Тема: нарушения микроциркуляции. Типические патологические процессы

Микроциркуляция- процесс, направленный на движение различных жидкостей организма на ур-не тканевых микросистем, ориентированных вокруг кровеносных лимф и терминальных сосудов.

Причины расстройств микроциркуляции

Многочисленные причины, вызывающие разнообразные нарушения микроциркуляции, объединяют в три группы.

Расстройства центрального и регионарного кровообращения. К наиболее значимым относят сердечную недостаточность, патологические формы артериальной гиперемии, венозную гиперемию, ишемию.

Изменения вязкости и объёма крови и лимфы. Развиваются вследствие гемоконцентрации и гемодилюции.

Гемо(лимфо)концентрация. Причины: гипогидратация организма с развитием полицитемической гиповолемии, полицитемия, гиперпротеинемия (преимущественно гиперфибриногене мия).

Гемо(лимфо)дилюция. Причины: гипергидратация организма с развитием олигоцитемической гиперволемии, панцитопения (уменьшение количества всех форменных элементов крови), повышенная агрегация и агглютинация форменных элементов крови (приводит к значительному повышению вязкости крови), ДВС-синдром.

· Повреждение стенок сосудов микроциркуляторного русла. Обычно наблюдается при атеросклерозе, воспалении, циррозах, опухолях и др.

Формы нарушения микроциркуляции

Выделены три группы типовых форм нарушения микроциркуляции: внутрисосудистые (интраваскулярные), чресстеночные (трансмуральные) и внесосудистые (экстраваскулярные). Расстройства микроциркуляции приводят к капилляротрофической недостаточности.

Внутрисосудистые нарушения микроциркуляции

Внесосудистые (экстраваскулярные) нарушения микроциркуляции сопровождаются увеличением или уменьшением объёма межклеточной жидкости, что приводит к замедлению оттока её в сосуды микроциркуляторного русла.

Увеличение объёма межклеточной жидкости, сочетающееся с замедлением её оттока из интерстициального пространства.

Причина: местные патологические процессы (воспаление, аллергические реакции, рост новообразований, склеротические процессы, венозная гиперемия и/или стаз).

Последствия.

Увеличение содержания в интерстициальной жидкости продуктов нормального и нарушенного метаболизма. Они могут оказывать цитотоксическое и цитолитическое действие.

Дисбаланс ионов (что способствует отёку ткани, нарушает формирование МП и ПД).

Образование избытка и/или активация БАВ (например, ФИО, прокоагулянтов, мембраноатакующего комплекса), способных усугубить повреждение клеток, потенцировать расстройства крово- и лимфообращения, пластических процессов.

Нарушение обмена 02, С02, субстратов и продуктов обмена веществ.

Сдавление клеток избытком интерстициальной жидкости.

Уменьшение объёма межклеточной жидкости, сопровождающееся нарушением её оттока из интерстициального пространства.

Причины.

Гипогидратация организма, тканей и органов (например, в результате длительной диареи, плазморрагии, при интенсивном потоотделении).

Снижение лимфообразования (например, при ишемии ткани или гиповолемии).

Уменьшение эффективности фильтрации жидкости в артериолах и прекапиллярах и/или увеличение реабсорбции её в посткапиллярах и венулах (например, при дистрофических и склеротических процессах в тканях).

Последствия. Сходны с наблюдающимися при увеличении объёма интерстициальной жидкости, сочетающемся с замедлением её оттока.

Капилляротрофическая недостаточность - состояние, характеризующееся нарушением крово- и лимфообращения в сосудах микроциркуляторного русла, расстройствами транспорта жидкости и форменных элементов крови через стенки микрососудов, замедлением оттока межклеточной жидкости и нарушениями обмена веществ в тканях и органах.

В результате комплекса указанных изменений развиваются различные варианты дистрофий, нарушаются пластические процессы в тканях, расстраивается жизнедеятельность органов и организма в целом.

  1. Воспаление: понятие, классификация, этиология, патогенез, местные и общие проявления, исходы.

Воспаление – типовой патологический процесс, развивающийся в организме в ответ на местное повреждение ткани, характеризуется сочетанием альтерации, экссудации и пролиферации.

Классификация :

  1. По этиологии
  • инфекционное
  • неинфекционное
  • По течению
  • · подострое

    · хроническое

    1. По преобладающему компоненту:

    · альтеративное (язва, некроз)

    · экссудативное (аллергическое, отеки)

    · пролиферативное (спаечная болезнь, келлоидные рубцы)

    1. По виду экссудата:

    · серозное

    · гнойное

    · гемморагическое

    · фибринозное

    · гнилостное

    1. По состоянию реактивности организма

    · нормэргическое (в нормальном организме)

    · гиперэргическое (бурно текущее, например аллергическое)

    · гипоэргическое (вялотекущее, например при голодании)

    Этиология воспаления

    Патогенез воспаления

    1. Альтерация клеток и/или ткани (повреждение и реакции на него)
    2. Экссудация (сосудистые реакции + выход жидкой части крови в очаг воспаления + эмиграция клеток крови + фагоцитоз)
    3. Пролиферация (клеточные реакции размножения)

    Важно сочетание этих процессов!

    Исходы воспаления

    1. Полное восстановление структуры и функций поврежденных тканей
    2. Замещение поврежденных при воспалении тканей рубцом (возможны деформация органа или ткани и нарушение их функций)
    3. Диффузное разрастание соединительной ткани → склерозирование органа или ткани
    4. Переход острого воспаления в хроническое
    5. Некроз органа или ткани
    1. Альтерация. Понятие, виды, характеристика, значение при воспалении.

    Альтерация – это повреждение ткани, нарушение ее структуры, функций, трофики и метаболизма.

    Возникает сразу после действия флогогенного (воспалительного) фактора и сохраняется на протяжении всего процесса.

    Виды альтерации:

    1. Первичная альтерация – проявляется преимущественно структурными и метаболическими изменениями в клетках поврежденной ткани (очага воспаления)

    2. Вторичная альтерация

    Способствует дальнейшему развитию воспаления. Все изменения из первичной альтерации остаются и прогрессируют.

    В отличие от первичной, вторичная альтерация не зависит от флогогенного (воспалительного) агента. Определяется эффектами гидролитических ферментов лизосом и других БАВ – медиаторов воспаления.

    1. Медиаторы воспаления, их виды, характеристика и значение.
    Медиатор Где образуется (содержится) Что вызывает
    Гистамин Тучные клетки и базофилы Вазодилатация Увеличение сосудистой проницаемости Боль и зуд Увеличивает продукцию простагландинов Уменьшает фагоцитоз и хемотаксис нейтрофилов Уменьшает выделение лизосомальных ферментов нейтрофилов Уменьшает высвобождение медиаторов из базофилов Уменьшает выработку лимфокинов и т-киллерную активность лимфоцитов
    Серотонин Тромбоциты крови и энтерохромаффинные клетки кишечника Сужение венул Увелич сосудистой проницаемости Боль и зуд Тромбообразование
    Гепарин Тучные клетки и базофилы Уменьшение образования фибрина Стимуляция фагоцитоза Регуляция клеточной пролиферации
    Простагландины (ПГ-1, ПГ-Е) Из фосфолипидов клеточных мембран Вазодилатация Повышение сосудистой проницаемости Боль Стимуляция миграции макрофагов
    Катионные белки Гранулы нейтрофилов Гибель бактериальных клеток Увеличивает сосудистую проницаемость Увеличивает адгезию и эмиграцию лейкоцитов Повышает температуру тела
    Лизосомальные ферменты (кислые гидролазы) Фагоциты Стимулируют выработку БАВ Увеличивают сосудистую проницаемость Стимулируют хемотаксис лейкоцитов Лизис убитых м/о
    Лимфокины Активированные лимфоциты Взаимодействие лейкоцитов в очаге воспаления Пролиферация
    Монокины (интерфероны, фактор некроза опухолей, интерлейкин-1) Стимулированные моноциты и макрофаги Усилива.т сосудистую проницаемость, эмиграцию лейкоцитов, фагоцитоз, репарацию и дифференцировку клеток, пирогенные эффекты
    цАМФ, цГМФ (модуляторы воспаления) цАМФ увеличивает выделение гистамина и лизосомальных ферментов, цГМФ уменьшает
    Кинины (брадикинин, каллидин) Плзама крови Боль и зуд Расширение артериол Повышение проницаемости венул, миграции Т-лимфоцитов, пролиферации фибробластов и синтеза коллагена, синтеза гистамина Уменьшение эмиграции нейтрофилов
    Факторы комплемента (20 сывороточных белов) Плазма крови и тканевая жидкость Влияют на активацию тучных клеток, сосудистую проницаемость, эмиграцию нейтрофилов в очаг воспаления, активацию тромбоцитов
    Компоненты свертывающей и противосвертывающей системы крови Изменение реологических свойств крови и проницаемости сосудистых стенок
    1. Изменения обмена веществ, местного кровообращения и микроциркуляции в очаге воспаления.

    Изменения обмена веществ:

    Структурные клеточные и субклеточные изменения в очаге воспаления Физико-химические и метаболические изменения в очаге воспаления
    • мембраны: повышение проницаемости, инактивация ферментов, нарушение работы насосов, деструкция
    • митохондрии: увеличение и набухание, просветление матрикса, разрушение крист и др.
    • ЭПР: изменение формы и величины цистерн, разрушение мембран, уменьшение количества рибосом, появление вакуолей и др.
    • ядро: скопление хроматина по периферии ядра, деструкция ядерной мембраны
    • цитоплазма: появление вакуолей и различных включений
    • стромальные элементы: дистрофические изменения, иногда некроз клеток, растворение коллагеновых и эластических волокон
    • изменение электролинтного баланса внутри и вне клетки (выход К и вход Na, Cl, Ca, H2O)
    • изменение энергетического обмена: разобщение окисления и фосфорилирования в набухших митохондриях, уменьшение образования АТФ и АДФ
    • активация катаболизма углеводов, жиров, белков
    • увеличение дисперности коллоидов клеток и тканей
    • гиперонкия (увеличение онкотического давления из-за накопления полипептидов и др. высокомолекулярных соединений)
    • гиперосмия (увеличение осмотического давления из-за появления протонов, К и др ионов)
    • «ацидоз повреждения» (уменьшение рН) из-за накопления недоокисленных продуктов (лактата, пирувата, кетоновых тел, свободных жирных кислот)
    • гипергидратация (скопление жидкости в воспаленной ткани)
    • изменение мембранного потенциала

    Сосудистые реакции в очаге воспаления:

    1. Кратковременный рефлекторный спазм артериол
    2. Артериальная гиперемия
    3. Венозная гиперемия
    1. Спазм артериол обусловлен симпатическими влияниями в ответ на повреждение
    2. Арт. гиперемия развивается из-за преобладания парасимпатических влияний на стенку сосудов (паралич гладких мышц сосудов, паралич сосудосуживающих нервных волокон) + эффекты медиаторов воспаления + ацидоз + гиперкалиемия
    3. Вен. гиперемия наступает вслед за артериальной, поскольку возникают: набухание эндотелия сосудов + краевое стояние лейкоцитов + микротромбы вен и лимфатических капилляров + сдавление сосудов экссудатом + сгущение и увеличение вязкости крови
    4. Стаз – завершает цепь реакций, обеспечивает локализацию процесса
    1. Экссудация и эмиграция лейкоцитов в очаге воспаления. Фагоцитоз. Понятия, причины, механизмы, значение.

    Экссудация – выход жидкой части крови и ее форменных элементов за пределы сосудистого русла в очаг воспаления. Включает в себя:

    1. сосудистые реакции и изменения кровообращения (см. 30)
    2. выход жидкой части крови из сосудов (собственно экссудация)
    3. эмиграция лейкоцитов в очаг воспаления
    4. фагоцитоз

    Собственно экссудация начинается на стадии артериальной гиперемии, достигает максимума на стадии венозной гиперемии.

    Причина экссудации: повышение сосудистой проницаемости. Происходит разбавление токсинов в очаге воспаления, развивается дальнейшая локализация процесса.

    Механизм : выход жидкой части крови с белками и клетками (экссудат).

    Экссудат – воспалительная жидкость, содержащая 3% и более белков, форменные элементы крови, ферменты и соли.

    Виды экссудата: серозный, фибринозный, геморрагический, гнойный, гнилостный, смешанный.

    Транссудат – отличается от экссудата меньшим содержанием компонентов.

    Выход белков происходит в соответствии с их мол. массой: альбумины – глобулины – фибриноген.

