Липофильные вещества по сравнению с гидрофильными. Общие понятия по фармакологии

Понятие «фармакокинетика» включает:

$Всасывание лекарственных веществ (ЛВ).

$Распределение ЛВ по органам и тканям.

$Депонирование ЛВ в организме.

$Биотрансформацию ЛВ.

$Выведение ЛВ из организма.

Введение лекарственных средств через пищеварительный тракт обозначают термином:

$Энтеральное введение.

Введение лекарственных средств, минуя пищеварительный тракт, обозначают термином:

$Парентеральное введение.

Энтеральные пути введения лекарственных средств:

$Сублингвально.

$Трансбуккально.

$В двенадцатиперстную кишку.

$Ректально.

Парентеральные пути введения лекарственных средств:

$Подкожно.

$Внутримышечно.

$Внутриартериально.

$Внутривенно.

$Трансдермально.

Для введения лекарственных веществ внутрь характерны:

$Зависимость всасывания слабых электролитов от рН среды.

$Зависимость всасывания веществ от содержимого и моторики ЖКТ.

$Всасывание лекарственных веществ в воротную вену.

$Элиминация при первом прохождении через печень.

Внутримышечно можно вводить:

$Изотонические растворы.

$Масляные растворы.

Взвеси веществ нельзя вводить:

$Внутривенно.

$Внутриартериально.

Под оболочки мозга.

Лекарственные вещества всасываются непосредственно в системный кровоток при введении:

$Сублингвально.

$Трансбуккально.

В вену нельзя вводить:

$Суспензии.

$Масляные растворы.

Лекарственные препараты должны быть стерильными при введении:

$Подкожно.

$Внутримышечно.

$Внутривенно.

$Под оболочки мозга.

При сублингвальном и трансбуккальном введении лекарственные вещества:

$Начинают действовать быстрее, чем при введении внутрь.

$Попадают в системный кровоток, минуя печень.

$Всасываются путем пассивной диффузии.

Всасывание лекарственных веществ из полости рта может быть ограничено вследствие:

$Небольшой величины всасывающей поверхности.

$Гидрофильности соединений.

Основной механизм всасывания лекарственных веществ в пищеварительном тракте:

$Пассивная диффузия.

Пассивная диффузия липофильных веществ через мембраны клеток определяется:

$Степенью липофильности вещества.

$Трансмембранным градиентом концентрации вещества.

$Величиной всасывающей поверхности.

$Толщиной мембраны

Всасывание лекарственных веществ из кишечника против градиента концентрации может обеспечиваться:

$Активным транспортом.

Активный транспорт лекарственных веществ через мембраны:

$Требует затраты энергии.

$Специфичен по отношению к определенным веществам.

$Является насыщаемым процессом.

*1 8

Основные механизмы всасывания лекарственных веществ при подкожном и внутримышечном введении:

$Пассивная диффузия.

$Фильтрация через межклеточные промежутки.

* 19

#1 Всасывание лекарственных веществ путем фильтрации:

$Характерно для гидрофильных веществ.

$Зависит от величины межклеточных промежутков.

Всасывание из ЖКТ слабых электролитов при повышении степени их ионизации:

$Ослабляется.

*2 1

Всасывание слабых кислот из желудочно-кишечного тракта увеличивается при изменении рН среды:

$В кислую сторону.

Всасывание слабых оснований из желудочно-кишечного тракта увеличивается при изменении рН среды:

$В щелочную сторону.

*2 3

При внутримышечном введении хорошо всасываются:

$Как липофильные, так и гидрофильные соединения.

При внутримышечном введении гидрофильные полярные соединения:

$Хорошо всасываются в кровь.

*2 5

При подкожном и внутримышечном введении лекарственные вещества всасываются в основном путем:

$Пассивной диффузии.

$Фильтрации через межклеточные промежутки.

*2 6

Путем фильтрации через межклеточные промежутки всасываются:

$Гидрофильные соединения.

*2 7

При ингаляционном введении лекарственные вещества:

$всасываются путем пассивной диффузии.

$непосредственно всасываются в системный кровоток.

* 28

Через гистогематические барьеры из крови в ткани легче проникают:

$Неионизированные молекулы слабых электролитов.

Более равномерно распределяются в организме:

$Липофильные соединения.

Связывание лекарственных веществ с белками плазмы крови:

$Относится к процессу депонирования лекарственных веществ.

$Является конкурентным процессом (одно вещество может вытеснять другое из связи с белком).

$Пролонгирует действие лекарственных веществ.

Лекарственные вещества, связанные с белками плазмы крови:

$ Не проникают через эндотелий сосудов.

$Высвобождаются из связи с белками при снижении концентрации свободного вещества в крови.

$Являются депо данного лекарственного вещества в крови.

*3 2

Лекарственные вещества, интенсивно связывающиеся с белками плазмы крови:

$Действуют более продолжительно.

*3 3

Как связывание с белками плазмы крови влияет на почечную экскрецию лекарственных веществ?

$Замедляет.

*3 4

К процессам метаболической трансформации относятся:

$Гидролиз.

$Восстановление.

$Окисление.

К процессам конъюгации относятся:

$Ацетилирование.

$ Образование соединений с глюкуроновой кислотой.

$Метилирование.

*3 6

Преимущественная направленность процесса биотрансформации лекарственных веществ под влиянием микросомальных ферментов:

$Повышение полярности.

$Повышение гидрофильности.

*3 7

Микросомальные ферменты печени воздействуют преимущественно на:

$Липофильные соединения.

* 38

Микросомальные ферменты печени воздействуют на липофильные соединения, потому что:

$Липофильные вещества легко проникают через мембраны гепатоцитов.

* 39

$Может происходить образование активных метаболитов.

*4 0

При биотрансформации лекарственных веществ:

$Может происходить образование более токсичных веществ.

*4 1

Метаболиты и конъюгаты лекарственных веществ, по сравнению с исходными веществами, как правило:

$Более гидрофильны.

$Менее токсичны.

*4 2

Биотрансформация лекарственных веществ обычно приводит к образованию метаболитов и конъюгатов, которые:

$Хуже реабсорбируются в почечных канальцах.

$Быстрее выводятся из организма.

*4 3

Скорость биотрансформации лекарственных веществ снижена:

$У детей в первые месяцы жизни.

$У лиц пожилого возраста.

$При заболеваниях печени.

$При применении ингибиторов микросомальных ферментов печени.

*4 4

Скорость биотрансформации большинства лекарственных веществ увеличивается:

$При индукции микросомальных ферментов печени.

$При увеличении скорости печеночного кровотока.

*4 5

Выделение большинства лекарственных веществ и продуктов их биотрансформации из организма происходит преимущественно:

$Через почки.

$С желчью в просвет кишечника.

*4 6

Лекарственные вещества могут выделяться:

$Потовыми железами.

$Слезными железами.

$Слюнными железами.

$Молочными железами.

$Бронхиальными железами.

Газообразные лекарственные вещества выделяются преимущественно:

$Через легкие.

В почечных канальцах хорошо реабсорбируются:

$Неполярные липофильные соединения.

* 49

Почками эффективнее выводятся:

$Полярные гидрофильные соединения.

Пассивная реабсорбция в почечных канальцах характерна для:

$Неполярных липофильных соединений.

Почечная экскреция слабых электролитов при повышении их ионизации:

$Увеличивается.

Для ускорения выведения почками слабокислых соединений реакцию первичной мочи необходимо изменить:

$В щелочную сторону.

Для ускорения выведения почками слабых оснований реакцию первичной мочи необходимо изменить:

$В кислую сторону.

В почках ограничена фильтрация:

$Веществ, связанных с белками плазмы крови.

