аминокислотного остатка, и назвали его эндотелином. Дальнейшие исследования показали, что существует семейство эндо- телинов, которое состоит по меньшей мере из 4 эндотелиновых пептидов со сходной химической структурой. В настоящее время изуче-



    на химическая структура эндотелина-1, эндотелина-2 и эндотелина-3. Большая часть (до 70-75 %) эндотелина-1 секретируется эндотелиальными клетками в направлении гладкомышечных клеток сосудистой стенки. Связывание эндотелина-1 со специфическими рецепторами на мембранах гладкомышечных клеток приводит к их сокращению и, в конечном счете, к вазоконстрикции. В экспериментах на животных показано, что in vivo эндотелины являются самыми мощными из известных в настоящее время вазоконстрикторных факторов.

    В исследовании, проведенном в ГУ ЭНЦ РАМН, мы показали, что у больных СД концентрация эндотелина-1 возрастает по мере нарастания тяжести ДН и АГ (рис. 5.4).

    Молекулы адгезии. Маркерами активированного эндотелия и лейкоцитов являются растворимые формы адгезивных молекул в сыворотке крови (Adams, 1994). Наибольшую диагностическую значимость имеют молекулы адгезии семейств селектинов и иммуноглобулинов (Е-селектин, межклеточные молекулы - ICAM-1, -2, -3 и поверхностная молекула адгезии - VCAM-1).

    Е-селектин, или ELAM-1 (англ. Endothelial Leucocyte Adhesion Molecule) - адгезивная молекула, выявляемая на эндотелиальных клетках. При воздействии повреждающих факторов активированный эндотелий синтезирует и экспрессирует эту молекулу, что создает предпосылки для последующего рецепторного взаимодействия, реализующегося в адгезии лейкоцитов и тромбоцитов с развитием стаза крови.

    ICAM-1 (англ. Intercellular Adhesion Molecule, CD54) - адгезивная молекула гемопоэтических и негемопоэтических клеток. Усиливает

    экспрессию этой молекулы воздействие IL-2, фактора некроза опухолей a. ICAM-1 может существовать в мембраносвязанной и растворимой (сывороточной) формах (sICAM-1). Последняя появляется в сыворотке крови в результате протеолиза и слущивания ICAM-1 с мембраны ICAM-1 -позитивных клеток. Количество сывороточной sICAM-1 коррелирует с выраженностью клинических проявлений заболевания и может служить признаком активности процесса.

    VCAM-1 (англ. Vascular Cellular Adhesion Molecule, CD106) - молекула адгезии сосудистых клеток, экспрессируется на поверхности активированного эндотелия и других типах клеток. Появление растворимой биологически активной формы sVCAM-І в сыворотке также может происходить в результате протеолиза и отражать активность процесса.

    Перечисленные молекулы адгезии (Е-селектин, 1САМ-1 и VCAM-1) рассматриваются как возможные основные маркеры, отражающие процесс активации эндотелиальных клеток и лейкоцитов.

    Нарастание микрососудистых осложнений и АГ при СД сопровождается увеличением экспрессии адгезивных молекул, указывающим на тяжелое и необратимое повреждение клеток эндотелия .

    Функциональным маркером поврежденного эндотелия является нарушение эндотелийзависимой вазодилатации сосудов, сохранность которой обеспечивается секрецией NO. Именно ему принадлежит роль модератора основных функций эндотелия. Это соединение регулирует активность и последовательность запуска всех остальных биологически активных веществ, продуцируемых эндотелием. NO не только вызывает расширение сосудов, но и блокирует пролиферацию гладкомышечных клеток, препятствует адгезии клеток крови и обладает антиагрегантными свойствами. Таким образом, NO является базовым фактором антиатерогенеза.

    К сожалению, NO-продуцирующая функция эндотелия наиболее ранима. Причиной этому является высокая нестабильность молекулы NO, по природе своей свободного радикала. В результате благоприятное антиатерогенное действие NO нивелируется и уступает токсическому атерогенному действию других факторов поврежденного эндотелия.

    Вследствие высокой нестабильности молекулы NO прямое измерение его концентрации в крови практически невозможно. Поэтому для оценки NO-синтетической функции эндотелия используется непрямой и неинвазивный метод, основанный на изучении ответа эндотелия на различные стимулы (в частности, на реактивную гиперемию). При этом исследуется изменение диаметра плечевой или лучевой артерии (при помощи высокоразрешающей ультразвуковой допплерографии) в ответ на ее кратковременное пережатие (5 мин) с помощью пневматической манжеты. Расширение плечевой артерии после такого пережатия обусловлено выделением NO эндотелием артерий. Доказательства именно эндотелиальной зависимости расширения артерий получено в исследованиях с использованием специфического ингибитора NO - L-NMMA, который снижал почти на 70 % наблюдаемый эффект расширения. В норме эндотелийзависимое расширение плечевой артерии в ответ на реактивную гиперемию составляет 8-10 %. Уменьшение этого показателя свидетельствует о низкой продукции NO эндотелием сосудов.