    Патогенетичесекие факторы:

    1. Тканевый фактор – повышение коллоидно-осмотического давления в тканях

    2. Мембранный (сосудистый) фактор – повышение проницаемости мембран микрососудов

    3. Гемодинамический фактор – повышение гидростатического давления сначала в артериальном, затем в венозном конце капилляра

    Значение :

    • ослабление действия флогогенного фактора на организм
    • удаление метаболитов и токсинов, нейтрализация микробов
    • бактерицидное действие ацидоза
    • транспорт медиаторов воспаления, иммунных тел в очаг воспаления
    • затруднение кровотока в очаге воспаления

    Эмиграция лейкоцитов

    Стадии :

    1. краевое стояние лейкоцитов

    2. адгезия

    3. проникновение лейкоцита через стенку микрососуда

    1 и 2 – под влиянием ФАВ, сгущения и повышения вязкости крови, снижение кровотока в микрососудах

    3 – под влиянием хемоаттрактантов: комплемент, интерфероны, интерлейкины, иммуноглобулины, белки острой фазы, гидролитические ферменты и тд

    4 – амебоидное движение лейкоцитов

    Значение :

    • увеличение в очаге воспаления: БАВ, медиаторов воспаления, бактериостатических и цидных веществ
    • захватывание и переваривание м/о
    • ограничение очага воспаления

    Фагоцитоз

    Фагоциты: микрофаги (полиморфноядерные лейкоциты), макрофаги (моноциты, макрофаги тканей)

    Этапы фагоцитоза:

    1. приближение фагоцита к объекту
    2. прилипание фагоцита к объекту
    3. поглощение
    4. переваривание

    При контакте с фагоцитами происходит усиление метаболизма (метаболический взрыв) и обраование токсичных форм кислорода – кислородных радикалов – «респираторный взрыв»

    1. Пролиферация: понятие, причины, механизмы, значение при воспалении.

    Пролиферация – размножение клеток в очаге воспаления.

    Основу пролиферации составляет репаративная регенерация – процесс восстановления поврежденных тканей и клеточных структур.

    В пролиферации принимают участие:

    • клетки крови (нейтрофилы, моноциты и лимфоциты),
    • клетки соединительной ткани (тканевые макрофаги, фибробласты, монобласты)
    • клетки, дающие начало будущим сосудам (эндотелиальные, адвентициальные)

    Усиливаются анаболические процессы: синтез ДНК и РНК, белков, интенсивность ОВР, сопряжение окисления и фосфорилирования.

    Все эти изменения создают благоприятные условия для жизнедеятельности воспаленной ткани.

    Значение : во время пролиферации происходит новообразование соед. ткани и формирование рубца.

    Механизмы регуляции пролиферации: погибшие лейкоциты выделяют вещества, стимулирующие размножение клеток – трефоны. Под их воздействием происходит пролиферация клеток в очаге воспаления. Ее ограничивают ингибиторы клеточного деления – кейлоны, они выделяются зрелыми клетками. По мере их увеличения тормозится процесс пролиферации.

    На активность пролиферативных ферментов оказывает воздействие нервная и эндокринная (ингибируют глюкокортикоиды, стимулируют СТГ, минералокортикоиды, инсулин) системы.

    1. Биологическое значение воспаления. Понятие о раневом процессе.

    I. Адаптивное значение:

    · локализация процесса за счет сосудистых реакций (венозной гиперемии, стаза, тромбоза), фагоцитоза, создания клеточного вала

    · создание неблагоприятных условий для жизни микробов за счет локальной активации обмена веществ, активации лизосомальных ферментов, защитных иммунных реакций

    · один из способов формирования иммунитета

    II. Негативные значение:

    · альтерация и нарушение функции органа

    · замещение специализированных тканей на рубец, нарушение строения ткани и органа после воспаления

    · возможна интоксикация организма и даже смерть.

    Раневой процесс - совокупность клинических, патофизиологических, биохимических, бактериологических и морфологических изменений, характеризующих динамику заживления раны. Включает три основные фазы: воспалительную, фазу образования грануляционной ткани, фазу эпителизации и организации рубца.

    · Фаза образования грануляционной ткани.

    Это фаза восстановительного процесса. При затихании воспаления и развитии регенерации все действия должны быть направлены на усиление регенеративных про­цессов. В этой фазе рана заполняется грануляциями, требуется защита их от травмы и вторичного инфицирования

    · Фаза эпителизации.

    Регенерация эпителия осуществляется, как правило, полно, поскольку он обла­дает высокой регенераторной способностью. Образующиеся эпителиальные клетки сначала покрывают дефект одним слоем. В дальнейшем пласт эпителия становится многослойным, клетки его дифференцируются и он приобретает все признаки эпиде­рмиса. В период формирования эпителия, проницаемость кожи в этих местах повы­шена для неблагоприятного воздействия внешних факторов. Не сформированный липидный барьер, слабая кератинизация поверхностного слоя делают кожу проницае­мой для инфекций и чувствительной к аллергенам. В этих условиях защита вновь об­разующегося эпителиального слоя необходимое условие процесса заживления повре­жденного участка кожи.

    1. Общие принципы предупреждения и лечения воспалительного процесса.
    1. Этиотропная терапия:
    • противомикробные препараты при инфекции или антидоты при токсическом воспалении
  • Патогенетическая фармакотерапия:
  • · ингибирование выработки медиаторов воспаления

    · защита клеток от повреждения флогогенными факторами

    · ускорение очищения очага воспаления от микробов, токсинов, погибших клеток

    · стимуляция экссудации, пролиферации, ингибирование их чрезмерных форм

    · улучшение кровоснабжения очага воспаления

    1. Симптоматическая терапия

    · уменьшение боли, отека, красноты, жара

    1. Понятие об иммунопатологии. Виды, причины, механизмы, проявления.

    Иммунопатология – раздел иммунологии, изучающий роль реакций АГ-АТ или клеточных механизмов иммунитета в патогенезе болезней.

    Классификация иммунопатологических состояний:

    По происхождению: 1. первичные (в детском возрасте, по наследству) 2. вторичные (под воздействием повреждающих факторов – излучения, лекарств, инфекции)

    По преимущественному повреждению отдельных звеньев иммунитета:

    · недостаточность В-клеточного (гуморального) иммунитета

    · недостаточность Т-клеточного иммунитета

    · недостаточность работы фагоцитов: микро и макрофагов

    · дефицит факторов комплемента

    · комбинированная недостаточность

    По изменению реактивности:

    • гипоэргические (иммунодепрессии или иммунодефициты)
    • гиперэргические (аллергии)

    Недостаточность В-клеточного (гуморального) иммунитета:

    дис – гамма-глобулинемия – недостаточный синтез одного или нескольких классов иммуноглобулинов

    а – гамма-глобулинемия – отсутствие синтеза…

    Врожденные - проявляются повышением частоты инфекционных заболеваний: отитов, пневмоний, менингитов, сепсиса и др.

  • YI. Конвенция о водно-болотных угодьях, имеющих международное значение, главным образом, в качестве местообитаний водоплавающих птиц
  • А. 2 Н. Б. 0,5 Н. В. 8 Н. Г. Равнодействующая может иметь любое значение
  • Абсолютное значение 1% прироста составило по региону «А» составил 2,4, по региону «Б» 2,5, а по региону «В» 14,3

  • Кровообращение условно разделяют на центральное и периферическое.

    Центральное кровообращение , осуществляясь на уровне сердца и крупных сосудов, обеспечивает:

    • поддержание системного давления крови;
    • направление движения крови из артериального русла в венозное и далее - в сердце;
    • демпфирование (амортизацию) систолических и диастолических колебаний артериального давления при выбросе крови из желудочков сердца для обеспечения равномерного кровотока.

    Периферическое (регионарное) кровообращение осуществляется в сосудах органов и тканей. К нему относится кровообращение в сосудах микроциркуляторного русла, которое включает:

    • артериолы;
    • прекапилляры;
    • капилляры;
    • посткапилляры;
    • венулы:
    • артериоловенулярные шунты.

    Микроциркуляторное русло обеспечивает доставку крови к тканям, транскапиллярный обмен субстратами метаболизма, кислородом. углекислым газом, а также транспорт крови от тканей. Артериоловенозные шунты определяют объем крови, притекающей к капиллярам. При закрытии этих шунтов кровь из артериол поступает в капилляры, а при открытии - в венулы, минуя капилляры.

    Лимфатическая система структурно и функционально объединена с системой кровообращения и обеспечивает лимфообразующую, дренажную, барьерную, дезинтоксикационную, кровообразующую функции и включает:

    • лимфатические органы - лимфатические узлы, лимфатические фолликулы, миндалины, селезенку;
    • лимфатические транспортные пути - капилляры, микро- и макрососуды, синусы, которые имеют адренергическую иннервацию. общую с кровеносными сосудами.

    Все компоненты системы кровообращения тесно связаны между собой , и расстройство деятельности одного из них, например центрального, приводит к изменениям и периферического, и микроциркуляторного кровообращения. С другой стороны, расстройства системы микроциркуляции могут стать причиной или усугублять нарушения функции сердца или крупных сосудов. При этом большую роль в патологии играет тесная интеграция кровеносной системы с лимфатической, которая по существу также составляет систему микроциркуляции. Лимфа образуется в лимфатических капиллярах из тканевой жидкости и по лимфатическим сосудам транспортируется в венозную систему. При этом 80-90 % тканевого фильтрата оттекает в венозное, а 10-20 % - в лимфатическое русло. Отток лимфы и венозной крови обеспечивается одними и теми же механизмами - присасывающим действием сердца, грудной клетки, диафрагмы и работой мышц.

    ВИДЫ РАССТРОЙСТВ КРОВООБРАЩЕНИЯ

    Выделяют нарушения центрального и периферического кровообращения.

    Патология центрального кровообращения обусловлена главным образом нарушениями функций сердца или тока крови в крупных сосудах - аорте, нижней и верхней полых венах, легочном стволе, легочных венах. При этом возникает недостаточность кровообращения, которая сопровождается изменениями периферического кровообращения, в том числе и микроциркуляции. В результате органы и ткани не получают достаточного количества кислорода и других метаболитов, из них не удаляются токсичные продукты метаболизма. Причиной этих нарушений может быть либо нарушение функции сердца, либо снижение сосудистого тонуса-гипотония.

    Патология периферического (регионарного) кровообращения, включая нарушения микроциркуляции, проявляются в трех основных формах:

    1. нарушения кровонаполнения (артериальное полнокровие и малокровие, венозное полнокровие);
    2. нарушения реологических свойств крови (тромбоз, эмболия, стаз, ДВС-синдром);
    3. нарушения проницаемости стенок сосудов (кровотечения, кровоизлияния, плазморрагия).

    Полнокровие сосудов (гиперемия) может быть артериальным и венозным. Каждое из них в свою очередь может быть:

    • по течению - острым и хроническим;
    • по распространенности - местным и общим.

    ПОЛНОКРОВИЕ

    Артериальное полнокровие (гиперемия) обусловлено увеличением притока крови в систему микроциркуляции при нормальном ее оттоке по венам, что проявляется расширением артериол, повышением внутрисосудистого давления и местной температуры тканей.

    Причиной общей артериальной гиперемии может быть увеличение объема циркулирующей крови (плетора) или количества эритроцитов (эритремия); местной артериальной гиперемии - различные физические (температурные), химические (щелочи, кислоты), биологические (инфекционной и неинфекционной природы) факторы, воспаление, а также нарушение иннервации (ангионевротическая гиперемия) и психогенные воздействия: например, слово может привести к артериальной гиперемии лица и шеи, проявляющейся «краской стыда или гнева».

    Механизмы развития артериального полнокровия:

    • нейрогенный механизм связан с преобладанием парасимпатических эффектов на артериолы и капилляры над симпатическими влияниями, что наблюдается, например, при травме, сдавлении опухолью или воспалении регионарных парасимпатических ганглиев, а также симпатических ганглиев или нервных окончаний;
    • гуморальный механизм обусловлен увеличением либо уровня биологически активных веществ с сосудорасширяющим действием (кининов, простагландинов, серотонина), либо повышением чувствительности к ним стенок артериол (в частности, к ионам внеклеточного калия);
    • нейромиопаралитический механизм заключается в истощении запасов катехоламинов в симпатических нервных окончаниях или в снижении тонуса мышечных волокон в стенках артериол, что может быть вызвано длительным физическим воздействием (например, при применении грелок, горчичников, медицинских банок), изменениями барометрического давления и др.

    Виды артериального полнокровия.

    Физиологическая артериальная гиперемия возникает при интенсивном функционировании органа, например в работающих мышцах, беременной матке, в стенке желудка после приема пищи. Она обеспечивает усиленное поступление в ткани кислорода и питательных веществ и способствует удалению продуктов их распада.

    Патологическая артериальная гиперемия не связана с усилением функции органа, развивается при воспалении, нарушениях иннервации органов, травмах тканей, эндокринных заболеваниях, значительном повышении артериального давления и др.