Липофильные вещества по сравнению с гидрофильными:

$Хорошо всасываются при энтеральном введении.

$Более равномерно распределяются в органах и тканях.

$Легко подвергаются реабсорбции в почках.

Полярные лекарственные вещества:

$Плохо проходят через гистогематические барьеры.

$Быстро выводятся почками в неизмененном виде.

Понятие биодоступность определяется как:

$Часть введенной дозы лекарственного вещества, которая достигла системного кровотока.

Биодоступность лекарственного вещества при введении внутрь в основном зависит от:

$Степени всасывания вещества в ЖКТ.

$Элиминации вещества при первом прохождении через печень

Период полуэлиминации (период полужизни) определяется как:

$Время, за которое концентрация вещества в плазме крови снижается на 50%.

$Неполярные липофильные вещества хорошо всасываются из ЖКТ.

$Основной механизм всасывания лекарственных веществ из ЖКТ - пассивная диффузия.

Отметьте правильные утверждения:

$Неполярные липофильные вещества всасываются с поверхности кожи и слизистых оболочек путем пассивной диффузии.

$Всасывание полярных гидрофильных веществ с поверхности кожи и слизистых оболочек затруднено.

Отметьте правильные утверждения:

$Основные пути всасывания лекарственных веществ при подкожном и внутримышечном введении - пассивная диффузия и фильтрация.

$Липофильные вещества могут всасываться путем пассивной диффузии при всех путях введения.

$Гидрофильные вещества хорошо всасываются при подкожном и внутримышечном введении.

Отметьте правильные утверждения:

$Липофильные вещества в отличие от гидрофильных лучше всасываются из ЖКТ и равномерно распределяются в организме.

$Гидрофильные вещества в отличие от липофильных хуже всасываются из ЖКТ и не проникают через гисто-гематические барьеры.

Отметьте правильные утверждения:

$Метаболиты и конъюгаты липофильных веществ быстрее выводятся почками, чем исходные соединения.

$В результате биотрансформации лекарственных веществ может происходить образование активных соединений.

Отметьте правильные утверждения:

$В результате биотрансформации фармакологическая активность некоторых лекарственных веществ повышается.

$Пролекарство - это фармакологически неактивное вещество, которое в результате биотрансформации превращается в активное соединение.

Отметьте правильные утверждения:

$Депонирование лекарственного вещества в крови обусловлено, как правило, его связыванием с белками плазмы крови.

$Вещества, связанные с белками плазмы крови, не оказывают действие на органы и ткани.

Отметьте правильные утверждения:

$Слабокислые соединени могут всасываться из желудка.

$Слабые основания всасываются из кишечника легче, чем слабые кислоты.

$Степень ионизации слабых электролитов при определенных значениях рН зависит от их константы ионизации.

Отметьте правильные утверждения:

$Для ускорения выведения слабых кислот рН почечного фильтрата необходимо увеличивать.

$Для ускорения выведения слабых оснований рН почечного фильтрата необходимо снижать.

Отметьте правильные утверждения:

$Понятие "элиминация" включает биотрансформацию и экскрецию лекарственных веществ.

Константа скорости элиминации первого порядка показывает:

$Какая часть от имеющегося в организме количества вещества элиминируется из организма в единицу времени.

биотрансформации и экскреции.

Площадь под кривой, отражающей изменение концентрации вещества в плазме крови во времени:

$Прямо пропорциональна количеству вещества, достигшему системного кровотока.

$Используется при расчете биодоступности вещества.

Параметр «кажущийся объем распределения» показывает:

$В каком объеме жидкости должно равномерно распределиться вещество, чтобы его концентрация равнялась концентрации вещества в плазме крови.

* 73

Параметр «кажущийся объем распределения» лекарственного вещества:

$Дает представление об относительном распределении вещества между жидкостями организма (плазмой крови, интерстициальной и внутриклеточной жидкостями).

* 74

Если кажущийся объем распределения лекарственного вещества равен 3 литрам, то данное вещество:

$Не выходит за пределы кровеносного русла.

* 75

Если кажущийся объем распределения лекарственного вещества равен 40 литрам, то данное вещество:

$Липофильное соединение.

$Хорошо проникает через клеточные мемраны.

$Относительно равномерно распределяется в организме.

* 76

Если кажущийся объем распределения лекарственного вещества - 15 литров, то данное вещество:

$Гидрофильное соединение.

$Распределяется только в крови и интерстициальной жидкости.

* 77

Если кажущийся объем распределения лекарственного вещества равен 1000 литров, то данное вещество:

$Депонировано в тканях.

* 78

При отравлении веществом, объем распределения которого 2500 литров, проведение гемодиализа:

$Эффективно.

*7 9

Интенсивное связывание лекарственного вещества с белками плазмы крови:

$Может уменьшить объем распределения лекарственного вещества.

* 80

Интенсивное связывание лекарственного вещества с тканями:

$Увеличивает объем распределения лекарственного вещества.

$Замедляет элиминацию лекарственного вещества.

$Может вызвать эффект последействия

* 81

Элиминация, соответствующая кинетике 1-го порядка характеризуется:

$Элиминацией определенной фракции вещества в единицу времени.

$Зависимостью скорости элиминации от концентрации лекарственного вещества в крови.

Системный клиренс характеризует:

$Скорость освобождения организма от лекарственного вещества.

* 83

На системный клиренс лекарственного вещества влияют:

$Скорость биотрансформации.

$Скорость экскреции.

* 84

Скорость освобождения организма от лекарственного вещества путем биотрансформации определяется как:

$Метаболический клиренс.

*8 5

Основная составляющая метаболического клиренса – это:

$Печеночный клиренс.

Печеночный клиренс может определять:

$Величину как метаболического, так и экскреторного клиренса.

*8 7

Скорость внутривенного капельного введения лекарственного вещества определяет:

$Величину стационарной концентрации лекарственного вещества в крови.

*8 8

Диапазон терапевтических концентраций лекарственного вещества в крови ограничен:

$Минимальной эффективной концентрацией.

$Максимальной безопасной концентрацией.

*8 9

Время достижения стационарной концентрации лекарственного вещества в крови зависит от:

$Величины периода полуэлиминации лекарственного вещества.

Вопросы логического редактора

$В щелочной среде слабые основания мало ионизируются,

$поэтому они легче диффундируют из кишечника, чем из желудка.

Поэтому они легче диффундируют из желудка, чем из кишечника.

Путем пассивной диффузии через мембраны проникают полярные соединения.

$Путем пассивной диффузии через мембраны проникают неполярные соединения.

Через мембраны проникает ионизированная часть слабых электролитов.

$Через мембраны проникает неионизированная часть слабых электролитов.

Пассивная диффузия слабых электролитов прямо пропорциональна степени их ионизации.

$Пассивная диффузия слабых электролитов обратно пропорциональна степени их ионизации.

Пассивная диффузия слабых электролитов прямо пропорциональна их молекулярной массе.

В кислой среде слабые основания мало ионизируются,

$В кислой среде слабокислые соединения мало ионизируются,

Поэтому они легче диффундируют из кишечника, чем из желудка.

$поэтому они легче диффундируют из желудка, чем из кишечника.

$Для ускоренного выведения слабых оснований необходимо снизить рН мочи.

Для ускоренного выведения слабых оснований необходимо повысить рН мочи.

$В канальцах лекарственные вещества реабсорбируются в основном путем пассивной диффузии.

В канальцах лекарственные вещества реабсорбируются в основном путем пиноцитоза.

В канальцах лекарственные вещества реабсорбируются в основном путем активного транспорта.