    В исследовании, проведенном в ГУ ЭНЦ РАМН, убедительно продемонстрировано, что по мере нарастания тяжести АГ и ДН снижается эндотелийзависимая вазодилатация плечевой артерии, что свидетельствует о выраженном нарушении функции эндотелия у этих больных .

    Текущая страница: 19 (всего у книги 49 страниц) [доступный отрывок для чтения: 33 страниц]

    10.5. Дисфункция эндотелия и ее маркеры

    Дисфункция эндотелия является одним из наиболее важных патогенетических механизмов многих заболеваний сердечно-сосудистой системы. В частности, дисфункция эндотелия может вызывать спазм сосудов, усиленное тромбообразование и усиленную адгезию лейкоцитов к эндотелию, что сопровождается нарушением регионарного кровообращения и микроциркуляции. Причинами эндотелиальной дисфункции могут быть различные факторы:

    генетические особенности;

    возрастные изменения;

    – дислипопротеинемия (гиперхолестеринемия);

    – гиперцитокинемия;

    – гипергомоцистеинемия;

    – гипергликемия;

    – гемодинамический фактор (гипертензия, ишемия, венозный застой);

    – эндогенные интоксикации (почечная печеночная недостаточность, панкреатит и др.);

    – экзогенные интоксикации (курение и др.).

    В широком смысле эндотелиальная дисфункция может быть определена как:

    – образование конформационно измененных эндотелиальных факторов;

    – уменьшение образования эндотелиальных факторов;

    – нерегулируемое образование эндотелиальных факторов.

    В последнее время сложилось более узкое представление об эндотелиальной дисфункции как о состоянии эндотелия, при котором имеется недостаточная продукция оксида азота. Поскольку оксид азота принимает участие в регуляции практически всех функций эндотелия (регуляция сосудистого тонуса, тромборезистентность сосудов, регуляция адгезии лейкоцитов и проницаемости сосудов), а кроме того, является фактором, наиболее чувствительным к повреждению, такое представление о дисфункции эндотелия достаточно корректно, хотя и не является полным. Важнейшим фактором нарушения образования и/или биодоступности оксида азота является избыточное образование активных форм кислорода, что наблюдается при многих заболеваниях.

    Кроме понятия «дисфункция эндотелия» необходимо выделить также понятия «стимуляция эндотелия» (при которой под действием различных факторов происходит увеличение активности eNOS, циклооксигеназы-1 и других ферментов эндотелиоцитов с увеличением образования оксида азота, простациклина и других БАВ, а также высвобождение накопленных в эндотелиоцитах факторов), и «активация эндотелия», сопровождающиеся экспрессией генов и активацией синтетических процессов в эндотелиоцитах.

    В клинической практике функциональную активность эндотелия оценивают преимущественно с помощью инструментальных методов. Для этого исследуют эндотелийзависимую вазодилатацию при фармакологических пробах (например, с ацетилхолином), пробе с реактивной гиперемией (по изменению напряжения сдвига при прекращении/восстановлении кровотока по плечевой артерии), пробе с холодовым или ментальным стрессом (при исследовании кровотока в миокарде) и некоторых других.

    Другим методом оценки выраженности эндотелиальной дисфункции является лабораторная диагностика – оценка содержания в крови различных веществ, образующихся в эндотелии (табл. 10.5). В настоящее время существуют методики определения в крови практически всех известных веществ, образующихся в эндотелии, однако не все показатели имеют одинаковую диагностическую ценность, поскольку значительная часть маркеров эндотелиальной дисфункции образуется не только в эндотелии, но и в других клетках.

    По скорости образования в эндотелии различных факторов (что связано во многомисихструктурой), а также по преимущественному направлению секреции этих веществ (внутриклеточная или внеклеточная) можно разделить вещества эндотелиального происхождения на следующие группы.

    Факторы, постоянно образующиеся в эндотелии и выделяющиеся из клеток в базолатеральном направлении или в кровь, например NO, простациклин. Скорость образования этих факторов связана с быстро меняющимися условиями регуляции, в частности с изменением напряжения сдвига или действием вазоактивных веществ, цитокинов. Почти любое повреждение эндотелия сопровождается либо нарушением синтеза, либо снижением биодоступности этой группы веществ. В то же время при этом в эндотелии образуются индуцируемые синтаза оксида азота и циклооксигеназа-2, что приводит к значительному повышению выработки NO и простациклина.