    Рис. 14. Полнокровие сосудов. а - артериальная гиперемия; б - венозная гиперемия; расширение и переполнение кровью вен бедра и голени.

    При этом стенки артериол могут разрываться и возникает кровотечение или кровоизлияние в ткани.

    Признаки артериального полнокровии

    При артериальной гиперемии увеличивается пульсация артерий, меняется микроциркуляторное русло - расширяются артериолы, раскрываются резервные капилляры, в них увеличивается скорость кровотока, повышается кровяное давление. Гиперемия хорошо видна на поверхности кожи (рис. 14, а).

    При артериальной гиперемии отмечаются:

    • увеличение числа и диаметра артериальных сосудов;
    • покраснение органа ткани или их участков;
    • повышение температуры тканей в области их гиперемии;
    • увеличение объема и напряжения (тургора) органа или ткани в связи с увеличением их кровонаполнения;
    • увеличение лимфообразования и лимфооттока, что обусловлено повышением перфузионного давления в сосудах микроциркуляции.

    Венозное полнокровие (гиперемия) обусловлено затруднением оттока крови по венам при нормальном ее притоке по артериям , что приводит к увеличению кровонаполнения органа или ткани. Причиной венозного полнокровия является препятствие оттоку

    крови в результате закрытия просвета вены тромбом или эмболом. при сдавлении вен опухолью, рубцом, жгутом, при врожденном недоразвитии эластического каркаса стенок вен или их клапанного аппарата, а также при развитии сердечной недостаточности.

    Признаки венозного полнокровия:

    • цианоз, т. е. синюшный оттенок слизистых оболочек, кожи, ногтей и органов из-за увеличения в них количества венозной крови, бедной кислородом;
    • снижение температуры тканей вследствие падения вних интенсивности обмена веществ;
    • отек тканей, развивающийся в результате гипоксии (кислородного голодания) тканей стенок сосудов микроциркуля-торного русла, повышения их проницаемости и выхода в окружающую ткань плазмы крови;
    • увеличение объема органов и тканей из-за скопления в них венозной крови и отека.

    Местное венозное полнокровие имеет значение в патологии главным образом в связи с развивающимся при этом острым отеком тканей в том или ином регионе тела, а также с возможностью возникновения инфаркта селезенки при тромбозе селезеночной вены. При хроническом местном венозном (застойном) полнокровии в органе активизируется образование фибробласта-ми коллагена и в строме разрастается соединительная ткань - развивается органа.

    Общее венозное полнокровие имеет большое значение в патологии, возникает при различных заболеваниях и может иметь тяжелые последствия.

    Острое общее венозное полнокровие чаще развивается при острой сердечной недостаточности (острый инфаркт миокарда, острый миокардит), а также в атмосфере с низким содержанием кислорода (например, при разгерметизации кабины самолета, высоко в горах, при недостаточном поступлении кислорода из акваланга при подводных работах и т. п.). При этом в тканях быстро нарастают гипоксия и ацидоз (закисление). повышается сосудистая проницаемость, появляется и прогрессирует отек, часто сопровождающийся периваскулярными кровоизлияниями.

    Хроническое общее венозное полнокровие обычно развивается при хронических заболеваниях сердца, заканчивающихся хронической сердечной недостаточностью (хроническая ишемическая болезнь сердца, пороки сердца, кардиомиопатии). Помимо всех тех изменений, которые характеризуют острую венозную гиперемию, при хроническом венозном полнокровии постепенно развиваются атрофия паренхимы органов и их стромы, в результате чего происходит уплотнение (индурация ) органов и тканей. Кроме того, хронический отек и плазморрагия вызывают перегрузку лимфатической системы и развитие ее недостаточности. Формируется капиллярнотрофическая недостаточность , которая характеризуется:

    • ом микрососудов, уменьшением их просветов и уменьшением количества капилляров , что обусловливает уменьшение кровотока по капиллярам, транскапиллярный обмен веществ и нарастание кислородного голодания;
    • преобразованием истинных капилляров в емкостные (депонирующие), в которых эритроциты располагаются не в один, а в несколько рядов, капилляры резко расширяются и превращаются в венулы, стенки их теряют тонус, что приводит к еще большему расширению капилляров и венул и усиливает венозную гиперемию. При этом количество истинных капилляров снижается, артериальная кровь попадает в венозную систему по коляатералям (обходным сосудам), что способствует нарастанию гипоксических и метаболических изменений в тканях.

    Характерные изменения в органах и тканях, которые развиваются при хроническом общем венозном полнокровии.

    • В коже и подкожной клетчатке, особенно нижних конечностей, происходит расширение венозных сосудов, отек кожи и подкожной клетчатки (анасарка), атрофия кожи, застой лимфы в лимфатических сосудах (лимфостаз). На фоне хронического венозного полнокровия часто развиваются трофические язвы голеней и стоп (рис. 14, б).
    • В легких длительный венозный застой имеет особое значение в связи с тем, что он развивается при хронической сердечной недостаточности (см. главу 13). При этом в легочных венах, впадающих в левое предсердие, развивается застой крови, что способствует прогрессирующей гипоксии. При этом повышается проницаемость стенок сосудов и из венул и капилляров в окружающую ткань выходит сначала плазма крови, а затем и эритроциты. Последние захватываются макрофагами, в которых гемоглобин превращается в гемосидерин и ферритин, а макрофаги получают название сидерофагов. Часть макрофагов альвеол, загруженных гемосидерином, попадает в бронхи и вместе с мокротой выводится из организма. В мокроте они называются « клетками сердечных пороков «. Часть сидерофагов распадается в строме легких, чему способствует нарастающая недостаточность лимфатических сосудов, перегруженных отечной жидкостью, сидерофагами и гемосидерином. Постепенно развивается застой лимфы. Прогрессирующие гипоксия и застой лимфы являются стимулами для активизации системы фибробластов в ткани легких и интенсивного образования ими коллагена. Нарастает склероз легких, они становятся плотными, развивается их индурация (от лат. durum - плотный). При этом гемосидерин, образующий скопления в строме и в альвеолах и характеризующий местный гемосидероз, придает легким бурый цвет и развивается бурая индурация легких - необратимое состояние, значительно ухудшающее течение хронической сердечной недостаточности и общее состояние больного (рис. 15).

      Рис. 15. Хроническое венозное полнокровие легких (бурая индурация легких). Сосуды межальвеолярных перегородок расширены (а); в строме легкого и в просвете альвеол - сидерофаги (б); часть альвеол заполнена отечной жидкостью (в); межальвеолярные перегородки утолщены и склерозированы (г).

    • В печени хроническая венозная обычно также является следствием хронической сердечной недостаточности и декомпенсации сердца. При этом застой крови вначале происходит в нижней полой вене, затем в венах печени и в центральных венах печеночных долек. Центральные вены расширяются, через их стенки выходит плазма крови и эритроциты и в центре долек атрофируются гепатоциты. На периферии дольки гепатоциты подвергаются жировой дистрофии и ткань печени на разрезе становится пестрой, напоминающей мускатный орех - на желто-коричневом фоне отчетливо видны красные точки в центрах долек. Такая картина носит название « мускатной печени » (рис. 16).
    • Селезенка при венозном застое увеличивается в размерах (застойная спленомегалия), становится синюшной и плотной (цианотическая индурация селезенки ), на разрезе не дает соскоба пульпы, ее фолликулы атрофичны, а красная пульпа склерозирована.

    МАЛОКРОВИЕ

    Артериальное малокровие, или ишемия, - уменьшение кровенаполнения органа или ткани, обусловленное либо снижением притока к ним крови по артериям, либо значительным увеличением потребности тканей в кислороде и субстратах метаболизма, что приводит к несоответствию между потребностями тканей в кровоснабжении и возможностями артериального кровотока. В зависимости от причин и механизмов развития ишемии выделяют пять разновидностей артериального малокровия: ангиоспастическое, обтурационное, компрессионное, в результате острого перераспределения крови и дисфункциональное.

    Рис. 16. Хроническое венозное полнокровие печени (мускатная печень). В центре долек центральные вены и синусоиды резко расширены, полнокровны (а), печеночные клетки атрофичны (б), в области кровоизлиянии (в) разрушены. По периферии долек печеночные балки сохранены (г), перисинусоидальные пространства расширены (д).

    Ангиоспастическое малокровие обусловлено спазмом артерий вследствие увеличения содержания в тканях веществ, вызывающих спазм сосудов (например, ангиотензин, вазопрессин, катехоламины и т. п.), или повышением чувствительности к ним стенок артериол (при увеличении содержания в них ионов кальция или натрия), а также при преобладании симпатико-адреналовых влияний над парасимпатическими (стресс, стенокардия, аппендикулярная колика).

    Обтурационное малокровие развивается при полном или частичном закрытии просвета артерии тромбом, эмболом (при остром малокровии) или атеросклеротической бляшкой (при хронической ишемии).

    Компрессионное малокровие возникает при остром или хроническом сдавлении сосуда извне - жгутом, опухолью, отечной тканью и т. п.

    Малокровие в результате острого перераспределения крови наблюдается при быстром притоке крови в ранее ишемизированные ткани. Например, при быстром удалении асцитической жидкости, сдавливавшей сосуды брюшной полости, в эту область устремляется кровь и возникает ишемия сосудов головного мозга.

    Дисфункциональное малокровие является следствием значительного повышения тканями расхода кислорода и субстратов метаболизма при резкой интенсификации функции органа, например ишемия миокарда при внезапной интенсивной нагрузке на сердце (бег, поднятие тяжестей, тяжелая физическая работа), ишемия мышц голени у пожилых людей при быстрой ходьбе и т. п. Обычно этот вид ишемии возникает при сужении просвета снабжающей артерии атеросклеротической бляшкой.

    По характеру течения ишемия может быть острой и хронической.

    Признаки ишемии:

    • побледнение ткани и органа из-за снижения их кровенаполнения и числа функционирующих капилляров;
    • снижение пульсации артерий и уменьшение их диаметра в результате уменьшения их диастолического наполнения кровью и падения артериального давления:
    • понижение температуры ишемизированной ткани вследствие уменьшения притока теплой артериальной крови и снижения интенсивности метаболизма в ишемизированном регионе;
    • замедление тока крови по микрососудам вплоть до ее остановки;
    • снижение лимфообразования в результате падения перфузионного давления в сосудах микроциркуляции.

    Последствия и значение ишемии.

    Кислородное голодание тканей (гипоксия) является главным патогенным фактором ишемии. Развивающиеся при этом изменения связаны с продолжительностью и тяжестью гипоксии, чувствительностью к ней органов и наличием коллатерального кровообращения в ишемизированной ткани. Наиболее чувствительны к гипоксии головной мозг, почки и миокард, в меньшей степени - легкие и печень, в то время как соединительная, костная и хрящевая ткани отличаются максимальной устойчивостью к недостатку кислорода.

    Ишемия способствует распаду в клетках макроэргических соединений - креатинфосфата и АТФ, что компенсаторно активизирует бескислородный (анаэробный) путь окисления и образования энергии - анаэробный гликолю. Следствием этого является накопление в тканях недоокисленных продуктов метаболизма, что приводит к ацидозу тканей, усилению перекисного окисления липидов, стимуляции гидролитических ферментов лизосом и в итоге - к распаду мембран клеток и внутриклеточных структур. Возникающий энергетический дефицит способствует, кроме того, накоплению в клетках ионов кальция, активизирующих ряд ферментов, которые также приводят клетки к гибели.

    Функциональное состояние органа имеет большое значение при ишемии: чем интенсивнее он функционирует, тем больше нуждается в притоке артериальной крови и тем чувствительнее к малокровию.

    Рис. 17. Схема развития коллатерального кровообращения и образования инфарктов (по Я. Л. Рапопорту). а - схема достаточных коллатералей: артерия (1) разделялся на три ветви, из которых одна (2) закупорена; питаемая ею область получает достаточное количество крови по коллатералям (3 и 4); б - схема концевых артфии: артерия (1) разделяется на три ветви, не имеющие артериальных соединении, а только капиллярные; закупорка одной ветви (2) лишает соответствующую часть капилляров (3) снабжения кровью (белый инфаркт); в - схема недостаточных коллатералей при геморрагическом инфаркте: Г - артерия, разделяющая на три ветви; Z - просвет средней артерии закупорен; 3 - окольный артериальный сосуд, по которому протекает кровь, заливающая участок, снабжаемый артерией (1), но недостаточный для питания тканей; 4 - вена.

    Скорость развития ишемии играет решающую роль: если артериальное малокровие возникает остро, в тканях развиваются дистрофические и некротические изменения; если же ишемия носит хронический, медленно прогрессирующий характер, то в ишемизированных органах и тканях нарастают атрофические и склеротические процессы. При этом в тканях обычно успевают сформироваться коллатерали, снижающие степень гипоксии.