Путем пиноцитоза реабсорбируются липофильные неполярные лекарственные вещества,

$Путем пассивной диффузии реабсорбируются липофильные неполярные лекарственные вещества,

Путем активного транспорта реабсорбируются липофильные неполярные лекарственные вещества,

$гидрофильные полярные лекарственные вещества, как правило, плохо реабсорбируются.

Гидрофильные полярные лекарственные вещества реабсорбируются путем пассивной диффузии.

Гидрофильные полярные лекарственные вещества, как правило, хорошо реабсорбируются.

Липофильные неполярные лекарственные вещества, как правило, плохо реабсорбируются.

Гидрофильные полярные лекарственные вещества реабсорбируются гл.обр. путем пиноцитоза.

$Выведение слабых электролитов пропорционально их ионизации.

Выведение слабых электролитов обратно пропорционально их ионизации.

Выведение слабых электролитов пропорционально их липофильности.

Выведение слабых электролитов обратно пропорционально их гидрофильности.

Выведение слабых электролитов не зависит от степени их ионизации.

Для ускоренного выведения слабокислых лекарственные веществ рН мочи снижают.

Для ускоренного выведения слабокислых лекарственные веществ необходимо снизить рН мочи.

$Для выведения слабокислых лекарственные веществ реакцию мочи изменяют в щелочную сторону.

Для выведения слабокислых лекарственные веществ реакцию мочи изменяют в кислую сторону.

Для ускоренного выведения слабых оснований необходимо повысить рН мочи.

Для выведения слабых оснований реакцию мочи изменяют в щелочную сторону.

Для ускоренного выведения слабых оснований необходимо повысить рН мочи.

$В канальцах лекарственные вещества реабсорбируются в основном путем пассивной диффузии.

В канальцах лекарственные вещества реабсорбируются в основном путем пиноцитоза.

В канальцах лекарственные вещества реабсорбируются в основном путем активного транспорта.

Путем пиноцитоза реабсорбируются липофильные неполярные лекарственные вещества,

$Путем пассивной диффузии реабсорбируются липофильные неполярные лекарственные вещества,

Путем активного транспорта реабсорбируются липофильные неполярные лекарственные вещества,

$гидрофильные полярные лекарственные вещества, как правило, плохо реабсорбируются.

Гидрофильные полярные лекарственные вещества реабсорбируются путем пассивной диффузии.

Гидрофильные полярные лекарственные вещества, как правило, хорошо реабсорбируются.

Гидрофильные полярные лекарственные вещества реабсорбируются гл.обр. путем пиноцитоза.

$Выведение слабых электролитов пропорционально их ионизации.

Выведение слабых электролитов обратно пропорционально их ионизации.

Выведение слабых электролитов пропорционально их липофильности.

Выведение слабых электролитов обратно пропорционально их гидрофильности.

Выведение слабых электролитов не зависит от степени их ионизации.

Для ускоренного выведения слабокислых лекарственные веществ рН мочи снижают.

Для ускоренного выведения слабокислых лекарственные веществ необходимо снизить рН мочи.

Для выведения слабокислых лекарственные веществ реакцию мочи изменяют в кислую сторону.

Для ускоренного выведения слабых оснований необходимо повысить рН мочи.

Для выведения слабых оснований реакцию мочи изменяют в щелочную сторону.

$Для ускоренного выведения слабых оснований необходимо снизить рН мочи.

Для ускоренного выведения слабых оснований необходимо повысить рН мочи.

$В канальцах лекарственные вещества реабсорбируются в основном путем пассивной диффузии.

В канальцах лекарственные вещества реабсорбируются в основном путем пиноцитоза.

В канальцах лекарственные вещества реабсорбируются в основном путем активного транспорта.

Путем пиноцитоза реабсорбируются липофильные неполярные лекарственные вещества,

$Путем пассивной диффузии реабсорбируются липофильные неполярные лекарственные вещества,

Путем активного транспорта реабсорбируются липофильные неполярные лекарственные вещества,

$гидрофильные полярные лекарственные вещества, как правило, плохо реабсорбируются.

Гидрофильные полярные лекарственные вещества реабсорбируются путем пассивной диффузии.

Гидрофильные полярные лекарственные вещества, как правило, хорошо реабсорбируются.

Липофильные неполярные лекарственные вещества, как правило, плохо реабсорбируются.

Гидрофильные полярные лекарственные вещества реабсорбируются гл.обр. путем пиноцитоза.

$Выведение слабых электролитов пропорционально их ионизации.

Выведение слабых электролитов обратно пропорционально их ионизации.

Выведение слабых электролитов пропорционально их липофильности.

Выведение слабых электролитов обратно пропорционально их гидрофильности.

Выведение слабых электролитов не зависит от степени их ионизации.

$Для ускоренного выведения слабокислых лекарственные веществ рН мочи повышают.

Для ускоренного выведения слабокислых лекарственные веществ рН мочи снижают.

Для ускоренного выведения слабокислых лекарственные веществ необходимо снизить рН мочи.

Для выведения слабокислых лекарственные веществ реакцию мочи изменяют в кислую сторону.

$Для выведения слабых оснований реакцию мочи изменяют в кислую сторону.

Для ускоренного выведения слабых оснований необходимо повысить рН мочи.

Для выведения слабых оснований реакцию мочи изменяют в щелочную сторону.

Для ускоренного выведения слабых оснований необходимо повысить рН мочи.

ВСАСЫВАНИЕ ЛЕКАРСТВЕННЫХ СРЕДСТВ

Всасывание - преодоление лекарственными средствами липопротеиновой плазматической мембраны клеток и межклеточных щелей. В кишечнике барьер между внешней и внутренней средой организма состоит из одного слоя эпителия, при всасывании с поверхности кожи лекарственные средства преодолевают несколько клеточных слоев. Различают следующие варианты трансмембранного транспорта: пассивную диффузию, активный транспорт и пиноцитоз.

Пассивная диффузия

Пассивная диффузия происходит по градиенту концентрации лекарственных средств - из зоны с большей концентрацией в зону с меньшей концентрацией, поэтому не требует затрат энергии макроэргов.

Простая диффузия

При простой диффузии лекарственные средства растворяются в липидном бислое мембран. Растворимостью в липидах независимо от условий среды обладают лишь немногие вещества - ингаляционные наркозные средства, этанол. Большинство же лекарственных средств являются слабыми кислотами или слабыми основаниями и образуют как растворимые в липидах нейтральные молекулы, так и ионы. Степень диссоциации зависит от физико-химических свойств лекарственного средства и водородного показателя (pH) среды, из которой происходит всасывание.

У слабой кислоты с pK a 1= 4,4 содержание нейтральных молекул в желудочном соке (pH=1,4) в 1000 раз больше, чем в крови (pH=7,4), и наоборот: количество ионов в 1000 раз больше в крови, чем в желудочном соке.

У слабого основания с таким же pK a соотношение нейтральных молекул и ионов составляет в крови 1000:1, в желудочном соке - 1:1000.

Условия всасывания лекарственных средств - слабых кислот и оснований различные. Противовоспалительное средство ацетилсалициловая кислота имеет pK a =3,6. В кислой среде желудочного сока она присутствует в виде растворимых в липидах нейтральных молекул, в щелочной среде кишечника (pH=6,8-7,2) - в виде ионов. В крови при рН=7,4 ацетилсалициловая кислота находится в ионизированной форме, поэтому плохо проникает в ткани. В очаге воспаления, где развивается локальный ацидоз, преобладают ее нейтральные молекулы. Свойствами слабых кислот обладают также противосудорожные средства фенобарбитал, фенитоин; НПВС фенилбутазон, индометацин, диклофенак; мочегонное средство фуросемид; антикоагулянты непрямого действия; сульфаниламиды, пенициллины, цефалоспорины, тетрациклины.