    Таблица 10.5

    Маркеры эндотелия, изменение концентрации которых в крови является признаком эндотелиальной дисфункции


    Факторы, накапливающиеся в эндотелии и выделяющиеся из него при стимуляции (фактор Виллебранда, Р-селектин, тканевой активатор плазминогена). При действии катехоламинов, гистамина, тромбина, активированных фрагментов системы комплемента, цитокинов, вазопрессина и других происходит высвобождение фактора Виллебранда и t-PA в кровь, перемещение на мембрану эндотелиоцита Р-селектина с незначительным поступлением его в кровь (растворенный Р-селектин). Эти факторы могут попадать в кровь не только при стимуляции эндотелия, но и при его активации и повреждении.

    Факторы, синтез которых в нормальных условиях практически не происходит, однако резко увеличивается при активации эндотелия (эндотелин-1, ICAM-1, VCAM-1, E-селектин, PAI-1). Эти факторы либо экспрессируются на эндотелиоцитах (ICAM-1, VCAM-1, E-селектин) и частично выделяются в кровь (растворимые ICAM-1, VCAM-1, E-селектин), либо секретируются (эндотелин-1, PAI-1).

    Факторы, являющиеся внутриклеточными белками (тканевой фактор, аннексин-V) либо являющиеся мембранными рецепторами эндотелия (тромбомодулин, рецептор протеина С). Высвобождение этих факторов в кровь наблюдается при повреждении эндотелия и апоптозе.

    Таким образом, можно выделить несколько вариантов изменения функциональной активности эндотелия:

    – дисфункция эндотелия (уменьшение синтеза факторов первой группы, синтез конформационно измененных эндотелиальных факторов, или нерегулируемый синтез эндотелиальных факторов);

    – стимуляция эндотелия (повышение содержания в крови факторов второй группы);

    – активация эндотелия (повышение содержания в крови факторов 1 – 3 групп). Косвенным методом оценки состояния эндотелия является исследование содержания в крови факторов, повреждающих эндотелий, уровень которых коррелирует с эндотелиальной дисфункцией. К таким факторам (медиаторам повреждения эндотелия) относятся:

    – гиперхолестеринемия (уровень липопротеинов низкой плотности, липопротеинов очень низкой плотности);

    – С-реактивный белок;

    антифосфолипидные антитела;

    – ангиотензин-II;

    – гипергомоцистеинемия;

    – асимметричный диметиларгинин (ADMA);

    – липопротеин (а);

    – ксантиноксидаза;

    – цитокины (ИЛ-1β, ФНО-α, ИЛ-8 и др.).

    Как правило, в конкретной клинической ситуации имеется сразу несколько вариантов изменения функциональной активности эндотелия, поэтому в крови присутствуют самые различные эндотелиальные факторы. В связи с этим, все вышеописанные изменения нередко объединяются термином «дисфункция эндотелия». Дисфункция эндотелия может быть самостоятельной причиной нарушения кровообращения в органе, поскольку нередко провоцирует ангиоспазм или тромбоз сосудов, что, в частности, наблюдается при некоторых формах ишемической болезни сердца. С другой стороны, нарушения регионарного кровообращения (ишемия, венозный застой) тоже могут приводить к дисфункции эндотелия. Однако, поскольку проявления дисфункции при различных заболеваниях имеют свою специфику, как и степень нарушения образования в эндотелии отдельных эндотелиальных факторов, целесообразно выделить следующие типовые формы дисфункции эндотелия:

    вазомоторная : нарушение образования оксида азота, простациклина, EDHF, повышение синтеза эндотелина-1. Эта форма дисфункции является важным звеном патогенеза развития артериальной гипертензии, ангиоспастической ишемии;

    гемостатическая : изменение образования тромбогенных и атромбогенных эндотелиальных факторов, что, например, наблюдается при артериальном и венозном тромбозе, болезни Виллебранда и других;

    адгезионная : гиперэкспрессия эндотелиальных молекул адгезии, гиперцитокинемия, системная воспалительная реакция, септический шок;

    ангиогенная : избыточное образование ангиогенных факторов, возможно, изменение чувствительности эндотелия к ангиогенным факторам (опухолевый рост, хроническое воспаление).

    Выделение отдельных форм дисфункции эндотелия имеет определенное практическое значение для оптимизации подходов к ее фармакологической коррекции. Данные формы эндотелиальной дисфункции редко существуют изолированно, но, как правило, доминируют при том или другом заболевании. Не исключено, что различные формы эндотелиальной дисфункции возникают в связи с преимущественным действием различных медиаторов дисфункции эндотелия.