    Коллатеральное кровообращение иногда приобретает определяющее значение в возможных исходах ишемии. Коллатеральное, или обходное, кровообращение представлено сетью мелких сосудов, соединяющих более крупные артерии и вены. Коллатеральные сосуды имеются в норме, но они находятся в спавшемся состоянии, так как потребности тканей в кровоснабжении обеспечиваются магистральными сосудами. Коллатерали начинают проводить кровь либо в условиях резко возросшей функции органа, либо при возникновении препятствия току крови по магистральному сосуду. В этих случаях раскрываются имеющиеся капилляры и начинают образовываться новые, от скорости их образования зависит уровень компенсации ишемии и ее исход. Однако в некоторых органах, таких как сердце, головной мозг, почки, коллатерали развиты слабо, поэтому при закрытии просвета магистральной артерии коллатеральное кровообращение часто не способно компенсировать ишемию и развивается некроз тканей этих органов. Вместе с тем в подкожной клетчатке, кишечнике и сальнике сеть коллатеральных сосудов в норме развита хорошо, что нередко позволяет этим органам и тканям справиться с ишемией. В остальных органах имеются коллатерали промежуточного типа, которые лишь частично позволяют компенсировать артериальное малокровие (рис. 17).

    Значение ишемии заключается в снижении функций ишемизированных органов, которое, однако, может быть обратимым, если ишемия продолжалась относительно недолго и в тканях развились лишь обратимые дистрофические изменения. В случаях медленно нарастающей ишемии в организме успевают развиться компенсаторные иприспособительные процессы, позволяющие в какой-то степени восполнить функцию ишемизированного органа. Если же в ишемизированных органах развиваются некротические изменения с утратой их функций, то это может приводить к тяжелой инвалидности и смерти.

    НАРУШЕНИЯ РЕОЛОГИЧЕСКИХ СВОЙСТВ КРОВИ

    Эти нарушения проявляются такими патологическими процессами. как тромбоз, эмболия, стаз, сладж. ДВС-синдром.

    Тромбоз - процесс прижизненного свертывания крови в просвете сосуда или в полостях сердца.

    Свертывание крови является важнейшей физиологической реакцией, препятствующей смертельной потере крови при повреждениях сосудов, и если эта реакция отсутствует, развивается опасное для жизни заболевание - гемофилия. Вместе с тем при повышении свертываемости крови в просвете сосуда образуются свертки крови - тромбы, препятствующие кровотоку, что становится причиной тяжелых патологических процессов в организме, вплоть до наступления смерти. Наиболее часто тромбы развиваются у больных в послеоперационном периоде, у людей, находящихся на длительном постельном режиме, при хронической сердечно-сосудистой недостаточности, сопровождающейся общим венозным застоем, при атеросклерозе, злокачественных опухолях, у беременных, у старых людей.

    Причины тромбоза делят на местные и общие:

    • Местные причины - повреждение стенки сосуда, начиная от слущивания эндотелия и заканчивая ее разрывом; замедление и нарушения кровотока в виде возникающих завихрений крови при наличии препятствия ее току, например атеросклеротической бляшки, варикозного расширения или аневризмы стенки сосуда.
    • Общие причины - нарушение соотношения между свертывающей и противосвертывающей системами крови в результате увеличения концентрации или активности свертывающих факторов - прокоагулянтов (тромбопластинов, тромбина, фибриногена и др.) либо снижения концентрации или активности антикоагулянтов (например, гепарина, фибринолитических веществ), а также повышения вязкости крови, например, всвязи с увеличением количества ее форменных элементов, особенно тромбоцитов и эритроцитов (при некоторых системных заболеваниях крови).

    Стадии образования тромба.

    Выделяют 4 стадии тромбообразования .

    • 1-я - стадия агглютинации тромбоцитов (сосудисто-тромбоцитарная), начинается уже при повреждении эндотелиоцитов интимы и характеризуется адгезией (прилипанием) тромбоцитов к обнаженной базальной мембране сосуда, чему способствует появление определенных факторов свертывания - фибронектина, фактора Виллебрандта и др. Из разрушающихся тромбоцитов выделяется тромбоксан А2 - фактор, суживающий просвет сосуда, замедляющий кровоток и способствующий выбросу тромбоцитами серотонина, гистамина и тромбоцитарного фактора роста. Под влиянием этих факторов запускается каскад свертывающих реакций, в том числе и образование тромбина , который вызывает развитие следующей стадии.
    • 2-я - стадия коагуляции (фибриногена (плазменная), характеризуется трансформацией фибриногена в нити фибрина, которые образуют рыхлый сверток и в нем (как в сети) задерживаются форменные элементы и компоненты плазмы крови с развитием последующих стадий.
    • 3-я - стадия агглютинации эритроцитов. Она связана с тем, что эритроциты должны передвигаться в потоке крови, а если они останавливаются, то склеиваются (агглютинируют ). При этом выделяются факторы, вызывающие ретракцию (сжатие) образовавшегося рыхлого тромба.
    • 4-я - стадия преципитации плазменных белков. В результате ретракции из образовавшегося сгустка отжимается жидкость, белки плазмы и белки из распавшихся форменных элементов крови подвергаются преципитации, сверток уплотняется и превращается в тромб, который закрывает дефект стенки сосуда или сердца, но может закрыть и весь просвет сосуда, прекратив тем самым кровоток.

    Морфология тромба.

    Взависимости от особенностей и скорости образования тромбы могут иметь различный состав, строение и внешний вид. Выделяют следующие виды тромбов:

    • белый mpoмб, состоящий из тромбоцитов, фибрина и лейкоцитов, образуется медленно при быстром кровотоке, обычно в артериях, между трабекулами эндокарда, на створках клапанов сердца;
    • красный тромб, в состав которого входят эритроциты, тромбоциты и фибрин, возникает быстро в сосудах с медленным током крови, обычно в венах;
    • смешанный mpoмб включает в себя тромбоциты, эритроциты, фибрин, лейкоциты и встречается в любых отделах кровеносного русла, в том числе в полостях сердца и в аневризмах артерий;
    • гиалиновые тромбы, состоящие из преципитированных белков плазмы и агглютинированных форменных элементов крови, образующих гомогенную, бесструктурную массу; они обычно множественные, формируются только в сосудах микроциркуляции при шоке, ожоговой болезни, ДВГ-синдроме, тяжелой интоксикации и т. п.

    Структура тромба.

    Макроскопически в тромбе определяется небольшая, тесно связанная со стенкой сосуда головка тромба , по строению соответствующая белому тромбу, тело — обычно смешанный тромб и рыхло прикрепленный к интиме хвост тромба, как правило, красный тромб. В области хвоста тромб может отрываться, что служит причиной тромбоэмболии.

    По отношению к просвету сосуда выделяют:

    • пристеночные тромбы, обычно белые или смешанные, не закрывают целиком просвет сосуда, хвост их растет против тока крови;
    • обтурирующие тромбы, как правило, красные, полностью закрывающие просвет сосуда, хвост их чаще растет по току крови.

    По течению выделяют:

    • локализованный (стационарный) тромб, который не увеличивается в размерах и подвергается замещению соединительной тканью — организации
    • прогрессирующий тромб, который увеличивается в размерах с различной скоростью, его длина иногда может достигать нескольких десятков сантиметров.

    Исходы тромбоза принято подразделять на благоприятные и неблагоприятные.

    К благоприятным исходам относят организацию тромба, которая начинается уже на 5-6-й день после его образования и заканчивается замещением тромботических масс соединительной тканью. В ряде случаев организация тромба сопровождается его канали зацией, т. е. образованием щелей, через которые в какой-то степени осуществляется кровоток, и васкуляризацией, когда образовавшиеся каналы покрываются эндотелием, превращаясь в сосуды, через которые частично восстанавливается кровоток, обычно через 5-6 нед после тромбоза. Возможно обызвествление тромбов (образование флеболипов).

    Неблагоприятные исходы: тромбоэмболия , возникающая при отрыве тромба или его части, и септическое (гнойное) расплавление тромба при попадании в тромботические массы гноеродных бактерий.

    Значение тромбоза определяется быстротой образования тромба, его локализацией и степенью сужения сосуда. Так, мелкие тромбы в венах малого таза сами по себе не вызывают каких-либо патологических изменений в тканях, но, оторвавшись, могут превратиться в тромбоэмболы. Пристеночные тромбы, незначительно суживающие просветы даже крупных сосудов, могут не нарушать в них гемодинамику и способствовать развитию коллатерального кровообращения. Обтурирующие тромбы артерий являются причиной ишемии, заканчивающейся инфарктом или гангреной органов. Тромбоз вен (флеботромбоз) нижних конечностей способствует развитию трофических язв голеней, кроме того, тромбы могут стать источником эмболии. Шаровидный тромб, образующийся при отрыве от эндокарда левого предсердия, периодически закрывая атриовентрикулярное отверстие, нарушает центральную гемодинамику, в связи с чем больной теряет сознание. Прогрессирующие септические тромбы, подвергающиеся гнойному расплавлению, могут способствовать генерализации гнойного процесса.

    Эмболия - циркуляция в крови или лимфе не встречающихся в норме частиц (эмболов) и закупорка ими просвета сосудов (рис. 18).

    По происхождению выделяют экзо- и эндогенные эмболии.

    При экзогенных эмболиях эмболы попадают в сосудистое руло из окружающей среды. Различают воздушную, газовую эмболию и эмболию инородными телами.

    Воздушная эмболия происходит при попадании воздуха через поврежденные крупные вены шеи (имеющие отрицательное давление по отношению к атмосферному), через зияющие после отторжения плаценты вены матки, при введении воздуха с лекарственными препаратами с помощью шприца или капельницы, при пневмотораксе (попадании воздуха в плевральные полости). Воздушные эмболы обтурируют капилляры легких, головного мозга; воздушные пузыри, скапливающиеся в правых отделах сердца, придают имеющейся в них крови пенистый вид.

    Газовая эмболия развивается при быстрой декомпрессии (у водолазов при быстром подъеме с глубины, при разгерметизации кабины самолета, барокамеры), приводящей к высвобождению из крови азота. Газовые эмболы поражают различные органы, в том числе головной и спинной мозг, вызывая кессонную болезнь.

    Эмболия инородными телами возникает при попадании в травмированные крупные сосуды частиц инородных предметов - медицинских катетеров, осколков ампул, кусочков одежды или осколков пуль и снарядов при огнестрельных ранениях.

    При эндогенных эмболиях эмболами являются собственные ткани организма: тромбоэмболия, жировая, тканевая и микробная эмболия.

    Тромбоэмболия развивается при отрыве тромба или его части и является наиболее частой эмболией. Ее источником могут быть тромбы любой локализации - артерий, вен. полостей и створок клапанов сердца. Самой распространенной является тромбоэмболия легочной артерии, возникающая обычно у больных в послеоперационном периоде, при варикозном расширении вен нижних конечностей, тромбофлебите или флеботромбозе у больных, страдающих сердечно-сосудистой недостаточностью, онкологическими заболеваниями.

    Рис. 18. Схема направления движения эмболов (по Я. Л. Рапопорту). Из венозной системы эмболы заносятся в правую половину сердца, а оттуда в легочный ствол и легкие (область распространения эмболов из венозной сети заштрихована). Из левых отделов сердца эмболы заносятся по артериям в разные органы (указано стрелками).

    При этом тромбоэмболы попадают в легочный ствол илилегочные артерии из вен нижних конечностей, жировой клетчатки малого таза, иногда из печеночных вен, нижней и верхней полых вен илиправых отделов сердца с пристеночными тромбами, что, как правило, заканчивается смертью. Механизм смерти связан с пульмоно-коронарным рефлексом который возникает при ударе тромбоэмбола в рефлексогенную зону, расположенную в интиме области разветвления легочного ствола. При этом остро возникает спазм сосудов сердца, легких, а также бронхов и наступает остановка сердца. Определенную роль играет и закрытие тромбоэмболом просвета легочного ствола. Мелкие тромбоэмболы могут проходить легочный ствол и обтурировать мелкие ветви легочной артерии, вызывая инфаркты легких. В случае массивной тромбоэмболии мелких ветвей легочных артерий может развиться острое падение артериального давления - коллапс. Оторвавшиеся тромбы створок клапанов или пристеночные тромбы эндокарда, образующиеся при эндокардитах, инфаркте миокарда, в хронической аневризме сердца, с током крови попадают по большому кругу кровообращения в различные органы, вызывая тромбоэмболический синдром.

    Жировая эмболия возникает при переломах трубчатых костей, размозжении подкожной жировой клетчатки при травмах, при ошибочном введении в кровяное русло масляных лекарственных растворов. Жировые эмболы закупоривают мелкие ветви легочных артерий, причем если обтурировано больше 2 / 3 этих сосудов, то может развиться острая правожелудочковая недостаточность, что, однако, бывает очень редко. Чаще жировая эмболия легких вызывает пневмонию в пораженных участках.