1 рК а - водородный показатель среды, при котором половина молекул нейтральна, а другая половина диссоциирована на ионы.

Лекарственные средства из группы слабых оснований находятся во внутренних средах организма (в кишечнике, крови, клетках) в виде нейтральных молекул. Представителями слабых оснований являются алкалоиды (морфин, кодеин, папаверин, кофеин, атропин, хинин) и синтетические азотсодержащие средства (лидокаин, пропранолол, дифенгидрамин, хлорохин и многие другие).

Знание особенностей поведения лекарственных средств с различными физико-химическими свойствами в разных средах имеет большое медицинское значение.

При отравлении производными барбитуровой кислоты для ускорения их элиминации проводят форсированный диурез: вливают в вену мочегонные средства и изотонические растворы глюкозы ♠ и натрия хлорида с добавлением натрия гидрокарбоната. Последний создает в первичной моче щелочную среду, в которой ускоряется диссоциация барбитуратов на ионы, не подвергающиеся реабсорбции в почечных канальцах.

При отравлении морфином и некоторыми другими алкалоидами, введенными парентерально, промывают желудок растворами слабых кислот - уксусной или лимонной, так как около 10% молекул алкалоидов простой диффузией по градиенту концентрации проникают из крови в просвет желудка, где в условиях кислой среды диссоциируют на ионы. Ионы могут поступать в кишечник и вновь образовывать способные к всасыванию нейтральные молекулы. Промывание желудка направлено на повышение диссоциации и удаление молекул алкалоидов.

Липофильные и гидрофильные свойства нейтральных молекул лекарственных средств зависят от присутствия в их структуре полярных групп. Полярные лекарственные средства плохо растворяются в липидах и менее способны к всасыванию простой диффузией.

Фильтрация

Лекарственные средства фильтруются с током воды через поры клеточной мембраны под действием гидростатического и осмотического давления. Фильтрация возможна только для нейтральных молекул, имеющих массу не более 100-200 Да. Это обусловлено размером пор (0,35-0,4 нм) и присутствием в них фиксированных зарядов. Фильтрации подвергаются мочевина, глюкоза ♠ .

Активный транспорт

Активный транспорт лекарственных средств происходит против градиента концентрации с затратой энергии макроэргов и при участии белков-транспортеров.

Активным транспортом переносятся эндобиотики - аналоги метаболитов организма, использующие естественные системы переноса. Известно, что йод поступает в фолликулы щитовидной железы против пятидесятикратного градиента концентрации, норэпинефрин подвергается нейрональному захвату нервными окончаниями против двухсоткратного градиента.

Лекарственные средства могут связываться с белками-транспортерами и нарушать функции ферментов активного транспорта (сердечные гликозиды блокируют мембранную Na+, К+-зависимую АТФазу).

Пиноцитоз

При пиноцитозе происходит инвагинация клеточной мембраны с образованием вакуоли. Эта вакуоль мигрирует к противоположной мембране. Пиноцитозом всасываются полипептиды и другие высокомолекулярные соединения (витамин В 12 в комплексе с гликопротеином - внутренним фактором Касла).

Биодоступность лекарственных средств

Важнейшим показателем фармакокинетики является биодоступность - часть дозы лекарственного средства, поступающая с определенной скоростью в кровь и биофазу циторецепторов. Биодоступность зависит от растворимости лекарственного средства в липидах, лекарственной формы и технологии ее приготовления, пути введения, интенсивности кровотока, площади всасывающей поверхности (наибольшая - у альвеол легких и слизистой оболочки кишечника), проницаемости эпителия. При внутривенной инъекции лекарственные средства транспортируются в ткани через эндотелий, базальную мембрану и по широким межклеточным порам, поэтому биодоступность достигает 100%. При других путях введения она меньше. В случае приема лекарственных средств внутрь большое значение для биодоступности имеют лекарственные формы, присутствие пищи, состояние пищеварительного тракта и сердечно-сосудистой системы, интенсивность метаболизма в слизистой оболочке кишечника и печени.

Новые лекарственные формы с контролируемым высвобождением позволяют изменять скорость наступления эффекта, продолжительность, интенсивность и локализацию лечебного действия лекарственных средств. При применении таких лекарственных форм не создаются пики концентрации, что снижает риск развития побочных эффектов лекарственных средств с небольшой широтой терапевтического действия; возрастает биодоступность лекарственных средств, плохо или медленно всасывающихся в пищеварительном тракте.

Значительное влияние на биодоступность оказывает белок обратного (эффлюксного) выброса - гликопротеин Р, катализирующий удаление многих лекарственных средств из клеток. Это трансмембранный фосфогликопротеин с молекулярной массой 170 кДа. Он обладает свойствами АТФазы, функционирует в эпителии кишечника, гепатоцитах, нефроцитах, эндотелии гистогематических барьеров (наибольшая активность - в эндотелии ГЭБ). Гликопротеин Р сначала распознает субстрат, находящийся внутри клетки, а затем выбрасывает его против градиента концентрации в просвет кишечника, желчь, мочу или ограничивает проникновение в головной мозг, среды глаза, через плаценту. Максимальным сродством к гликопротеину Р обладают липофильные лекарственные средства с большим количеством водородных связей. Гиперэкспрессия гликопротеина Р сопровождается множественной лекарственной устойчивостью. Гликопротеин Р ограничивает всасывание в кишечнике сердечных гликозидов (дигоксина, дигитоксина), блокаторов кальциевых каналов, статинов, блокаторов Н 1 -рецепторов, макролидов, фторхинолонов, противовирусных и противоопухолевых средств.

Биодоступность лекарственных средств зависит от возраста. В педиатрической практике необходимо считаться с особенностями всасывания у детей.

Желудочный сок имеет нейтральную реакцию (сразу после рождения рН=6-8) и приобретает такую же, как у взрослых, кислотность только ко второму году жизни ребенка.

Около 8-19% новорожденных страдают гипохлоргидрией.

Эвакуаторная деятельность желудка нерегулярна в течение первых 6 мес жизни (материнское молоко усиливает моторную деятельность желудка).

В кишечнике снижена микробная обсемененность, повышена активность β-глюкуронидазы микроорганизмов.

Уменьшены синтез и выделение желчных кислот, что нарушает всасывание жирорастворимых веществ, например витаминов.

Изменение биодоступности лекарственных средств у пожилых людей обусловлено физиологическим старением органов и тканей и наличием сопутствующих заболеваний. В пожилом возрасте снижаются секреция и кислотность желудочного сока, что ускоряет опорожнение желудка и поступление принятых внутрь лекарственных средств к основному месту всасывания - в тонкую кишку. Частые в пожилом возрасте запоры способствуют увеличению полноты всасывания лекарственных средств. Вместе с тем всасывающая поверхность слизистой оболочки тонкой кишки сокращается на 20%. В результате всасывание лекарственных средств у пожилых людей может оказаться вариабельным и непредсказуемым.

У женщин эстрогены тормозят перистальтику кишечника, прогестерон в малых концентрациях ее стимулирует, в больших - угнетает. Опорожнение желудка и тонкой кишки происходит медленнее, чем у мужчин. При этом ускоряется всасывание антигистаминных средств, ацетилсалициловой кислоты, антимигренозного средства наратриптана. В организме женщин значительно ниже экспрессия гена, кодирующего гликопротеин Р. Этой особенностью объясняется большая частота интоксикации сердечными гликозидами наперстянки у женщин.

Во время беременности значительное влияние на биодоступность оказывают ослабление перистальтики желудка и уменьшение объема желудочной секреции, давление увеличенной в размерах матки на вены таза и нижнюю полую вену, увеличение толщины подкожной жировой клетчатки.