    На основании экспериментальных и клинических исследований мы полагаем, что системные изменения функциональной активности эндотелия – один из механизмов генерализации патологических процессов. Дальнейшее исследование эндотелиальной дисфункции, ее форм, и их зависимость от профиля факторов, влияющих на эндотелий, является перспективным направлением исследований в медицине.

    Литература

    Дисфункция эндотелия. Патогенетическое значение и методы коррекции / под ред. проф. Н. Н. Петрищева. – СПб.: ИИЦ ВМА, 2007. – 296 с.

    Aird W. C. Spatial and temporal dynamics of the endothelium // J. Thromb. Haemost. – 2005. – № 3(7). – P. 1392 – 1406.

    Boger R. H. Asymmetric Dimethylarginine, an Endogenous Inhibitor of Nitric Oxide Synthase, Explains the «L-Arginine Paradox» and Acts as a Novel Cardiovascular Risk // Factor. J. Nutr. – 2004. – Vol. 134 – P. 2842 – 2847.

    Harder D. R . . Cytochrome P450 metabolites of arachidonic acid as intracellular signaling molecules in vascular tissue // J. Vasc. Res. – 1997. – Vol. 34(3). – P. 237 – 243.

    Mateo A. N., Artinano A. A . Highlights on endothelins: a review // Pharmacol. Res. – 1997. – Vol. 36 (5). – P. 339 – 351.

    Silva P. M . From endothelial dysfunction to vascular occlusion: role of the renin-angiotensin system // Rev. Port. Cardiol. – 2010. – 29(5). – P. 801 – 824.

    Wong W. T . . Endothelial dysfunction: the common consequence in diabetes and hypertension // J. Cardiovasc. Pharmacol. – 2010. – Vol. 55(4). – P. 300 – 307.

    ТЕМА 11
    КАХЕКСИЯ КАК ТИПОВОЙ КЛИНИЧЕСКИЙ СИНДРОМ

    В настоящее время многими авторами отождествляются понятия «истощение» и «кахексия». Однако при изучении процессов, лежащих в основе развития этих двух патологических состояний, можно сделать вывод об их принципиальном различии. Процессы, включающиеся при истощении, направлены на максимально адекватное поддержание жизнедеятельности организма в условиях стресса, то есть механизм истощения – это адаптационный механизм, нацеленный на сохранение гомеостаза. Кахексия же – состояние, возникающее в изначально больном организме, является следствием заболевания.

    Истощение – это патологическое состояние при недостаточном или полном прекращении поступления пищи, которое на определенной стадии развития характеризуют расстройства деятельности всех функциональных систем, а также дефицит массы (при истощении дефицит жировой ткани может составлять 20 – 25 % и более, при развитии кахексии – ниже 50 %) и энергии во всех органах и клеточных элементах организма. Основное звено патогенеза, которое можно представить как низкую, относительно потребностей клеток, доставку к ним питательных веществ, источников свободной энергии и субстратов для анаболических процессов.

    11.1. Этиология

    Различают экзогенные и эндогенные причины истощения.

    К экзогенным причинам относятся:

    – абсолютное, полное, неполное и частичное голодание;

    низкая калорийность пищи, не способная восполнить энергозатраты организма.

    Абсолютное голодание – это экзогенное голодание при полном отсутствии пищи и воды. Полное – это голодание при отсутствии пищи, но с сохранением питья. Неполное голодание характеризуется питанием, недостаточным для удовлетворения потребностей организма в нутриентах. Частичное голодание – непоступление одного или нескольких пищевых веществ: белков, жиров, минеральных веществ и витаминов. Данный вид голодания в чистом виде возможен только в эксперименте. В настоящее время голодание выходит за рамки биологической проблемы, в большей степени оно зависит от социальных условий. В слаборазвитых странах постоянно испытывают голод большие массы людей, 40 % из них составляют дети. Даже в странах с высоким уровнем развития голодание возможно при стихийных бедствиях, военных конфликтах, техногенных катастрофах.

    Эндогенными причинами истощения являются факторы, связанные с различными заболеваниями. Их подразделяют на первичные и вторичные.

    Первичные причины связаны с патологическими состояниями, подавляющими синтез нейропептида Y в гипоталамусе (травмы мозга, ишемия гипоталамуса, нервно-психические расстройства) и вызывающих гипосенситизацию клеток-мишеней к нейропептиду Y.

    Кахексия на данный момент считается распространенным и опасным осложнением различных хронических заболеваний, с которым связывают неблагоприятный прогноз (табл. 11.1). Кахексия (wasting desease syndrome) – комплексный метаболический синдром, связанный с основным заболеванием и характеризующийся потерей мышечной массы или без потери массы жировой ткани.