    Тканевая эмболия является результатом разрушения тканей при заболеваниях и травмах, например эмболия опухолевыми клетками, лежащая в основе формирования метастазов опухоли, эмболия околоплодными водами у родильниц, разрушенными тканями у новорожденных с тяжелыми родовыми травмами.

    По механизму распространения выделяют эмболии большого ималого круга кровообращения, орто- и ретроградную, парадоксальную (рис. 18).

    Эмболии большого круга кровообращения - эмбол из левых отделов сердца, аорты или других крупных артерий, перемещаясь по току крови, обтурирует органные артерии, в результате чего в этих органах возникают инфаркты или гангрена. Эмболы, образующиеся в венах большого круга кровообращения, по току крови обтурируют либо воротную вену, либо попадают в правые отделы сердца и оттуда - в малый круг кровообращения.

    При эмболии малого круга кровообращения эмбол из правых отделов сердца проходит в малый круг кровообращения, вызывая либо эмболию легочного ствола, ведущую к остановке сердца, либо инфаркты легких.

    При ортоградной эмболии эмбол перемещается по току крови или лимфы - наиболее частый вид эмболии.

    Ретроградная эмболт характеризуется движением эмбола против тока или лимфы и возникает обычно при эмболии тяжелыми инородными телами или при ретроградном лимфогенном метастазировании рака желудка.

    Парадоксальная эмболия развивается при проникновении эмбола из венозного отдела большого круга кровообращения в артериальный отдел, минуя легкие. Это редкий вид эмболии, которая наблюдается при незаращении межжелудочковой или межпредсердной перегородки в сердце (например, при незаращении овального окна), при артериовенозных анастомозах, прежде всего при открытом артериальном (боталловом) протоке или при травматическом образовании артериовенозного соустья.

    Значение эмболии определяется ее видом, распространенностью и локализацией. Особенно опасны эмболии головного мозга, сердца, легочного ствола, часто заканчивающиеся смертью больного, тогда как поражение почек, печени, селезенки, скелетных мышц имеет меньшее значение. Однако в любом случае эмболия кровеносных сосудов приводит к нарушению кровообращения в тканях, вызывает их ишемию и некроз. Эмболия лимфатических сосудов, особенно нижних конечностей, может приводить к лимфатическому отеку тканей, их склерозу и снижению функции органа, например значительное увеличение размеров нижней конечности при слоновости.

    НАРУШЕНИЯ МИКРОЦИРКУЛЯЦИИ

    Причины расстройств микроциркуляции:

    • нарушения центрального и регионарного кровообращения -
    • развиваются при сердечной недостаточности, артериальной и венозной гиперемии, при ишемии;
    • изменения вязкости и объема крови (лимфы) - наблюдаются при уменьшении объема жидкости в плазме (гипогидратация), увеличении количества форменных элементов (полицитемия) или белков плазмы, агрегации и агглютинации клеток крови;
    • гемодилюция, или разжижение крови, - возникает в результате значительного поступления тканевой жидкости в кровь (гипергидратация), снижения общего числа форменных элементов крови (панцитопения), уменьшения содержания белков плазмы (гипопротеинемия).

    По локализации первично возникающих нарушений расстройства микроциркуляции разделяют на внутрисосудистые, трансмуральные ивнесосудистые.

    Внутрисосудистые нарушения ликроциркуляции проявляются следующим образом:

    • замедление, вплоть до прекращения (стаза), тока крови или лимфы наиболее часто возникает при сердечной недостаточности, ишемии, венозной гиперемии, сгущении крови (при профузном поносе, неукротимой рвоте, ожоговой болезни и т. п.):
    • чрезмерное ускорение кровотока наблюдается при артерио-ловенулярных шунтах, гемодилюции, почечной недостаточности;
    • нарушение ламинарности (турбулентность) тока крови или лимфы возникает при образовании препятствия микроциркуляции в виде образования агрегатов из клеток крови (при по-лицитемии), формировании микротромбов, атипичном строении микрососудистого русла (капиллярная гемангиома).

    Транс муральные нарушения микроциркуляции связаны с изменениями в самой стенке микрососудов, через которую в норме проходит плазма крови и ее форменные элементы, поступают продукты метаболизма и регулирующие обмен веществ биологически активные вещества. В патологии наиболее существенную роль играют две группы нарушений трансмуральной микроциркуляции:

    • изменение объема транспорта плазмы (лимфы), который может возрастать (при артериальной гиперемии, аллергических реакциях, лимфостазе) или уменьшаться (при спазме артериол, кальцификации стенок микрососудов);
    • увеличение транспорта клеток крови через стенки микрососудов, что может быть при значительном повышении их проницаемости (например, при гипоксии) или при нарушении целостности (эритроцитов).

    Внесосудистые нарушения микроциркуляции заключаются в замедлении вплоть до прекращения тока межклеточной жидкости и обусловлены изменениями влияний на микроциркуляцию внесосудистых факторов, например нервно-трофической регуляции метаболизма, появлением в окружающих тканях медиаторов воспаления (гистамин, серотонин и др.), которые резко усиливают микровезикулярный транспорт, но могут и способствовать тромбированию сосудов микроциркуляции; при скоплении в интерстициальной ткани жидкости, например, транссудата при отеках или экссудата при воспалении, повышается давление тканевой жидкости и она сдавливает сосуды микроциркуляции.

    НАРУШЕНИЯ МИКРОЦИРКУЛЯЦИИ

    Нарушения микроциркуляции, имеющие нередко самостоятельное клиническое значение и возникающие при многих заболеваниях, - сладж-феномен, стаз, ДВС-синдром.

    СЛАДЖ-ФЕНОМЕН

    Сладж-феномен (от англ. sludge - тина, густая грязь) характеризуется адгезией и агрегацией форменных элементов крови, прежде всего эритроцитов, что вызывает значительные гемодинамические нарушения. Клетки в состоянии сладжа имеют вид «монетных столбиков», сохраняя при этом свои цитомембраны (рис. 19).

    Рис. 19. Агрегация эритроцитов как проявление сладж-феномена. В просвете капилляра несклеиваюшиеся эритроциты (Эр) в виде монетного столбика.

    Причишит сладжа являются нарушения центральной и регионарной гемодинамики, повышение вязкости крови и повреждение стенок микрососудов (см. выше). В основе сладж-феномена лежат следующие механизмы:

    • активация клеток крови и выделение ими веществ, способствующих агрегации эритроцитов. - АДФ. тромбоксана А2. кининов, гистамина, простагландинов и др.;
    • смена поверхностного заряда клеток крови с отрицательного на положительный в результате избытка катионов, поступающих из поврежденных клеток;
    • уменьшение величины поверхностного заряда мембран клеток крови при избытке макромолекул белка (гиперпротеинемии), особенно за счет увеличения концентрации иммуноглобулинов, фибриногена, аномальных белков.

    Рис. 20. Стаз в капиллярах мозга (при малярии). Капилляры резко расширены, в их просветах склеившиеся эритроциты и пигмент гемомеланин. Ткань мозга отечна.

    Последствия сладжа

    • замедление кровотока в микроциркуляторном русле, вплоть до его остановки;
    • нарушения транскапиллярного обмена;
    • гипоксия, ацидоз и нарушение метаболизма окружающих тканей.

    Значение сладжа.

    Изменения, сопровождающие сладж-феномен, приводят к повышению проницаемости стенок капилляров и венул, пропитыванию их плазмой крови (плазморрагия), отеку и нарастающей ишемии окружающих тканей. В целом, совокупность указанных изменений обозначается как синдром капилляро-трофической недостаточности. Сладж может быть обратимым, и тогда постепенно восстанавливается микроциркуляция, но сладж может предшествовать полной остановке крови (стазу), а также агглютинации и распаду форменных элементов крови в «монетных столбиках» с образованием в капиллярах гиалиновых тромбов.

    СТАЗ

    Стаз - остановка кровотока в сосудах микроциркуляторного русла, прежде всего в капиллярах, реже - в венулах (рис. 20). Остановке крови предшествует ее замедление - престаз,вплоть до развития сладж-феномена.

    Причинами стаза являются инфекции, интоксикации, шок, длительное искусственное кровообращение, воздействие физических, в том числе температурных, факторов (например, «холодовый стаз» при отморожениях).

    Механизмы стаза во многом схожи с механизмами сладж-феномена:

    • утрата эритроцитами способности находиться во взвешенном состоянии и образование их агрегатов, что затрудняет ток крови по микрососудам и вызывает остановку кровотока в капиллярах:
    • изменения реологических свойств крови, аналогичных тем, которые возникают при сладж-феномене;
    • гипоксия, ацидоз, нарушения и прекращение метаболизма;
    • дистрофические или некротические изменения окружающих тканей в зависимости от длительности стаза крови.

    Исход стаза. После устранения причины, вызвавшей стаз, кровоток в сосудах микроциркуляторного русла может восстановиться. а в окружающих тканях какое-то время сохраняются дистрофические изменения, которые, однако, в этих условиях также обратимы. Если же стаз капилляров устойчив, то гипоксия в окружающих тканях приводит к их некрозу.

    Значение стаза определяется его локализацией и продолжительностью. Острый стаз в большинстве случаев приводит к обратимым изменениям в тканях, но в головном мозге он может способствовать развитию тяжелого, иногда смертельного отека ткани мозга с дислокацией его стволовой части в большое затылочное отверстие, что наблюдается, например, при коме. В случаях длительного стаза возникают множественные микронекрозы и иные кровоизлияния.

    СИНДРОМ ДИССЕМИНИРОВАННОГО ВНУТРИСОСУДИСТОГО СВЕРТЫВАНИЯ КРОВИ (ДВС-СИНДРОМ)

    Синдром диссеминированного внутрисосудистого свертывания крови (ДВС-синдром) характеризуется образованием множественных тромбов в сосудах микроциркуляторного русла различных органов и тканей вследствие активации факторов свертывания крови и развивающимся в связи с этим их дефицитом, что приводит к усилению фибринолиза. падению свертываемости крови и многочисленным кровоизлияниям. ДВС-синдром часто развивается при шоке любого происхождения (травматическом, анафилактическом, геморрагическом, кардиальном и др.), при переливании несовместимой крови, злокачественных опухолях, после хирургических вмешательств, при тяжелой интоксикации и инфекции, в акушерской патологии, при трансплантации органов, использовании аппаратов искусственной почки и искусственного кровообращения и др.

    В своем развитии ДВС-синдром проходит 4 стадии.

    • 1-я стадия - гиперкоагуляции и тромбообразования - характеризуется внутрисосудистой агрегацией форменных элементов, диссеминированным (т. е. во многих микрососудах одновременно) свертыванием крови и формированием множественных тромбов в микрососудах разных органов и тканей. Эта стадия длится всего 8-10 мин.
    • 2-я стадия - нарастающая коагулопатия потребления , особенностью которой является значительное снижение числа тромбоцитов и уровня фибриногена, израсходованных на образование тромбов в предыдущей стадии. Поэтому свертываемость крови снижается и в результате развивается геморрагический диатез, т. е. множественные мелкие кровоизлияния.
    • 3-я стадия - глубокой гипокоагуляции и активации фибринолиза , которая наступает через 2-8 ч от начала ДВС-синдрома. Название стадии говорит о том, что в этом периоде практически прекращаются процессы свертывания крови вследствие истощения всех свертывающих факторов и одновременно резко активизируются процессы фибринолиза (т. е. растворения фибрина, тромбов). Поэтому возникает полная несвертываемость крови, развиваются кровотечения и множественные кровоизлияния.
    • 4-я стадия - восстановительная, или остаточных проявлений , заключается в дистрофических, некротических и геморрагических изменениях тканей многих органов. При этом примерно в 50 % случаев может наступить полиорганная недостаточность (почечная, печеночная, надпочечниковая, легочная, сердечная), приводящая больных к смерти. При благоприятном исходе заболевания наступает восстановление поврежденных тканей и восстанавливаются функции органов.

    В зависимости от распространенности выделяют варианты ДВС-синдрома: генерализованный и местный.

    В зависимости от продолжительности ДВС-синдрома выделяют следующие формы:

    • острую (от нескольких часов до нескольких суток), протекающую наиболее тяжело, развивается при шоке, характеризуется генерализованным некротическим и геморрагическим поражением органов с развитием полиорганной недостаточности;
    • подострую (от нескольких дней до недели), развивается чаще при поздних гестозах, лейкозах, злокачественных опухолях. характеризуется локальными или мозаичными тромбогеморрагическими повреждениями тканей;
    • хроническую (несколько недель и даже месяцев), которая чаще развивается при аутоиммунных заболеваниях, длительной интоксикации, при злокачественных опухолях: у больных отмечаются обычно локальные или мигрирующие изменения в органах с развитием их медленно прогрессирующей недостаточности.