Различия в продолжительности действия β-адреноблокаторов с невысоким индексом селективности зависят от особенностей химического строения, липофильности и путей элиминации. Выделяют гидрофильные, липофильные и амфофильные препараты.

Липофильные препараты, как правило, метаболизируются в печени и имеют сравнительно короткий период полуэлиминации (Т1/2). Липофильность сочетается с печеночным путем элиминации. Липофильные препараты быстро и полностью (более 90%) всасываются в желудочно-кишечном тракте, их метаболизм в печени составляет 80-100%, биодоступность большинства липофильных β-блокаторов (пропранолол, метопролол, алпренолол и др.) в связи с эффектом «первого прохождения» через печень составляет немногим больше 10-40% (табл. 5.4).

Состояние печеночного кровотока влияет на скорость метаболизма, на величины разовых доз и кратность приема препаратов. Это необходимо учитывать при лечении пожилых пациентов, больных с сердечной недостаточностью, при циррозе печени. При тяжелой печеночной недостаточности скорость элиминации снижается про-

Таблица 5.4

Фармакокинетические параметры липофильных β-адреноблокаторов

Порционально снижению функции печени. Липофильные препараты при длительном применении могут сами уменьшать печеночный кровоток, замедлять свой собственный метаболизм и метаболизм других липофильных препаратов. Этим объясняется увеличение периода полуэлиминации и возможность уменьшения разовой (суточной) дозы и кратности приема липофильных препаратов, нарастание эффекта, угрозы передозировки.

Существенно влияние уровня микросомального окисления на метаболизм липофильных препаратов. Препараты, индуцирующие микросомальное окисление липофильных β-блокаторов (злостное курение, алкоголь, рифампицин, барбитураты, дифенин), значительно ускоряют их элиминацию, снижают выраженность эффекта. Противоположное влияние оказывают лекарственные препараты, замедляющие печеночный кровоток, уменьшающие скорость микросомального окисления в гепатоцитах (циметидин, хлорпромазин).



Среди липофильных β-адреноблокаторов применение бетаксолола не требует коррекции дозы при печеночной недостаточности, однако при применении бетаксолола требуется коррекция доз препарата при тяжелой почечной недостаточности и проведении диализа. Коррекция дозы метопролола проводится при тяжелых нарушениях функции печени.

Липофильность β-блокаторов способствует их проникновению через гемато-энцефаличекий, гистеро-плацентарный барьеры в камеры глаза.

Гидрофильные препараты выводятся преимущественно почками в неизмененном виде и имеют более продолжительный Гидрофильные препараты не полностью (30-70%) и неравномерно (0-20%) всасываются в желудочно-кишечном тракте, экскретируются почками на 40-70% в неизмененном виде либо в виде метаболитов, имеют больший период полувыведения (6-24 ч), чем липофильные β-блокаторы (табл. 5.5).

Сниженная скорость клубочковой фильтрации (у пожилых больных, при хронической почечной недостаточности) уменьшает скорость экскреции гидрофильных препаратов, что требует уменьшения дозы и кратности приема. Ориентироваться можно по сывороточной концентрации креатинина, уровень которой повышается при снижении скорости клубочковой фильтрации ниже 50 мл/мин. В этом случае кратность назначения гидрофильного β-блокатора должна быть через день. Из гидрофильных β-блокаторов пенбуталол не требует

Таблица 5.5

Фармакокинетические параметры гидрофильных β-адреноблокаторов

Таблица 5.6

Фармакокинетические параметры амфофильных β-адреноблокаторов

коррекции дозы при нарушении функции почек. Надолол не снижает почечный кровоток и скорость клубочковой фильтрации, оказывая вазодилатируюий эффект на почечные сосуды.

Влияние уровня микросомального окисления на метаболизм гидрофильных β-блокаторов несущественно.

β-блокаторы сверхкороткого действия разрушаются эстеразами крови и используются исключительно для внутривенных инфузий. β-блокаторы, разрушающиеся эстеразами крови, имеют очень короткий период полуэлиминации, действие их прекращается через 30 мин после прекращения инфузии. Такие препараты применяются для лечения острой ишемии, контроля за желудочковым ритмом при пароксизме наджелудочковой тахикардии в период операции или в послеоперационном периоде. Кратковременность действия делает более безопасным их применение у больных с гипотонией, при сердечной недостаточности, а βl-селективность препарата (эсмолол) - при явлениях бронхообструкции.

Амфофильные β-блокаторы растворяются в жирах и в воде (ацебутолол, бисопролол, пиндолол, целипролол), имеют два пути элиминации - печеночный метаболизм и почечную экскрецию (табл. 5.6).

Сбалансированный клиренс этих препаратов определяет безопасность их применения у больных с умеренной почечной и печеночной недостаточностью, низкую вероятность взаимодействия с другими лекарственными препаратами. Скорость элиминации препаратов снижается только при тяжелой почечной и печеночной недостаточности. В этом случае суточные дозы β-адреноблокаторов со сбалансировнным клиренсом необходимо уменьшить в 1,5-2 раза.

Амфофильный β-адреноблокатор пиндол при хронической почечной недостаточности может повысить почечный кровоток.

Дозы β-адреноблокаторов необходимо подбирать индивидуально, ориентируясь на клинический эффект, уровни ЧСС, АД. Начальная доза β-адреноблокатора должна составлять 1/8-1/4 средней терапевтической разовой дозы, при недостаточном эффекте дозу увеличивают через каждые 3-7 дней до среднетерапевтической разовой дозы. ЧСС в покое в вертикальном положении должна быть в пределах 55- 60 в минуту, систолическое АД - не ниже 100 мм рт.ст. Максимальная выраженность β-адреноблокирующего эффекта наблюдается через 4-6 недель регулярного приема β-адреноблокатора, особенного контроля в эти сроки требуют липофильные β-адреноблокаторы, спо-

собные замедлять свой собственный метаболизм. Кратность приема препарата зависит от частоты ангинозных приступов и длительности действия β-адреноблокатора.

Следует учитывать, что продолжительность брадикардитического и гипотензивного действия β-адреноблокаторов значительно превышает их периоды полуэлиминации, а продолжительность антиангинального действия меньше, чем продолжительность отрицательного хронотропного эффекта.

МЕХАНИЗМЫ АНТИАНГИНАЛЬНОГО И АНТИИШЕМИЧЕСКОГО ДЕЙСТВИЯ β-АДРЕНОБЛОКАТОРОВ ПРИ ЛЕЧЕНИИ СТЕНОКАРДИИ

Улучшение баланса между потребностью миокарда в кислороде и доставкой его по коронарным артериям может быть достигнуто за счет увеличения коронарного кровотока и путем снижения потребности миокарда в кислороде.

В основе антиангинального и антиишемического действия β-адреноблокаторов лежит их способность влиять на гемодинамические параметры - снижать потребление миокардом кислорода за счет уменьшения ЧСС, сократительной способности миокарда и системного АД. β-адреноблокаторы, уменьшая ЧСС, увеличивают продолжительность диастолы. Доставка кислорода к миокарду левого желудочка осуществляется в основном в диастолу, так как в систолу коронарные артерии сдавливаются окружающим миокардом и продолжительность диастолы определяет уровень коронарного кровотока. Снижение сократительной способности миокарда наряду с удлинением времени дистолического расслабления при снижении ЧСС способствует удлинению периода диастолической перфузии миокарда. Уменьшение диастолического давления в левом желудочке за счет снижения сократительной способности миокарда при снижении системного АД способствует увеличению градиента давления (разницы дастолического давления в аорте и диастолического давления в полости левого желудочка), обеспечивающего коронарную перфузию в диастолу.

