Жизнь — боль: чем мозг человека похож на мозг ящерицы и зачем нам «гормон стресса. Что такое рептильный мозг человека

Елизавета Бабанова

Вы хотели бы оказывать большее влияние на людей? На своих родных? Друзей? Коллег? Ваше профессиональное сообщество?

Бывали ли вы когда-либо в подобной ситуации – вы знаете, что у вас есть ценная информация или экспертное мнение, но в критический момент, когда вы могли бы занять достойную позицию, внутри все сжимается, и вы либо «спасаетесь бегством», либо просто молчите от страха быть уязвимым.

Вы замечали, что в подобный момент срабатывает какой-то непонятный рефлекс, заставляющий вас действовать совершенно иррационально? Такое поведение нелогично именно тогда, когда у вас есть знания, опыт или новые идеи, но вы скрываете их от людей, которым они могли бы принести немалую пользу.

В чем же дело? Будем разбираться в этой статье. Мы обсудим главную причину, почему многих людей в момент, когда они могут проявить себя и оказать влияние на других, охватывает ментальный паралич.

Причина такого нерационального поведения – как и большинство инстинктов – заложена в нашей природе.

В своей книге «Искусство влияния. Убеждение без манипуляций» авторы Марк Гоулстон и Джон Уллмен пишут о том, что у человека не один мозг, а целых три.

1. Мозг рептилии включается, когда мы чувствуем опасность. У этого мозга всего две программы: убегать или сражаться.

2. Мозг млекопитающего отвечает за эмоции, удовольствие.

3. Человеческий мозг – за разумные рассуждения, анализ.

Чаще всего три мозга работают согласованно. Когда мы решаем задачу, работает человеческий мозг. Когда мы наслаждаемся – мозг млекопитающего, а когда на нас несется грузовик, то включается инстинкт – мозг рептилии – и мы моментально реагируем, избегая удара.

Все вроде бы здорово и логично – каждый мозг имеет свою «сферу контроля», но есть одно «но».

Наш мозг рептилии почему-то не отличает реальную опасность от выдуманной. Вы наверняка знаете, что огромный процент людей боится публичных выступлений. В Штатах проводили массу исследований на эту тему, которые подтвердили: страх оказаться на сцене перед группой людей настолько сильный, что большинство людей приравнивают его к страху смерти.

В своем видео я поместила подобную эмоцию в категорию «иррациональных страхов». Если мы безумно боимся чего-то, что не угрожает нашей жизни (закрытое пространство, публичные выступления, безобидные жуки-пауки), то этот страх необоснован, иррационален.

Но объяснить своему человеческому мозгу в момент «выдуманной опасности» почему-то не получается, и происходит то, что в научной сфере называется «захватом миндалины».

В момент мнимой опасности мозг как будто расщепляется, и три его части действуют не согласованно, как в нормальных обстоятельствах, а по отдельности.

Чем больше мы взбудоражены, тем больше контроля берет на себя мозг рептилии, за 245 миллионов лет приученный к реакции «сражаться или убегать».

Все три мозга получают сигнал «ты в опасности». Человеческий мозг отключается, мы теряем концентрацию, эмоции зашкаливают. В результате пресмыкающееся в нас берет верх над животным и человеческим.

В этот момент мы неспособны ни продумать свои действия логически, ни почувствовать других на эмоциональном уровне. Мы ведем себя «по классике» рептилии – либо убегаем, либо стараемся каким-то образом побороться – чаще всего и то, и другое выходит нелепо.

Знаете людей, которые так себя ведут? При малейшем дискомфорте начинают защищаться или сразу нападать? Может быть, в этом поведении вы даже узнаете некоторые свои реакции?..

Теперь вы знаете, какой мозг в этом виновен. 🙂

Еще одна стратегия, которая присуща рептилиям – замереть и сделать вид, что ее никто не видит. Это одна из разновидностей бегства, просто в этом случае для пресмыкающегося меньше риска в замирании, чем в беге. Вдруг кто поймает…, а тут опасность может обойти стороной.

Это излюбленная манера поведения людей, у которых человеческий мозг отключается не до конца, и их уровень развития, внутренняя интеллигентность не позволяет им перейти в нападение.