    Патологическая анатомия ДВС-синдрома заключается в образовании в капиллярах и венулах множественных микротромбов, как правило, состоящих из фибрина, стаза в капиллярах, кровоизлияний, дистрофических и некротических изменений в различных органах.

    НАРУШЕНИЯ ПРОНИЦАЕМОСТИ СТЕНОК СОСУДОВ

    При повреждении стенок сосудов или полостей сердца, а также при повышении сосудистой проницаемости вытекает содержащаяся в сосудах или в сердце кровь. Исходя из особенностей и последствий кровопотери выделяют кровотечение и кровоизлияние.

    Кровотечение (haemorrhagia) - выход крови за пределы сосудистого русла или сердца в окружающую среду (наружное кровотечение) ,а также в полости тела или в просвет полого органа (внутреннее кровотечение) . Примером наружного кровотечения являются кровотечение из полости матки (метроррагия ), из кишечника (мелена) , кровотечения при травмах конечностей или тканей поверхности тела. Внутренними являются кровотечения в полость перикарда (гемоперикард) , в полости грудной клетки (гемоторакс) , в брюшную полость (гемоперитонеум) .

    По источнику кровотечения выделяют:

    • артериальное;
    • венозное;
    • артериально-венозное (смешанное);
    • капиллярное;
    • паренхиматозное кровотечение (капиллярное из паренхиматозных органов);
    • сердечное кровотечение.

    Кровоизлияние - частный вид кровотечения, при котором вышедшая из сосудов кровь накапливается в окружающих тканях. Выделяют 4 разновидности кровоизлияния:


    Механизмы развития кровотечений и кровоизлияний:

    • разрыв сосуда или стенки сердца (haemorrhagia per rexin) при травме, некрозе (инфаркте), аневризме;
    • разъедание стенки сосуда (haemorrhagia per diabrosin), что происходит при воспалении ткани или при злокачественном росте, например в дне язвы желудка или в опухоли, при прорастании ворсинами хориона сосудов маточной трубы при внематочной беременности и др.;
    • диапедез (haemorrhagia per diapedesin, от греч. dia - через, pedao - скачу) характеризуется выходом крови из сосуда в результате повышения проницаемости его стенки без нарушения ее целостности. Это один из наиболее частых механизмов кровоизлияния наблюдается при гипоксии, интоксикациях, инфекциях, различных коагулопатиях, геморрагических диатезах, при гипертоническом кризе, гемофилии и др. (рис. 21).

    Исход кровоизлияния может быть благоприятным когда излившаяся кровь рассасывается, как, например, при кровоподтеке, или организовывается, что бывает при гематомах, но может быть и неблагоприятным, если кровоизлияние происходит в жизненно важные органы - головной мозг, надпочечники. В этом случае больной может погибнуть или становится инвалидом.

    Значение кровотечения обусловлено его видом, выраженностью и продолжительностью. Так, больной может погибнуть при небольшом кровоизлиянии в область ствола головного мозга и при острой массивной артериальной кровопотере. Вместе с тем повторяющиеся в течение длительного времени, но небольшие кровотечения, например при геморрое или из язвы желудка, обусловливают лишь развитие постгеморрагической анемии, сопровождающейся жировой дистрофией паренхиматозных органов. Большое значение имеет скорость кровотечения - быстрая кровопотеря даже относительно небольших объемов крови (300- 350 мл) приводит больного к смерти, в то время как потеря значительно больших объемов крови, но на протяжении длительного времени (маточные или геморроидальные кровотечения) не вызывает тяжелых осложнений, так как в организме успевают развиться компенсаторные процессы.

    НАРУШЕНИЯ ЛИМФООБРАЩЕНИЯ

    Патологические изменения функций лимфатической системы тесно связаны с нарушениями кровообращения и усугубляют возникающие при этом изменения в тканях. Среди нарушений лимфообращения основную роль играют лимфатическая недостаточность и лимфостаз.

    ЛИМФАТИЧЕСКАЯ НЕДОСТАТОЧНОСТЬ

    Лимфатическая недостаточность - состояние при котором интенсивность образования лимфы превышает способность лимфатических сосудов транспортировать ее в венозную систему. Выделяют следующие виды недостаточности лимфатической системы: механическую, динамическую и резорбционную.

    При механической недостаточности возникает органическое или функциональное препятствие току лимфы, что происходит при закупорке лимфатических сосудов опухолевыми клетками, сидерофагами, сдавлении лимфатических путей опухолью, а также при венозном застое.

    Динамическая недостаточность наблюдается при несоответствии между количеством тканевой жидкости и возможностями лимфатических путей для ее отведения, что имеет место при значительном повышении проницаемости кровеносных сосудов в связи с воспалением, аллергическими реакциями, при выраженных отеках тканей.

    Резорбционная недостаточность обусловлена уменьшением проницаемости стенок лимфатических капилляров или изменением дисперсных свойств тканевых белков.

    Лимфостаз - остановка тока лимфы, что происходит при недостаточности лимфатической системы вне зависимости от механизма ее развития. Выделяют общий и регионарный лимфостаз.

    Общий лимфостаз возникает при общем венозном застое, так как при этом уменьшается перепад давления между кровью и лимфой - один из главных факторов, определяющих отток лимфы из лимфатических сосудов в венозную систему.

    Регионарный лимфостаз развивается при местной венозной гиперемии, при закупорке регионарных лимфатических сосудов или при сдавлении их опухолью.

    Последствием лимфостаза является лимфатический отек - лимфедема. Длительный застой лимфы способствует активации фибробластов и разрастанию соединительной ткани, что приводит к склерозу органов. Лимфатический отек и склероз тканей вызывают стойкое увеличение объема органа либо той или иной части тела - нижних конечностей, половых органов и др., и развивается заболевание, которое называется слоновостью.


    Развитие воспаления связано с характерными изменениями крово­тока в микроциркуляторных сосудах, которые детально изучены в экспе­риментах in vivo на тонких и потому прозрачных органах (брыжейка, уш­ная раковина) животных разных видов при помощи светового микроскопа. Первые исследования такого рода были выполнены на брыжейке лягуш­ки более 100 лет назад немецким патологом Ю. Конгеймом.
    К микроциркуляторным сосудам (или сосудам периферического сосудистого ложа) относят мелкие артерии диаметром менее 50 мкм; артериолы и метартериолы, диаметр которых составляет около 10 мкм; истинные капилляры (3-7 мкм), часть которых начинается от метартериол; посткапиллярные венулы (7-30 мкм), принимающие кровь из 2-4 капилляров; собирающие венулы первого и второго порядка диаметром 30 - 50 мкм и 50-100 мкм соответственно, возникающие после слияния сна­чала посткапиллярных, а потом и собирающих венул.
    Стенки артериол, метартериол и собирающих венул имеют в своем составе гладкомышечные клетки, которые иннервируются вегетативны­ми нервными волокнами. Стенки капилляров и посткапиллярных венул лишены таковых. Капиллярный кровоток регулируется специальными прекапиллярными сфинктерами. Каждый сфинктер образован одной гладкомышечной клеткой, которая окружает капилляр в месте его отхождения от метартериолы.
    При воспалении различают 4 стадии изменений кровотока в микроциркуляторных сосудах:
    - кратковременный (преходящий) спазм приносящих артериол;
    - расширение микроциркуляторных сосудов и ускорение кровотока (артериальная гиперемия);
    - дальнейшее расширение сосудов и замедление кровотока (веноз­ная гиперемия);
    - остановку кровотока (стаз).
    Преходящий спазм приносящих артериол отчетливо выражен при быстро развивающемся повреждении, например при ожоге или механи­ческой травме. Он мало заметен или отсутствует, если вызывающее вос­паление повреждение развивается постепенно, например при инвазии бактерий. Сосудистый спазм продолжается обычно несколько секунд, но иногда (при ожогах) несколько минут.
    Расширение микроциркуляторных сосудов и ускорение крово­тока (артериальная гиперемия), возникающее вслед за спазмом или в отсутствие его при повреждении, начинается с артериол и метартериол. Затем расслабляются прекапиллярные сфинктеры и растет число функ­ционирующих капилляров. Увеличивается кровенаполнение повреж­денного участка органа - возникает гиперемия, которая обусловливает первый макроскопический признак воспаления - покраснение. Если вос­паление развивается в коже, температура которой ниже температуры притекающей к ней крови, то температура гиперемированного участка повышается - возникает жар. Жар не является признаком воспаления внутренних органов, температура которых равна температуре крови.
    Поскольку первое время после расширения микроциркуляторных сосудов в зоне воспаления скорость кровотока в них значительно превы­шает норму, а потребление кислорода тканями меняется незначительно, оттекающая от очага воспаления кровь содержит много кислорода и мало восстановленного гемоглобина, что придает ей ярко-красную окраску. Эту стадию сосудистого ответа иногда называют стадией артериальной ги­перемии, и она действительно внешне мало отличается от активной ги­перемии в здоровой ткани. Однако артериальная гиперемия при воспа­лении сохраняется недолго - обычно от 10 до 30 мин (тем короче, чем сильнее выражено повреждение) и сменяется венозной гиперемией, при которой увеличенное кровенаполнение органа сочетается с замедлени­ем кровотока.
    Венозная гиперемия начинается с максимального расширения приносящих артериол и прекапиллярных сфинктеров, которые становят­ся нечувствительными к сосудосуживающим стимулам, а также с затруд­нения венозного оттока. Скорость кровотока в микроциркуляторных со­судах падает. Содержание восстановленного гемоглобина в протекаю­щей через поврежденныи участок крови возрастает, и ее цвет приобретает синюшный оттенок.
    При прогрессивном снижении скорость кровотока в микроциркуляторных сосудах - чаще всего в посткапиллярных венулах - происходит полная остановка кровотока - стаз. При рассматривании в световом микроскопе такие сосуды представляются заполненными непрерывной массой стекловидного вещества, состоящего из вплотную прилежащих друг к другу форменных элементов крови.
    Развитие воспалительной гиперемии характеризуется увеличением проницаемости стенок микроциркуляторных сосудов для белка. Увели­чение сосудистой проницаемости обнаруживают уже через несколько минут (иногда через 30 - 60 с) после начала воспалительной гиперемии, быстро (в течение 20-30 мин) нарастает до максимума, снижается че­рез 1 ч и вновь нарастает, удерживаясь на высоком уровне в течение нескольких часов или даже нескольких суток. Особенно сильные изменения проницаемости фиксируют в посткапиллярных венулах, в меньшей сте­пени - в капиллярах и других микроциркуляторных сосудах.
    Изменения микроциркуляции при воспалении обусловлены различными механизмами. Первоначальный спазм артерий и артериол возникает, по-видимому, в результате прямого воздействия повреждающих факторов на гладкие мышцы сосудов, которые отвечают на повреждение сокращением. Возможно также, что повреждающие стимулы высвобож­дают нейромедиаторы из окончаний сосудосуживающих нервов.
    Возникновение артериальной гиперемии обусловлено появлением в зоне повреждения вазоактивных веществ, прежде всего гистамина и брадикинина, которые относятся к большой группе так называемых медиаторов воспаления. И гистамин, и брадикинин воздействуют через свои специфические рецепторы на клетки эндотелия микроциркуляторных сосудов, которые высвобождают в ответ оксид азота (N0) и другие сосудорасширяющие вещества.
    В развитии артериальной гиперемии при воспалении участвует так­же аксон-рефлекс - местный сосудорасширяющий рефлекс, возникаю­щий при возбуждении окончаний тонких немиелинизированных афферен­тных волокон группы С и осуществляющийся без участия центральной нервной системы. Афферентные волокна группы С (проводники болевой чувствительности) широко ветвятся на периферии. При этом окончания одних веточек какого-либо одного чувствительного волокна свободно располагаются в тканях, а окончания других веточек того же самого во­локна тесно контактируют с микроциркуляторными сосудами. Если от­дельные веточки такого афферентного волокна возбуждаются поврежда­ющими стимулами (механическими, термическими или химическими), в них возникают нервные импульсы, которые распространяются на другие веточки этого волокна, в том числе и на те, которые оканчиваются на со­судах. Когда нервные импульсы достигают сосудистых окончаний аффе­рентных волокон группы С, из них высвобождаются сосудорасширяющие пептиды (вещество Р, нейропептид У и др.). Помимо прямого действия на микроциркуляторные сосуды, вазоактивные пептиды вызывают дег­рануляцию находящихся вблизи нервных окончаний тучных клеток, что приводит к высвобождению гистамина и других вазоактивных веществ. Вовлечение аксон-рефлекса существенно расширяет зону гиперемии при воспалении.
    Основной причиной закономерной смены артериальной гиперемии на венозную при воспалении является экссудация - выход жидкой части крови из микроциркуляторных сосудов в окружающую ткань. Экссудация сопровождается увеличением вязкости крови. Сопротивление току крови растет, скорость кровотока падает. Кроме того, вызванное экссудацией увеличение внутритканевого давления приводит к сдавлению венозных сосудов, что затрудняет отток крови из зоны воспаления и способствует развитию венозной гиперемии.
    Экссудация является необходимым условием возникновения ста­за - остановки кровотока - обычного явления при воспалении. Как пра­вило, стаз возникает в отдельных сосудах микроциркуляторного русла, когда их проницаемость резко возрастает. При этом плазма выходит из сосуда, а сам сосуд оказывается заполненным массой плотно прилежа­щих друг к другу форменных элементов. Высокая вязкость такой массы делает невозможным ее продвижение по сосуду. Возникает стаз. Стаз может разрешиться, если проницаемость сосуда восстановится, а посте­пенное просачивание между форменными элементами плазмы приведет к снижению вязкости эритроцитной массы до некоторого критического уровня.
    Собственно экссудация обусловлена прежде всего увеличением проницаемости стенки микроциркуляторных сосудов для белка, что происходит в результате существенных изменений сосудистого эндотелия. Уже в самом начале воспаления между эндотелиальными клетками посткапиллярных венул, а затем и других микроциркуляторных сосудов возникают широкие щели, легко пропускающие молекулы белка. Есть доказательства того, что образование таких щелей - результат активного сокращения (ретракции) эндотелиальных клеток, вызываемого медиато­рами воспаления (гистамин, брадикинин и др.), воздействующими на специфические рецепторы поверхности эндотелиальных клеток.
    Когда белки крови, прежде всего альбумины, начинают просачивать­ся из сосудов, онкотическое давление крови падает, а онкотическое дав­ление интерстициальной жидкости растет. Снижается градиент онкотического давления между плазмой и интерстицием, удерживающий воду внутри сосудов. Начинается переход жидкости из сосудов в окружающее пространство. К факторам, способствующим выходу жидкости из сосу­дов, относится рост гидростатического давления внутри капилляров, выз­ванный расширением приносящих артериол, и увеличение осмотического давления интерстициальной жидкости, обусловленное накоплением в интерстиции осмотически активных продуктов распада тканей.