Снижение системного АД определяется уменьшением сократительной способности миокарда со снижением сердечного выброса на

15-20%, торможением центральных адренергических влияний (для препаратов, проникающих через гематоэнцефа лический барьер) и антирениновым (до 60%) действием β-адреноблокаторов, что вызывает снижение систолического, а затем диастолического давления.

Снижение частоты сердечных сокращений и уменьшение сократительной способности миокарда в результате блокады β-адренорецепторов сердца приводит к увеличению объема и конечного диастолического давления в левом желудочке, что коррегируется сочетанием β-адреноблокаторов с препаратами, уменьшающими венозный возврат крови к левому желудочку (нировазодилататоры).

Липофильные блокаторы β-адренорецепторов, не имеющие внутренней симпатомиметической активности, вне зависимости от селективности, в большей степени обладают кардиопротективным действием у перенесших острый инфаркт миокарда больных при длительном применении, уменьшая риск повторного инфаркта миокарда, внезапной смерти и общей смертности этой группы пациентов. Такие свойства отмечены у метопролола, пропранолола (исследование BHAT, 3837 больных), тимолола (Norwegian MSG, 1884 больных). Липофильные препараты с внутренней симпатомиметической активностью имеют меньшую профилактическую антиангинальную эффективность. Эффекты карведилола и бисопролола по кардиопротективным свойствам сопоставимы с эффектами ретардированой формы метопролола. Гидрофильные β-адреноблокаторы - атенолол, соталол не влияли на общую летальность и частоту внезапной смерти у больных с ишемической болезнью сердца. Данные мета-анализа 25 контролируемых исследований представлены в табл. 5.8.

Для вторичной профилактики β-адреноблокаторы показаны всем пациентам, перенесшим Q-зубцовый инфаркт миокарда в течение, как минимум 3 лет при отсутствии абсолютных противопоказаний к назначению препаратов этого класса, особенно пациентам старше 50 лет с инфарктом передней стенки левого желудочка, ранней постинфарктной стенокардией, высокой частотой сердечных сокращений, желудочковыми нарушениями ритма сердца, явлениями стабильной сердечной недостаточности.

Таблица 5.7

Препараты β-адреноблокаторов в лечении стенокардии


Примечание, - селективный препарат; # - в настоящее время в России оригинальный препарат не зарегистрирован; оригинальный препарат выделен жирным шрифтом;

* - разовая доза.

Таблица 5.8

Кардиопротективная эффективность β-адреноблокаторов у больных, перенесших инфаркт миокарда

ЭФФЕКТЫ β-АДРЕНОБЛОКАТОРОВ ПРИ ХСН

Терапевтический эффект β-блокаторов при ХСН связан с прямым антиаритмическим действием, позитивным влиянием на функцию левого желудочка, уменьшением хронической ишемии дилатированного желудочка даже при отсутствии ИБС, подавлением процессов апоптоза миокардиоцитов, активируемых в условиях βl-адренерги- ческой стимуляции.

При ХСН отмечается повышение уровня базального норадреналина в плазме крови, связанное с его повышенной продукцией окончаниями адренергических нервов, скоростью поступления в плазму крови и уменьшением клиренса норадреналина из плазмы крови, сопровождающееся повышением допамина и часто адреналина. Концентрация базального уровня норадреналина плазмы крови является независимым предиктором смерти при ХСН. Первоначальное повышение активности симпатико-адреналовой системы при ХСН носит компенсаторный характер и способствует повышению сердечного выброса, перераспределению регионарного кровотока в сторону сердца и скелетной мускулатуры; почечная вазоконстрикция способствует улучшению перфузии жизненно важных органов. В дальнейшем повышение активности симпатико-адренало-

вой системы приводит к повышению потребности кислорода миокардом, усилению ишемии, нарушению ритма сердца, прямым влиянием на кардиомиоциты - ремоделированию, гипертрофии, апоптозу и некрозу.

При длительном повышенном уровне катехоламинов β-адренорецепторы миокарда переходят в состояние сниженной чувствительности к нейромедиаторам (состояние десинситизации) за счет уменьшения числа рецепторов на плазматической мембране, нарушения сопряжения рецепторов с аденилатциклазой. Плотность β-адренорецепторов миокарда уменьшается наполовину, степень уменьшения рецепторов пропорциональна тяжести ХСН, сократимости миокарда и фракции выброса. Меняется соотношение и β2 -адренорецепторов в сторону увеличения β2 -адренорецепторов. Нарушение сопряжения β-адренорецепторов с аденилатциклазой приводит к прямым кардиотоксическим эффектам катехоламинов, перегрузке митохондрий кардиомиоцитов ионами кальция, нарушению процессов рефосфорилирования АДФ, истощению запасов креатинфосфата и АТФ. Активация фосфолипаз и протеаз способствует разрушению клеточной мембраны и гибели кардиомиоцитов.

Снижение плотности адренорецепторов в миокарде сочетается с истощением локальных запасов норадреналина, нарушению адекватной нагрузки адренергической поддержки миокарда, прогрессированию заболевания.

Положительными эффектами β-адреноблоктаоров при ХСН являются: снижение симпатической активности, уменьшение ЧСС, антиаритмический эффект, улучшение диастолической функции, уменьшение гипоксии миокарда и регрессия гипертрофии, уменьшение некроза и апоптоза кардиомиоцитов, уменьшение выраженности застойных явлений за счет блокады ренин-ангиотензин-альдостероновой системы.

На основании данных исследований USCP - американской программы по карведилолу, CIBIS II с бисопрололом и MERIT HF с метопролола сукцинатом с замедленным высвобождением препарата, COPERNICUS, CAPRICORN о достоверном снижении общей, сердечно-сосудистой, внезапной смерти, уменьшению частоты госпитализаций, снижению риска смерти на 35% у тяжелой категории больных с ХСН, указанные выше β-блокаторы занимают одну из ведущих позиций фармакотерапии больных ХСН всех функциональных классов. β-адреноблокаторы наряду с ингибиторами АПФ

являются основными средствами в лечении ХСН. Их способность замедлять прогрессирование болезни, число госпитализаций и улучшать прогноз декомпенсированных больных не вызывает сомнений (уровень доказанности А). β-адреноблокаторы должны применяться у всех больных ХСН, не имеющих противопоказаний, обычных для этой группы лекарств. Тяжесть декомпенсации, пол, возраст, уровень исходного давления (САД не менее 85 мм рт.ст.) и исходная ЧСС не играют самостоятельной роли в определении противопоказаний к назначению β-адреноблокаторов. Назначение β-адреноблокаторов начинается с 1 /8 терапевтической дозы пациентам с достигнутой стабилизацией состояния ХСН. β-адреноблокаторы в лечении ХСН не относятся к препаратам «скорой помощи» и не могут выводить больных из состояния декомпенсации и гипергидратации. Возможно назначение βl -селективного β-адреноблокатора бисопролола как препарата начальной терапии у пациентов старше 65 лет с ХСН II - III ФК NYHA, фракцией выброса левого желудочка <35% с последующим присоединением ингибитора АПФ (степень доказанности В). Начальная терапия βl -селективным β-адреноблокатором может быть оправдана в клинических ситуациях преобладания выраженной тахикардии при невысоком АД, с последующим присоединением ингибитора АПФ.

Тактика назначения β-адреноблокаторов у больных с ХСН представлена в табл. 5.9.