    Таблица 11.1

    Заболевания, характеризующиеся наличием кахексии


    Диагностика. При выборе критериев дифференциальной диагностики следует руководствоваться представлениями о патогенезе данных состояний. Большая часть критериев отображена в табл. 11.2.


    Таблица 11.2

    Показатели истощения и кахексии

    Примечания : «–» – снижение показателя; «+» – повышение показателя; «0» – отсутствие изменений.


    Оценка потери массы тела – один из самых доступных в практике критериев, но, к сожалению, не самый информативный. Следует понимать, что потеря массы тела у истощенного происходит в основном за счет расходования организмом жиров, и только в далеко зашедших случаях организм начинает использовать белки в качестве источника энергии. У больных же, страдающих кахексией, потеря веса может быть в принципе не так заметна, но происходит она за счет белков (в основном белков миофибрилл поперечнополосатой мускулатуры). Необходимо указать, что кахексия зачастую может сопровождаться и истощением, так как в силу определенных причин у больных кахексией происходит снижение аппетита.

    Следующий часто упоминаемый в литературе критерий является логичным дополнением первого – это улучшение самочувствия больного в результате полноценного питания. Для истощенных больных полноценное питание является необходимым условием успешности лечения, в то время как для страдающих кахексией оно не приносит желаемых результатов.

    При истощении снижается концентрация глюкозы в крови, содержание инсулина в крови также уменьшено. При кахексии в организме развивается резистентность к инсулину, и, несмотря на достаточное поступление глюкозы, ее усваивания не происходит. У больных с кахексией наблюдается повышение секреции таких веществ как, например, кортизол и миостатин, отвечающих за активацию катаболических реакций в организме.

    Истощение характеризуется отсутствием как синтеза, так и распада белка (если речь идет не о заключительной стадии истощения). А для кахексии характерен усиленный распад белков (в крови могут быть обнаружены специфические маркеры), а также активный синтез в печени белков острой фазы.

    Основной обмен при истощении, как это следует из вышесказанного, снижен, а при кахексии – повышен. Такое состояние при кахексии также называют гиперметаболизмом.

    С клинической точки зрения предлагается следующая схема диагностики.

    Кахексия диагностируется, если выполняются все следующие условия:

    – менее чем за 12 месяцев происходит потеря более 50 % исходной массы тела;

    – присутствует сопутствующее заболевание (см. табл. 11.1);

    – наблюдаются следующие изменения: снижение двигательной способности мышечного аппарата, усталость, анорексия, измененные биохимические показатели крови (содержание белков острой фазы, инсулина, кортизола).

    11.2. Патогенез истощения

    В развитии полного голодания принято выделять три периода.

    В первом, начальном периоде , который длится 5 – 7 дней, отмечается повышение основного обмена с увеличением энергетических затрат, а также наибольшая потеря веса за сутки. Основные жизненные процессы поддерживаются за счет депо углеводов в печени и мышцах. Этот период характеризуется: снижением уровня глюкозы в крови, уменьшением выработки инсулина и повышением уровня глюкагона, который в свою очередь способствует процессу гликогенолиза в печени. При снижении запасов гликогена, а также концентрации глюкозы и других нутриентов, секреция инсулина падает до базального уровня и происходит возбуждение пищевого центра на уровне латеральных ядер гипоталамуса – центра голода. Активность этого центра возрастает под действием нейропептида Y. Снижение массы жира приводит к снижению выделения гормона лептина, усиливается чувство голода, который, в свою очередь, активирует симпатический отдел автономной нервной системы. В результате растет секреция гормонов-антагонистов инсулина. Возникает изменение соотношения секреции инсулина и гормонов с преимущественно катаболическим действием, что стимулирует гликогенолиз, липолиз, протеолиз и глюконеогенез при угнетении гликогенообразования, синтеза жиров и белков. В процессе голодного стресса, в период экстренной адаптации, наибольшее влияние оказывают гормоны: адренокортикотропный, вазопрессин, глюкокортикоиды, катехоламины.

    Адренокортикотропный гормон вызывает усиление липолиза, увеличивает синтез соматотропного гормона и одновременно тормозит синтез мочевины печенью. Действие соматотропного гормона направлено на усиление использования аминокислот в качестве энергетического субстрата, а также усиление процессов катаболизма жиров и подавление синтеза инсулина. Наряду с этими процессами под действием глюкокортикоидов усиливаются процессы глюконеогенеза из аминокислот, которые транспортируются из мышц в печень. На фоне этих процессов синтез белка в соединительной ткани, коже, жировой ткани, лимфоидных органах тормозится. Вазопрессин на начальных этапах голодания усиливает липолиз и захват жирных кислот печенью, но тормозит синтез кетоновых тел.