    Скопление жидкости в зоне повреждения - воспалительный отек ткани - увеличивает размеры воспаленного участка. Возникает припух­лость - еще один характерный макроскопический признак воспаления.

    Микроциркуляторное кровообращение - это кровообращение в мельчайших сосудах. Сюда относят артериолы, прекапилляры, капилляры, посткапилляры, венулы.

    Причины нарушения микроциркуляции . Нарушения микроциркуляции могут быть результатом наследственных или приобретённых заболеваний. Первые - генетические болезни, при которых нарушаются свойства плазмы крови, её форменных элементов, стенок сосудов и т.д. Вторые развиваются при шоке, коллапесе, воспалении, гипертонической болезни, сердечной недостаточности, сахарном диабете.

    Причины нарушения микроциркуляции по локализации :

    • Внутрисосудистые нарушения микроциркуляции , которые проявляются изменением тока крови через микрососуды и её текучести: может быть увеличение скорости кровотока (артериальная гиперемия, воспаление, лихорадка), снижение скорости кровотока (венозная гиперемия, ишемия). Стаз в капиллярах бывает при изменении свойств их стенок или нарушения свойств крови. Стаз возникает при утрате эритроцитами способности находиться во взвешенном состоянии, в результате чего происходит образование их агрегатов. Нарушение текучести проявляется в разжижении, сгущении крови или сладже - агрегации эритроцитов виде монетных столбиков.
    • Сосудистые нарушения микроциркуляции . Обмен между кровью и межуточной тканью органов является сложным процессом, зависящим от многих факторов, но прежде всего от проницаемости стенок микрососудов. Есть несколько путей прохождения веществ и клеток через стенку сосудов. Фильтрация - прохождение воды из сосудов в межуточную ткань и обратно. Диффузия - прохождение разных веществ, кроме воды, через стенку сосудов. Микровезикулярный транспорт - процесс захвата веществ мембранной клетки (пиноцитоз) и перенос их в другую сторону клетки и выведение затем в межклеточную среду. Наиболее часто в патологии бывает увеличение проницаемости микрососудов. При разрывах стенки сосудов часты кровоизлияния.
    • Внесосудистые нарушения микроциркуляции . Причиной таких нарушений бывают повреждения проходящих в интерстиции нервных волокон и нарушения нервно-трофических влияний. Расстройства возникают и при скоплении в ней жидкости.

    Нарушения лимфобращения . Лимфатическая недостаточность - состояние, при котором интенсивность образования лимфы превышает способность лимфососудов транспортировать её в венозную систему. Возникает это при нарушении тока лимфы в сосудах или в результате усиленного образования межклеточной жидкости и лимфы. Затруднение оттока лимфы бывает при сдавлении лимфососудов жидкостью, опухолью, закупорке тромбом и т.д. Усиленное образование жидкости и лимфы бывает при увеличении проницаемости мембран мелких сосудов, например, при воспалении, аллергии, артериальной гиперемии. Лимфатическая недостаточность приводит к замедлению тока лимфы, её застою. Развиваются лимфостаз, лимфатический отёк тканей, нарушается транспорт к клеткам разных веществ. При длительной недостаточности скопление жидкости с большим количеством белка и солей приводит к образованию соединительной ткани и склерозу. Это приводит к стойкому увеличению объёма органа или части тела (к слоновости).

    РАССТРОЙСТВА МИКРОЦИРКУЛЯЦИИ

    Общепризнанным является выделение в сердечно-сосудистой сис­теме трех взаимосвязанных звеньев: артериального, венозного и связующего их капиллярного - утвердившееся в наших представлениях с легкой руки М.Мальпиги, который дополнил великое открытие У. Гарвеем (1628) кровеносной системы, не менее значимым описанием "недостающего" у Гарвея в системе кровообращения звена - капилля­ров (1661).

    Однако, вплоть до начала ХХ века основное внимание уделялось изучению сердца и крупных кровеносных сосудов. А само "связую­щее", "недостающее звено между артериями и венами - капиллярная система, к которой относится почти 90% всех кровеносных сосудов,

    Долгие годы не привлекала должного внимания. Вместе с тем, именно капиллярное русло обеспечивает процессы обмена веществ и жизнедеятельности органов и тканей, что и определяет их воистину центральную роль в системе обеспечения тканевого гомеостаза, а также в развитии многих патологических процессов.

    Итак, под микроциркуляцией понимают упорядоченное движение крови и лимфы по микрососудам, транскапиллярный обмен кислорода, углекислого газа, субстратов метаболизма и его продуктов, ионов, БАВ, а также перемещение жидкости во внесосудистом пространстве.

    В широком смысле понятие "микроциркуляция" включает в себя также перемещение жидкости через клеточную мембрану и циркуляцию ее в клетке. Имеются сведения об упорядоченном движении разной по составу жидкости в различных участках гиалоплазмы, а также кле­точных органеллах.

    К сосудам микроциркуляторного русла относят артериолы, пре­капилляры, капилляры, посткапиллярные венулы (посткапилляры), ве­нулы, артериоловенулярные шунты, лимфатические сосуды.

    Диаметр сосудов микроциркуляторного русла колеблются от 2 до 200 мкм.

    Артериолы являются главным компонентами резистивных сосудов. Тонус их мышечной стенки регулируется симпатической и парасимпа­тической нервной системой, а также БАВ. Артериолы обеспечивают регуляцию объема кровоснабжения тканей и ламинарность тока крови.

    Прекапилляры также участвуют в регуляции объема кровоснабже­ния тканей путем изменения просвета прекапиллярных сфинктеров, образованных гладкомышечными клетками. Тонус их стенок регулиру­ется нервными влияниями и гуморальными факторами.

    Трофический, обменный компонент микроциркуляторного русла составляют капилляры диаметром от 2 до 20 мкм. В них непосредс­твенно протекают процессы обмена кислорода, углекислого газа, субстратов и продуктов метаболизма, ионов, БАВ. Все эти сложные и многообразные процессы регулируются главным образом агентами местного (регионарного) генеза: простагландинами, кининами, био­генными аминами, адениннуклезами, ионами и др. Указанные и другие факторы регулируют также и просвет капилляров путем изменения объема эндотелиальных клеток и тонуса перицитов.

    Посткапилляры и венулы представляют собой коллекторы крови. Их емкость значительно превышает совокупную емкость артериол и прекапилляров. Они регулируют объем оттекающей крови и опосредо­ванно - приток ее к тканям, тургор тканей.

    Артериоловенулярные анастомозы участвуют в регуляции объема кровотока и кровенаполнения тканей. Открытие их способствует мо­билизации депонированной крови.

    По лимфатическим капиллярам и сосудам лимфа транспортируется в лимфатические стволы и затем в венозную систему.

    Общие причины расстройств микроциркуляции.

    Как известно, нарушения микроциркуляции включаются как важ­ное патогенетическое звено в ряд типовых патологических процессов и во многие частные формы различных заболеваний, поэтому при раз­боре соответствующих разделов мы будем освещать и вопросы, касаю­щихся этих нарушению.

    Расстройства микроциркуляции обычно принято делить на внут­рисосудистые нарушения, связанные с нарушением самих сосудов, трансмуральные внесосудистые изменения.

    Многочисленные причины , непосредственно вызывающие разнооб­разные нарушения можно объединить в три группы:

    1. Расстройства центрального и периферического кровообраще­ния. К числу наиболее важных среди них следует отнести сердечную недостаточность, патологические формы артериальной гиперемии, ве­нозную гиперемию и ишемию.

    2. Изменения вязкости и объема крови и лимфы. Они могут развиваться в результате следующих причин:

    а) гемо (лимфо) концентрации, что может быть результа­том гипогидратации, полицитемии, гиперпротеинемии (гиперфибрино­генемии)

    б) гемо (лимфо) дилюции, которая может развиваться вследствии гипергидратации, панцитопении, гипопротеинемии.

    в) агрегации и агглютинации форменных элементов крови, сопровождающихся повышением вязкости крови,

    г) внутрисосудистого диссеминированного свертывания крови, фибриолиза и тромбоза.

    3. Повреждение стенок сосудов микроциркуляторного русла, обусловливающие нарушение их целостности и гладкости. Это обычно наблюдается при атеросклерозе, воспалении, циррозе, опухоли и др.

    Внутрисосудистые нарушения

    Среди внутрисосудистых патологических нарушений микроцирку­ляции на одно из первых мест следует поставить агрегацию эритро­цитов и др. форменных элементов крови. Другие внутрисосудистые расстройства, н-р, нарушение скорости кровотока или тромбоэмбо­лизм, также часто зависят от падения нормальной стабильности сус­пензий крови.

    Сохранность суспензионной стабильности крови обеспечивается величиной отрицательного заряда эритроцитов и тромбоцитов, опре­деленным соотношением белковых фракций (альбуминов с одной сторо­ны и глобулинов и фибриногена с другой). Уменьшение отрицательно­го поверхностного заряда, эритроцитов, а также абсолютное или от­носительное увеличение содержания положительно заряженных макро­молекул глобулинов и фибриногена и их адсорбция на поверхности эритроцитов. Может приводить к снижении суспензионной стабильности крови, к агрегации эритроцитов и других клеток крови. Снижение скорости кровотока усугубляет этот процесс.

    В 1918 году шведский ученый Fahraeus в своем труде по изуче­нию крови женщин при беременности показал, что при этом состоянии имеет место образование агрегатов эритроцитов и ускорение оседа­ния последних. На основании этих и других своих работ он предло­жил использовать широко распространенную теперь в практике меди­цины реакцию оседания эритроцитов (РОЭ) или определение скорости оседания эритроцитов (СОЭ). Ускорение СОЭ обычно связывают с уве­личением в плазме концентрации грубодисперсных белков.

    Явление агрегации эритроцитов находит свое отражение в таком феномене как сладж (сам термин "sludge" в буквальном переводе с английского означает - тина, или густая грязь, ил).

    Сладж-феномен характеризуется адгезией, агрегацией и агглю­тинацией форменных элементов крови, что обусловливает ее сепара­цию на более или менее крупные конгломераты, состоящие из эритро­цитов, тромбоцитов, лейкоцитов и плазмы.

    Причинами сладжа являются те же факторы, что вызывают расс­тройства микроциркуляции:

    1)нарушение центральной и регионарной гемодинамики при сер­дечной недостаточности, венозном застое, ишемии, патологической артериальной гиперемии.