В первые 2-3 мес применение даже малых доз β-адреноблокаторов вызывает повышение периферического сосудистого сопротивления, снижение систолической функции миокарда, что требует титрования дозы назначаемого больному ХСН β-адреноблокатора, динамического наблюдения за клиническим течением заболевания. В этих случаях рекомендуется увеличение доз диуретиков, ингибиторов АПФ, применение положительных инотропных препаратов (малых доз сердечных гликозидов или сенситизаторов кальция - левосимендана), более медленное титрование дозы β-адреноблокатора.

Противопоказаниями к назначению β-адреноблокаторов при СН являются:

Бронхиальная астма или тяжелая патология бронхов, сопровождающаяся нарастанием симптомов бронхообструкции при назначении β-адреноблокатора;

Симптомная брадикадия (<50 уд/мин);

Симптомная гипотония (<85 мм рт.ст.);

Таблица 5.9

Начальные, целевые дозы и схема подбора доз β-адреноблокаторов при сердечной недостаточности по результатам крупномасштабных плацебо-контролируемых

Исследований


A-V блокада II степени и выше;

Тяжелый облитерирующий эндартериит.

Абсолютно показанным является назначение β-адреноблокаторов пациентам с ХСН и СД 2-го типа. Все положительные свойства препаратов этого класса полностью сохраняются при наличии сахарного диабета. Применение некардиоселективного и адреноблокатора с дополнительными свойствами 04 -адреноблокатора карведилола у таких пациентов может являться средством выбора за счет улучшения чувствительности периферических тканей к инсулину (степень доказанности А).

Результаты исследования SENIORS с применением βl -селективного β-адреноблокатора небиволола, продемонстрировавшие небольшое, но достоверное суммарное снижение частоты госпитализаций и смертей у больных ХСН старше 75 лет, позволило рекомендовать небиволол для лечения больных ХСН старше 70 лет.

Дозы β-ареноблокаторов для лечения больных ХСН, закрепленные Национальными Рекомендациями ВНОК И ОССН, представлены в таблице 5.10.


Фармакокинетические процессы - всасывание, распределение, депонирование, биотрансформация и выведение - связаны с проникновением ЛВ через биологические мембраны (в основном через цитоплазматические мембраны клеток). Существуют следующие способы проникновения веществ через биологические мембраны: пассивная диффузия, фильтрация, активный транспорт, облегченная диффузия, пиноцитоз (рис. 1.1).
Пассивная диффузия. Путем пассивной диффузии вещества проникают через мембрану по градиенту концентрации (если концентрация вещества с одной стороны мембраны выше, чем с другой, вещество перемещается через мембрану от большей концентрации к меньшей). Этот процесс не требует затраты энергии. Поскольку биологические мембраны в основном состоят из липидов, таким способом через них легко проникают вещества, растворимые в липидах и не имеющие заряда, т.е. липофильные неполярные вещества. И напротив, гидрофильные полярные соединения непосредственно через липиды мембран практически не проникают.

Внеклеточное через липиды пространство
Активный
транспорт
Биологическая
мембрана
Рис. 1.1. Основные способы проникновения веществ через биологические мембраны (Из: Rang Н.Р. etal. Pharmacology. - Ln, 2003, с изм.).

Если Л В являются слабыми электролитами - слабыми кислотами или слабыми основаниями, то проникновение таких веществ через мембраны зависит от степени их ионизации, так как путем пассивной диффузии через двойной липидный слой мембраны легко проходят только неионизированные (незаряженные) молекулы вещества.
Степень ионизации слабых кислот и слабых оснований определяется: значениями pH среды; константой ионизации (Ка) веществ.
Слабые кислоты в большей степени ионизированы в щелочной среде, а слабые основания - в кислой.
Ионизация слабых кислот
НА ^ Н+ + А~
щелочная среда
Ионизация слабых оснований
ВН+ ^ В + Н+
кислая
среда
Константа ионизации характеризует способность вещества к ионизации при определенном значении pH среды. На практике для характеристики способности веществ к ионизации используют показатель рКа, который является отрицательным логарифмом Ka(-lg Ка). Показатель рКа численно равен значению pH среды, при котором ионизирована половина молекул данного вещества. Значения рКа слабых кислот, так же как и слабых оснований, варьируют в широких пределах. Чем меньше рКа слабой кислоты, тем легче она ионизируется даже при относительно низких значениях pH среды. Так, ацетилсалициловая кислота (рКа= 3,5) при pH 4,5 ионизирована более чем на 90%, в то же время степень ионизации аскорбиновой кислоты (рКа=11,5) при том же значении pH составляет доли % (рис. 1.2). Для слабых оснований существует обратная зависимость. Чем выше рКа слабого основания, тем в большей степени оно ионизировано даже при относительно высоких значениях pH среды.
Степень ионизации слабой кислоты или слабого основания можно рассчитать по формуле Гендерсона-Гассельбальха:

Рис. 1.2. Зависимость степени ионизации слабых кислот от pH среды и рКа соединений.
А - ацетилсалициловая кислота (рКа = 3,5); Б - аскорбиновая кислота (рКа = 11,5).

lg-^-U рН-рК [ЯД] “
для слабых кислот, %-Щ- = рН-рКа [ВН + ]
для слабых оснований.
Эта формула позволяет определить, какова будет степень проникновения ЛВ (слабых кислот или слабых оснований) через мембраны, разделяющие среды организма с различными значениями pH, например при всасывании Л В из желудка (pH 2) в плазму крови (pH 7,4).
Пассивная диффузия гидрофильных полярных веществ возможна через водные поры (см. рис. 1.1). Это белковые молекулы в мембране клеток, проницаемые для воды и растворенных в ней веществ. Однако диаметр водных пор невелик (порядка 0,4 нм) и через них могут проникать только небольшие гидрофильные молекулы (например, мочевина). Большинство гидрофильных лекарственных веществ, диаметр молекул которых составляет более 1 нм, через водные поры в мембране клеток не проходят. Поэтому большинство гидрофильных лекарственных веществ не проникают внутрь клеток.
Фильтрация - этот термин используют как по отношению к проникновению гидрофильных веществ через водные поры в мембране клеток, так и по отношению к их проникновению через межклеточные промежутки. Фильтрация гидрофильных веществ через межклеточные промежутки происходит под гидростатическим или осмотическим давлением. Этот процесс имеет существенное значение для всасывания, распределения и выведения гидрофильных Л В и зависит от величины межклеточных промежутков.
Так как межклеточные промежутки в различных тканях не одинаковы по величине, гидрофильные ЛВ при различных путях введения всасываются в неодинаковой степени и распределяются в организме неравномерно. Например, про
межутки между эпителиальными клетками слизистой оболочки кишечника невелики, что затрудняет всасывание гидрофильных Л В из кишечника в кровь.
Промежутки между эндотелиальными клетками сосудов периферических тканей (скелетных мышц, подкожной клетчатки, внутренних органов) имеют достаточно большие размеры (порядка 2 нм) и пропускают большинство гидрофильных Л В, что обеспечивает достаточно быстрое проникновение Л В из тканей в кровь и из крови в ткани. В то же время в эндотелии сосудов мозга межклеточные промежутки отсутствуют. Эндотелиальные клетки плотно прилегают к друг другу, образуя барьер (гематоэнцефалический барьер), препятствующий проникновению гидрофильных полярных веществ из крови в мозг (рис. 1.3).
Активный транспорт осуществляется с помощью специальных транспортных систем. Обычно это белковые молекулы, которые пронизывают мембрану клетки (см. рис. 1.1). Вещество связывается с белком-переносчиком с наружной стороны мембраны. Под влиянием энергии АТФ происходит изменение конформации белковой молекулы, что приводит к уменьшению силы связывания между переносчиком и транспортируемым веществом и высвобождению вещества с внутренней стороны мембраны. Таким образом в клетку могут проникать некоторые гидрофильные полярные вещества.
Фильтрация гидрофильных веществ через межклеточные промежутки