    Таким образом, первый период голодания характеризуется усилением процессов глюконеогенеза из депо жировой, а также соединительной ткани и скелетных мышц (табл. 11.3).

    При длительном полном голодании только нейроны головного и спинного мозга используют глюкозу как энергетический субстрат. Клетки всех других тканей и органов для биологического окисления утилизируют свободные жирные кислоты и кетоновые тела (бета-гидроксимасляная и ацетоуксусная кислоты).

    Снижение процесса дезаминирования и переаминирования, начало усвоения мозгом кетоновых тел в качестве энергетического субстрата являются показателями начала второго периода (фазы стабильной долговременной адаптации по А. Ш. Зайчику и Л. П. Чурилову).


    Таблица 11.3

    Стадии приспособительных изменений обмена веществ в органах и тканях при голодании


    При полном голодании, длящемся более 72 ч, падает выделение азота с мочой. Это свидетельствует о падении утилизации белка как источника свободной энергии. Таким образом, начало этого периода характеризуется снижением потребления аминокислот в процессе глюконеогенеза и нарастанием синтеза кетоновых тел. Нарастание кетоацидоза идет, в основном, за счет окисления липидов на фоне угнетения основных ферментов цикла Кребса. В большинстве органов развиваются патологические изменения, возникает нарушение водно-солевого равновесия (потеря калия, фосфатов, кальция). В плазме крови увеличивается концентрация холестерина, особенно липопротеидов очень низкой плотности, связанных с нарушением метаболизма печени. Это может обусловить развитие артериальной гипертензии. Интенсивность обмена веществ в целом снижена, происходит торможение окислительных процессов в митохондриях, развивается гипоэнергетическое состояние.

    При продолжении голодания нарастает атрофия органов (в наименьшей степени снижается масса сердечной мышцы и мозга). Прогрессируют процессы торможения в нервной системе, со стороны сердечно-сосудистой системы возможны развития аритмий. Отмечается анемия, гипопротеинемия (в первую очередь сокращается фракция альбуминов).

    Третий период (терминальный период декомпенсации) наблюдается при потере 40 – 50 % массы тела при полном использовании запасов жира. Этот период характеризуется распадом белков внутренних органов, распадом нуклеиновых кислот клеточных ядер, приводящих к усилению выделения с мочой азота мочевины, аминокислот, калия, фосфора. Постепенно нарастает угнетение центральной нервной системы, развивается коматозное состояние и гибель организма.

    Таким образом, физиологическую адаптацию к экзогенному голоданию характеризует известная стадийность изменений обмена веществ со сменой основных источников свободной энергии, высвобождаемой при биологическом окислении и улавливаемой клеткой в виде макроэргов.

    Поскольку голодание является непосредственной угрозой для жизни, различные системы организма пытаются защитить его от этой опасности. В связи с этим усиление чувства голода является стимулом для активизации поиска пищи (рис. 11.1).

    Содержание инсулина, ключевого гормона гомеостаза, снижается в крови при голодании вследствие гипогликемии (повышается при возобновлении питания) и является основным фактором, обуславливающим переключение метаболизма с углеводного субстрата на жировой. Такое изменение обмена веществ обеспечивается разнообразными биохимическими процессами в жировой ткани, мышцах и печени. Инсулин влияет на аппетит, расходование энергии и нейроэндокринный статус организма. Проникая через гематоэнцефалический барьер, инсулин подавляет экспрессию нейропептида Y, который синтезируется в гипоталамусе и является основным активатором аппетита. Таким образом, при пониженном уровне инсулина в крови синтезируется нейропептид Y, вследствие чего повышается аппетит и корректируется энергетический баланс.

    Грелин – гормон, синтезируемый в основном клетками желудка. Основным эффектом действия этого гормона является стимуляция выработки соматотропина. Грелин обладает и центральным действием, в результате чего усиливается чувство голода. Установлено, что грелин способен блокировать действие лептина. Лептин – гормон цитокинового типа, секретируемый, главным образом, адипоцитами.


    Рис. 11.1 . Взаимодействие гормонов, влияющих на аппетит


    В норме он снижает аппетит, воздействуя на гипоталамус и подавляя экспрессию нейропептида Y. При голодании уровень лептина быстро снижается, что ведет к уменьшению энергозатрат, усилению чувства голода. Было выяснено, что лептин уменьшает секрецию инсулина и может вызывать резистентность к нему. Лептин подавляет влияние инсулина на жировую клетчатку по принципу обратной связи, то есть выступает в качестве антагониста инсулина. Еще одним эффектом лептина является его воздействие на гипоталамо-гипофизарно-надпочечниковую систему. Лептин блокирует активацию данной системы (во время голодания этот блок исчезает) за счет снижения его содержания в крови и повышает секрецию глюкокортикоидных гормонов, в частности кортизола у человека. Глюкокортикоиды активируют глюконеогенез в печени, что необходимо для обеспечения глюкозой головного мозга в условиях ее ограниченного поступления в организм. В терминальной стадии голодания повышение концентрации кортизола может означать активацию протеолиза в мышцах для переработки аминокислот в глюкозу.