    2)повышение вязкости крови в условиях сгущения крови, ги­перпротеинемии, полицитемии.

    3)повреждение стенок микрососудов.

    Действие указанных факторов обусловливает агрегацию клеток крови, главным образом эритроцитов, их адгезию друг с другом и клетками эндотелия микрососудов, агглютинацию клеток с последую­щим лизисом их мембран - цитолизом.

    К числу основных механизмов адгезии, агрегации и агглютина­ции форменных элементов крови, ведущих к развитию сладжа, относят

    1)активацию клеток крови под действием названных причинных факторов с последующими высвобождением из них физиологически ак­тивных веществ, в том числе обладающих проагрегатным действием. К ним относят АДФ, тромбоксан А 2 , кинины, гистамин, ряд простоглан­динов. 2) "снятие" отрицательного поверхностного заряда клеток или "перезарядка его на положительный.

    Наличие и величина отрицательного поверхностного заряда кле­ток крови являются важными условиями обеспечения ее суспензионной стабильности. Последнее определяется действием сил отталкивания между одноименно заряженными форменными элементами крови. Увели­чение в плазме катионов калия, кальция, магния идр. уменьшает по­верхностный заряд форменных элементов крови или меняет его на "+". Клетки сближаются, начинается процесс их адгезии, агрегации и агглютации с последующей сепарацией крови. Последнее нарушает обмен кислорода, угл.газа, субстратами и продуктами метаболизма между кровью и тканями.

    3)уменьшение величины поверхностного заряда клеточных эле­ментов крови при контакте с ними макромолекул белка при гиперпро­тенемии, особенно за счет высокомолекулярных его фракций (имму­ноглобулинов, фибриногена, аномальных разновидностей протеинов). В этом случае поверхностный заряд снижается в связи с взаимодейс­твия клеток с положительно заряженными макромолекулами белка, в частности с его аминогруппами. Кроме того, мицеллы белка, адсор­бируясь на поверхности клеток, способствуют их соединению и пос­ледующей адгезии, агрегации и агглютинации. Образование агрега­тов форменных элементов крови сопровождается с сепарацией ее на клеточные конгломераты и плазму.

    В зависимости от характера воздействия сладж может быть об­ратимым (при наличии только агрегации эритроцитов) и необратимым. В последнем случае имеет место агглютинация клеток крови.

    В зависимости от размеров агрегатов, характера их контуров и плотности упаковки клеток крови различают следующие типы сладжа:

    классический (сравнительно крупные агрегаты с плотной упа­ковкой эритроцитов и неровными очертаниями контуров). Этот вид сладжа развивается, когда какое либо препятствие (например, лига­тура) мешает свободному движению крови через сосуд.

    Придекстриновом типе сладжа (возникает при введении в кровь декстрана с крупным молекулярным весом 250000-500 000 и выше) аг­регаты имеют различную величину, плотную упаковку, округлые очер­тания, свободные пространства в виде полостей.

    Выделяют такжеаморфный тип сладжа, для которого характерно наличие огромного количества мелких агрегатов, похожих на грану­лы. В этом случае кровь приобретает вид крупнодисперсной жидкос­ти. Аморфный тип сладжа развивается при введении в кровь этилово­го спирта, АДФ и АТФ, тромбина, серотонина, норадреналина и др.

    Размеры агрегатов варьируют в широких пределах в зависимости от диаметра сосудов. Малые размеры агрегатов при аморфном сладже могут представлять не меньшую, а даже наибольшую опасность для микроциркуляции, так как их величина позволяет им проникать в мельчайшие сосуды до капилляров включительно. Более крупные агре­гаты в зависимости от степени их уплотнения могут двигаться по сосудам, или вызывать эмболию сосудов меньшего диаметра.

    Последствия.

    Сладж-феномен сопровождается сужением просвета и нарушением перфузии микрососудов (замедлением в них кровотока), вплоть до стаза, турбулентным характером тока крови), расстройством процес­сов траскапиллярного обмена, развитием гипоксии и ацидоза, нару­шением метаболизма в тканях. В целом совокупность указанных изме­нений обозначается как синдром капиллярно-трофической недостаточ­ности.

    Таким образом, сладж-феномен, возникающий первоначально как местная реакция ткани на повреждение, в дальнейшем своем развитии может прибрести характер системной реакции, генерализованного от­вета организма. В этом заключается его общепатологическое значе­ние.

    Внутрисосудистые нарушения свертывания крови связаны главным образом с реакцией тромбоцитов и фибриногена на повреждение тка­ни. Тромбоциты, как местные, так и в общей циркуляции довольно быстро реагируют на тканевое повреждение. Установлено, что агре­гацию тромбоцитов и ускорение свертывания крови могут обусловить: некротизация тканей (тканевой тромбопластин), аденозиндифосфат выделяется при повреждении тканей, бактерии, вирусы комплекс ан­тиген-антитело, эндотоксины, энзимы типа трипсина и др. факторы.

    Серьезные изменения микроциркуляции могут быть связаны с на­рушением соотношения между коагуляцией крови и фибринолизом, воз­никающим при поражении тканей.

    Изменение скорости кровотока (ее повышение или понижение) в функциональных пределах является обычным физиологическим явлени­ем. Замедление вплоть до прекращения тока крови и лимфы может быть следствием следующих факторов:

    1)расстройства гемо и лимфодинамики при сердечной недоста­точности, венозной гиперемии, ишемии.

    2)увеличение вязкости крови и лимфы в результате сгущения крови при длительной рвоте, диарее, плазморрагии при ожогах, по­лицитемиях, гиперпротенемии, тромбозе.

    3)значительное сужение просвета микрососудов вследствии сдавления их опухолью, отечной тканью, образовании в них тромба, эмбола, набухании или гиперплазии эндотелиальных клеток, образо­вания атеросклеротической бляшки и т.п.

    Замедление кровотока вызывает недостаточную перфузию микро­сосудистой сети, которая является существенным патогенетическим звеном всех процессов, сопровождающихся падением перфузионного давления в микрососудистом ложе. Последствием этого может быть гипоксия, а при полном стазе - аноксия тканей со всеми вытекающи­ми последствиями.

    Ускорение тока крови и лимфы могут вызывать следующие причи­ны: нарушения гемо- и лимфодинамики, н-р при сбросе артериальной крови в венозное русло через артериоловенулярные шунты;

    Снижение вязкости крови (при водном отравлении вследствие гемодилюции, панцитопении, гипопротеинемии, почечной недостаточ­ности.

    ПАТОЛОГИЧЕСКИЕ РЕАКЦИИ НА УРОВНЕ СОСУДИСТОЙ СТЕНКИ

    Учитывая, что через сосудистую стенку транспортируется плазма крови и лимфа, а также форменные элементы трансмуральные ("чрезстеночные") нарушения микроциркуляции делят на две основные подгруппы: изменения тока жидкости и движения форменных элементов крови. Объем транспортируемой через стенку сосуда жидкости при раз­личных патологических состояниях может значительно либо возрас­тать, либо уменьшаться по сравнению с должным.

    Увеличение объема транспортируемой жидкости . В основе этого явления лежит чрезмерное повышение проницаемости сосудистой стен­ки. К числу наиболее значимых причин относятся: снижение давления кислорода, нарастание давления углекислого газа, местное снижение рН, связанное с накоплением метаболитов, таких как молочная кис­лота (это способствует неферментному гидролизу компонентов базальной мембраны сосудов, "разрыхлению" ее и вследствии этого более легкому току плазмы крови через нее. В условиях ацидоза происходит активация гидролаз лизосом и энзимов, что обусловлива­ет ферментный гидролиз компонентов базальной мембраны сосудов). Кроме того действие биогенных аминов - гистамина, серотонина, брадикинина, вызывающих сокращение эндотелиальных клеток и расши­рение щелей между ними. Среди причин повышения проницаемости ка­пилляров можно назвать и такие как, нарушение целостности стенки сосуда - образование микроразрывов, растяжение фенестр. Это не­редко наблюдается в условиях переполнения сосудов микроциркуля­торного русла кровью при венозном застое или лимфой (при лимфос­тазе).Повышение проницаемости сосудистой мембраны под влиянием указанных факторов существенно потенцирует механизмы транспорта жидкости:

    а/ фильтрацию - транспорт жидкости по градиенту гидростати­ческого давления;

    б/ микровезикуляцию (инвагинацию стенки эндотелия с захва­том "кванта" плазмы, образование везикулы, миграцию ее к базаль­ной стороне клетки, "открытие" везикулы и "выброс" жидкости на противоположной стороне поверхности клетки);

    в/ диффузию.

    Уменьшение объема транспортируемой жидкости. В основе этого явления лежит существенное снижение проницаемости стенки сосудов. Причиной является утолщение или уплотнение сосудистой стенки, ко­торые развиваются вследствие накопления избытка солей кальция /кальцификации/ и чрезмерного образования в стенке волокнистых структур и гликозамингликанов, гипертрофии и гиперплазии клеток, отека тканей и сосудистой стенки.

    Утолщение, уплотнение сосудистой стенки и снижение вследствие этого сосудистой проницаемости препятствует реализации механизмов транспорта жидкости - фильтрации, диффузии и микровезикуляции - и тем самым обусловливает уменьшение объема ее трансмурального пе­реноса.

    Изменение объема транспорта форменных элементов крови. Учитывая, что транспорт определенного числа лейкоцитов и в меньшей степени тромбоцитов через сосудистую стенку осуществляет­ся и в норме, к патологии транспорта форменных элементов крови относят в основном чрезмерный выход их за пределы сосуда, особен­но эритроцитов: патологический диапедез.

    Основной причиной этого феномена является значительное повы­шение проницаемости или нарушение целостности сосудистой стен­ки. Существенно увеличение диапедеза лейкоцитов, эритроцитов и тромбоцитов наблюдается при воспалении, аллергических реакциях, интоксикации эндо- и экзотоксинами бактерий, воздействии проника­ющей радиации.

    Диапедез эритроцитов возрастает также в условиях тромбоцито­пении. Показано, что тромбоциты оказывают ангиотрофическое влия­ние. Уменьшение их числа крови вызывает дистрофию и гибель клеток эндотелия, повышение проницаемости стенок микрососудов. Напротив при утолщении или уплотнении стенок микрососудов в каком-либо ре­гионе ткани может уменьшаться "масштаб" выхода лейкоцитов в эту ткань, где они участвуют в осуществлении реакций иммунного надзо­ра. Вследствие этого снижается эффективность местного иммунитета.

    Экстраваскулярные расстройства , как правило, заключаются в более или менее выраженном замедлении тока межклеточной жидкости и нередко в связи с этим - увеличением объема воды в внесосудис­том пространстве вследствие препятствия оттоку жидкости в лимфа­тические сосуды и венулы. Реже наблюдается уменьшение объема межклеточной жидкости, н-р, при дегидратации или снижении лимфо­образования, что также может сочетаться с уменьшением скорости ее тока.

    Основными причинами внесосудистых расстройств микроциркуля­ции являются местные патологические процессы, развивающиеся в связи с воспалением, аллергическими реакциями, ростом опухоли, нарушением нервно-трофических влияний, расстройствами лимфообразо­вания.

    К числу главных непосредственных факторов, обусловливающих затруднение тока межклеточной жидкости, относят сужение межкле­точных щелей (в частности, в связи с гипергидратацией и набухани­ем клеток).

    Повышение вязкости, жидкости (н-р, при увеличении в ней со­держания белков, липидов, метаболитов.

    Эмболия лимфатических капилляров.

    Снижение эффективности процесса реабсорбции воды в постка­пиллярах и венулах. Уменьшение объема межклеточной жидкости и за­медление ее тока могут быть следствием снижения фильтрационного давления в артериолах либо увеличения реабсорбции жидкости в ве­нулах.

    Патогенетическое значение.

    Независимо от причин затруднения тока межклеточной жидкости в тканях увеличивается содержание продуктов нормального и нару­шенного обмена веществ, ионов, БАВ, наблюдается сдавление клеток, нарушение трансмембранного переноса кислорода, угл.газа, продук­тов метаболизма, ионов, что в свою очередь может вызвать поврежде­ние клеток. В целом при любых расстройствах микроциркуляции, осо­бенно при длительном их течении, развивается синдром капилля­ро-трофической недостаточности. Он характеризуется: 1)нарушением транспорта межклеточной жидкости, а также перфузии лимфы и крови по микрососудам, 2)расстройством обмена кислорода, угл.газа, субс­тратов и продукта метаболизма, ионов, ФАВ в капиллярах. 3)нарушением обмена веществ в клетках. Это в свою очередь обусловливает разви­тие различных вариантов дистрофических изменений в тканях и орга­нах, нарушение пластических процессов в них и расстройств их жиз­недеятельности.