Пассивная
диффузия
липофильных
веществ
Рис. 1.3. Проникновение веществ через стенки капилляров мозга (А) и капилляров скелетных мышц (Б). (Из: Wingard L.B. Human Pharmacology. - Phil., 1991, с изм.).
Активный транспорт веществ через мембрану обладает следующими характеристиками: специфичностью (транспортные белки избирательно связывают и пе-

реносят через мембрану только определенные вещества), насыщаемостью (при связывании всех белков-переносчиков количество вещества, переносимого через мембрану, не увеличивается), происходит против градиента концентрации, требует затраты энергии (поэтому угнетается метаболическими ядами).
Активный транспорт участвует в переносе через клеточные мембраны таких веществ, необходимых для жизнедеятельности клеток, как аминокислоты, сахара, пиримидиновые и пуриновые основания, железо, витамины. Некоторые гидрофильные лекарственные вещества проникают через клеточные мембраны с помощью активного транспорта. Эти Л В связываются с теми же транспортными системами, которые осуществляют перенос через мембраны вышеперечисленных соединений.
Облегченная диффузия - перенос веществ через мембраны с помощью транспортных систем, который осуществляется по градиенту концентрации и не требует затраты энергии. Так же, как активный транспорт, облегченная диффузия - это специфичный по отношению к определенным веществам и насыщаемый процесс. Этот транспорт облегчает поступление в клетку гидрофильных полярных веществ. Таким образом через мембрану клеток может транспортироваться глюкоза.
Кроме белков-переносчиков, которые осуществляют трансмембранный перенос веществ внутрь клетки, в мембранах многих клеток есть транспортные белки - Р-гликопротеины, способствующие удалению из клеток чужеродных соединений. Р-гликопротеиновый насос обнаружен в эпителиальных клетках кишечника, в эндотелиальных клетках сосудов мозга, образующих гематоэнцефалический барьер, в плаценте, печени, почках и других тканях. Эти транспортные белки препятствуют всасыванию некоторых веществ, их проникновению через гистогема- тические барьеры, влияют на выведение веществ из организма.
Пиноцитоз (от греч. ріпо - пью). Крупные молекулы или агрегаты молекул соприкасаются с наружной поверхностью мембраны и окружаются ею с образованием пузырька (вакуоли), который отделяется от мембраны и погружается внутрь клетки. Далее содержимое пузырька может высвобождаться внутри клетки или с другой стороны клетки наружу путем экзоцитоза.

Дифильные основы представляют собой иногда очень сложные композиции, которым присущи свойства как липофильных, так и гидрофильных основ. Они обеспечивают хорошее всасывание лекарственных субстанций, имеют хорошие консистентные свойства, не задерживают природный газо- и теплообмен кожи.

Таким образом, им присущи более оптимальные свойства, чем липофильным и особенно углеводородным основам. Условно их подразделяют на абсорбционные (способные поглощать значительное количество воды или водных растворов) и эмульсионные.

В состав абсорбционных мазевых основ входят липофильные компоненты: вазелин, растительные масла, масло вазелиновое, церезин и эмульгаторы типа в/м (ланолин безводный, эмульгатор №1, эмульгатор Т-2, моноглицериды дистиллированные, спирты шерстного воска, гидролин, спены, пентод, спирты цетиловый, стеариновый).

Из абсорбционных основ наиболее широко используются различные сплавы вазелина с ланолином безводным: основа для приготовления глазных мазей (9:1) и основа для приготовления мазей с антибиотиками (6:4). Для приготовления мазей с серой, цинка оксидом, салициловой и борной кислотами, гидрокортизоном, дегтем, калия иодидом, ихтиолоим, стрептоцидом и т.д. со сроком годности 2 года может быть использована абсорбционная основа такого состава: спиртов шерстного воска 6 г, церезина 24 г, вазелина 10 г, масла вазелинового 60 г. Если церезин заменить парафином, получим абсорбционную основу, которая используется для приготовления мази “Салипар” (салициловой кислоты 2%).

Эмульсионное основы типа в/м могут быть представлены известной консистентной эмульсией вода - вазелин (состав см. табл. 19.6). Эта основа предложена как заменитель свиного жира. Ее следует использовать для приготовления таких мазей: серной простой, с калия иодидом, со скипидаром, “Сунореф” и др. Она легко поглощает воду и глицерин (100%), спирт этиловый (25%), димексид (35%), водные и спиртовые вьггяжки. Например, мазь с календулой имеет такой состав: настойки календулы 10 г, эмульсии вода - вазелин 90 г.

Для приготовления мазей с труднорастворимыми и нестабильными в воде антибиотиками рекомендуются основы “Эсилон-1” (эси- лон-аэросильной основы - 45%, гидролина - 5%, ПЭО-400 - 20%, воды очищенной - 30%) и “Эсилон-2” (эсилон-аэросилъной основы - 45%, гидролина - 5%, воды очищенной - 50%). При их приготовлении эсилон-аэросильную основу смешивают с гидролином при температуре 50-60°С (на водяной бане) и при постоянном перемешивании добавляют гидрофильные компоненты.

Заслуживают внимания основы, которые содержат эмульгаторы пентол: пентола 2 г, вазелина 38 г, воды очищенной 60 г ж сорбитано- олеат: сорбитаноолеата 2,5 г, вазелина 47,5 г, воды очищенной 50 г. Основы получают путем сплавления эмульгатора с вазелином и постепенного добавления воды к полуохлажденному сплаву при перемешивании. Основы стойкие при хранении в комнатных условиях и имеют густую сметанообразную консистенцию, легко наносятся на кожу.

Эмульсионные основы типа м/в легко отдают лекарственные субстанции, смешиваются с водными растворами веществ и выделениями ран, обсуловливают охлаждающий эффект и увлажняющее действие. Мази, приготовленные на этих основах, можно наносить на большие площади кожи без нарушения перспирации (выделение кожей водных паров и газов), из них легко всасываются лекарственные вещества.

В эмульсионные основы типа м/в наиболее часто входят неино- генные (твины) или ионогенные (эмульгатор №1, эмульсионные воски, натрия лаурилеульфат, натрия етеарилсульфат) эмульгаторы. Эмульгатор №1 можно использовать в составе мазей, в которые входят сок алоэ, растительные масла, масло вазелиновое, вазелин, парафин, глицерин, натрий-КМЦ, спиртовые и водные растворы лекарственных веществ.

Одна часть эмульгатора N91 способна заэмульгировать девять частей воды. Эмульгатор №1 широко используют в производстве линиментов (алоэ, синтомицина, стрептоцида, тезана и др.) и мазей (“Випросал”, “Ундецин”, “Цинкундан” и др.). Значительно реже используют твин-80 (мази с амфотерицином В, декамином, прополисом).

Для приготовления мазей с анестетиками (анестезином, лидока- ином, новокаином, дикаином и др.) используют основу на базе эмульсионных восков (табл. 19.6).

По способности лекарственных веществ всасываться из мазей через кожу все мазевые основы можно разместить в такой последовательности: гидрофильные гели - эмульсионные основы типа м/в - эмульсионные основы типа в/м - абсорбционные - гидрофобные. Однако, как свидетельствует практика, могут быть исключения. Прежде всего следует учитывать действие лекарственной субстанции, ее свойства, возможное взаимодействие с компонентами мази и другие факторы.

Таким образом, в фармацевтической практике имеется значительный ассортимент мазевых основ с разнообразными свойствами. Добавление к ним отдельных мазевых компонентов (растворителей, ПАВ, загустителей, активаторов всасывания и др.) позволяет значительно улучшить их качество и повысить эффективность мази.