    В ряде исследований показано, что снижение содержания лептина в крови при голодании сопровождается также снижением содержания тироксина. Поскольку тироксин является основным регулятором скорости основного обмена, а точнее, активатором катаболизма и стимулятором деления клеток, то снижение его концентрации в крови при голодании благоприятно для организма. На более поздних стадиях голодания могут проявляться отрицательные последствия гипотиреоза. Известно, что in vitro лептин индуцирует пролиферацию и блокирует апоптоз наивных Т-лимфоцитов и Т-клеток памяти, активирует продукцию цитокинов макрофагами, способствует заживлению ран, ангиогенезу. Таким образом, лептин играет роль иммуномодулятора, и при недостатке его в крови человек становится более восприимчивым к инфекциям. Из вышесказанного следует, что лептин играет определенную роль в изменении процессов метаболизма при голодании.

    Внешними проявлениями истощения, помимо исхудания, являются слабость и значительная утомляемость при обычной работе, ухудшение когнитивных функций. Гипотермия нарастает по мере увеличения степени истощения. Вышеперечисленные симптомы являются прямым следствием гипотиреоза.

    Еще одним проявлением гипотиреоза у истощенных является брадикардия, доходящая в тяжелых случаях до 30 ударов в минуту, и понижение артериального давления. Данные клинические проявления обусловлены также синтезом аномального реверсивного трийодтиронина из-за отсутствия фермента дейодиназы, вследствие подавления ее стрессовыми гормонами.

    Постоянным симптомом у истощенных людей является полиурия, при этом суточное количество выделяемой мочи достигает 3 – 6 литров. Характерно также учащение мочеиспускания, а у части больных появляется ночное недержание мочи. Нарушения мочевыделения не связаны, однако, со структурными изменениями в почках. Эти изменения объясняются атрофией коркового вещества надпочечников и связанным с ней гипоальдостеронизмом и, соответственно, нарушением реабсорбции воды в дистальных канальцах.

    По мере прогрессирования истощения возникают так называемые голодные поносы. Одним из факторов появления жидкого стула при голодании является недостаток витамина РР (никотиновой кислоты). Считается, что механизм пелларгической диареи связан с низкой активностью некоторых ферментов, по отношению к которым витамин РР выступает в качестве кофактора.

    Другим фактором развития поносов является внешнесекреторная недостаточность поджелудочной железы, связанная с атрофией ее экзокринного аппарата. Кроме того, возможно повреждение, самопереваривание и атрофия желез, ворсинок кишечного эпителия.

    Фактором развития диареи может служить и недостаток жирных кислот в просвете толстой кишки. Функция толстой кишки, заключающаяся, в том числе и во всасывании натрия и воды, зависит от наличия в просвете определенных жирных кислот. Их наличие обусловлено ферментацией клетчатки кишечными бактериями. При отсутствии этих жирных кислот (в том числе n-бутирата) нарушается всасывание и усиливается секреция натрия, вслед за которым в просвет кишки поступает вода.

    Голодные поносы развиваются только при тяжелом истощении и в его финале примерно за две недели до смерти. В эти же сроки появляются отеки. Поскольку онкотическое давление плазмы крови понижается, жидкость по градиенту давления выходит из сосудистого русла и накапливается в тканях, серозных полостях и в просвете кишечника.

    Высокий уровень инфекционной заболеваемости у истощенных людей, наряду с белковой и энергетической недостаточностью питания, связан и с гиповитаминозами, ведущими к нарушению иммунитета. Так, недостаток в рационе витамина А сопровождается снижением фагоцитарной активности полиморфноядерных лейкоцитов и выработки плазматическими клетками антител. Их выработка страдает также при дефиците витамина В1. На фоне изменений метаболизма у голодающих уменьшается подвижность фагоцитов, Т– и В-лимфоцитов, данный эффект развивается и при дефиците витамина Е. Таким образом, истощенные люди чаще болеют инфекционными заболеваниями, в первую очередь пневмонией, а также подвержены возникновению туберкулеза.

    ?■ .: ...

    1. Развитие атеросклероза и его осложнений (ИБС, острый инфаркт миокарда, мозговой инсульт, ремоделирование сердца и сосудов, сердечная недостаточность, и, наконец, смертельный исход) представляет собой последовательную цепь событий, объединенных понятием сердечно-сосудистый континуум (ССК). Пусковым моментом ССК являются ряд заболеваний и факторов, таких как артериальная гипертония, нарушение липидного и углеводного обмена, курение и др. (т.н, "факторы риска").

    2. Влияние факторов риска на развитие ССК может осуществляться при участии различных механизмов. Одним из наиболее важным среди иих является эндотелиальная дисфункция (ЭД). ЭД определяется как потеря эндотелием барьерных свойств, способности регулировать тонус и толщину сосуда, управлять процессами коагуляции и фибринолиза, оказывать иммунное и противовоспалительное действие. Глубинные механизмы ЭД связаны с уменьшением синтеза и усилением распада N0 - универсального биологического медиатора, блокирующего вазоконстрикторные, пролиферативные и агрегационные эффекты, провоцируемые факторами риска. Ключевую роль в нарушениях метаболизма N0 и развитии ЭД играет гиперактивация ренин-ангиотензин-альдостероновой системы (РААС). Усиление синтеза ангиотензина II на поверхности, эндотелиальных клеток приводит не только к снижению экспрессии N0, но и к ускорению пролиферации ГМК (развитию гипертрофии сосудистой стенки - ГСС и левого желудочка ГЛЖ), к повышению адгезивности и проницаемости сосуда и развитию микроангиопатии, усилению воспалительного компонента реакции сосудистой стенки на воздействие факторов риска.

      Потеря эндотелием барьерных качеств, усиление проницаемости стенки для богатых холестерином липопротеидов и макрофагов служит основой для развития атеросклеротических изменений (липидных пятен, полосок, а затем и бляшек) в интиме сосуда. Постепенное развитие хронического стенозирующего процесса в бассейне коронарных артерий коронарных артерий и последующая гибернация миокарда сами по себе постепенно приводят к ремоделированию сердца. Этому способствуют также энергоёмкие и гемодинамически (через повышение ОПСС)связанные, между собой ГСС и ГЛЖ.

      Существенное ускорение развития ССК происходит цри дестабилизации и разрыве атеросклеротической бляшки и формировании э месте разрыва тромба. Клиническим выражением этой ситуации является острый коронарный синдром (ОКС) и ОИМ. (или ОНМК применительно к мозгу). Главной причиной дестабилизации бляшки и развития ОКС является ЭД: развитие воспаления на ей поверхности, повышение проницаемости эндотелия для макрофагов и форменных элементов крови, усиление коагулирующих и ослабления фибринолитических свойств крови.

      Уменьшение последствий сосудистой катастрофы (ОИМ, ОНМК) и уменьшение гибели кардиомиоцитов (КМЦ) - главная цель следующего этапа ССК. Достижение этой цели стало возможным с появлением медикаментозных и хирургических методов устранения (предупреждения) стеноза. Наиболее эффективный и доступный их них -ангиопластика со стентированием сосудов мишени. Однако механическое воздействие на сосуд и устранение стеноза, особенно в условиях ЭД, спустя некоторое время нередко провоцирует развитие рестеноза, что может способствовать гибкий ещё большего числа КМЦ и усугублять течение основного заболевания. То же относится к реконструктивным операциям на сосудах сердца (мозга и др.).

      На следующем этапе ССК - при постинфарктном ремоделировании сердца отсутствие защитной роли сосудистого эндотелия приводит к быстрому развитию клинически выраженной сердечной недостаточности и без соответствующего лечения - к смерти. Пролиферативные процессы в миокарде с преобладанием фиброза,отсутствие резерва дилатации микрососудистого русла как следствие, падение сократительной способностимиокарда, особенно при нагрузке, « прямой результат ЭД. Проявлением ЭД на периферии у больных ХСН служит нарушение микроциркуляции-в поперечно-полосатой мускулатуре и связанные с ней снижение толерантности кнагрузкам, склонность к отекам, развитие кахексии.

    Центральная роль ЭД в развитии ССК обусловлена тем, что 90% компонентов РААС расположены в тканях: в сердце, почках, надпочечниках, но главным образом на поверхности клеток сосудистого эндотелия. Поэтому гиперактивация РААС более всего и быстрее затрагивает именно сосудистый эндотелий. Знание механизмов и движущей силы развития ССК вооружает нас пониманием того, что оптимальным средством профилактики и лечения заболеваний ССК являются в числе прочих и меры по устранению ЭД. Поскольку ключевую роль в развитии ЭД играет гиперактивация в тканевой (эндотелиальной) РААС - наиболее эффективными препаратами будут ингибиторы АПФ. обладающие максимально высоким сродством к тканевым компонентам РААС. Средством выбора среди -прочих иАПФ является квинаприл (Аккупро), препарат с лучшими показателями блокирующей активности тканевой РААС.