Поэтому они защищаются молчанием. Притворяются, что их нет.

А ведь такое часто случается в момент, когда мы можем сделать нечто экстраординарное – проявить свои лучшие качества, принести нашему профессиональному сообществу пользу через наше выступление, оказать влияние на будущее нашей организации.

Но нет, миндалина захвачена, и мы либо сидим и горюем в уголке, надеясь, что никто не вызовет нас на сражение (в человеческом мире – дискуссию), либо сбегаем, либо атакуем собеседника, дискредитируя себя при этом еще больше, чем если бы мы молчали.

Не с захватом ли миндалины связано изречение «молчи, за умного сойдешь»?

Так как же нам преодолеть природную реакцию «бежать или сражаться» в критический момент – когда от наших рассуждений и эмоций может зависеть наша карьера, личная жизнь, воспитание, которое мы можем дать нашим детям? Как научиться выключать мозг пресмыкающегося и натренировать человеческий мозг таким образом, чтобы он всегда брал верх в подобных ситуациях?

Во-первых, с помощью осознания. Теперь вы знаете про свои три мозга и в следующий раз, когда мнимая опасность начнет захватывать вашу миндалину, побуждая вас к иррациональным поступкам, вспомните про свой человеческий мозг. Включайте логику и анализ.

Во-вторых, регулярно практикуйте выход из зоны комфорта. (Я понимаю, что это из категории «опять 25», но куда же без нашей любимой техники? Только так развиваются способности и формируются навыки.) Надо иметь сознательную, регулярную практику, чтобы научиться не пугаться обстоятельств, где вы можете положительно повлиять на других людей, а принимать такой вызов с удовольствием. Выходить из зоны комфорта лучше всего начиная с малого, с baby steps. А затем делать все больший вызов себе, постепенно расширяя сферу своего влияния.

Ну а главную фишку, как натренировать свой человеческий мозг, чтобы он не поддавался мозгу рептилии в момент мнимой опасности, я дам вам на модуле , который пройдет в прямом эфире уже сегодня, в 20:00 по Московскому времени, и как всегда, будет доступен в записи.

На модуле мы также разберем следующие вещи:
3 типа людей, оказывающих наибольшее влияние на окружающих
4 главных ошибки, совершаемых при желании повлиять на другого человека
Как научиться оказывать влияние в:
– долгосрочной перспективе
– среднесрочной перспективе
– краткосрочной перспективе
Проверка на силу своего влияния
Как критиковать и при этом продолжать влиять?
Как продолжать оказывать влияние, если вы сделали ошибку?

Лео Бускалия сказал: «Талант – это подарок Бога вам. То, что вы с ним делаете – это ваш подарок Богу.»

Проверьте себя, нет ли у вас потребности и желания, а значит, и врожденной способности, положительно влиять на окружающий мир? Что вы делаете с этим нераскрытым талантом? Может быть, пришло время сделать свой подарок Богу? 🙂

Представители пресмыкающихся (более 4 тыс. видов) являются настоящими наземными позвоночными животными. В связи с появлением зародышевых оболочек они в своем развитии не связаны с водой. В результате прогрессивного развития легких, взрослые формы могут обитать на суше в любых условиях. Пресмыкающиеся, обитающие в виде, являются вторичноводными, т.е. их предки от наземного образа жизни перешли к водному.

Запомните! Рептилии и пресмыкающиеся это один и тот же класс !

Рептилии, или пресмыкающиеся, появились в конце каменноугольного периода, приблизительно за 200 млн. лет до н.э. когда климат стал сухим, а местами даже жарким. Это создало благоприятные условия для развития рептилий, которые оказались более приспособленными к обитанию на суше, чем амфибии. Преимуществу рептилий в конкуренции с амфибиями и их биологическому прогрессу способствовал ряд признаков. К их числу относятся:

  • Оболочки вокруг зародыша и прочная оболочка (скорлупа) вокруг яйца, защищающая его от высыхания и повреждений, чем была достигнута возможность размножения и развития на суше;
  • развитие пятипалых конечностей;
  • усовершенствование строения кровеносной системы;
  • прогрессивное развитие органов дыхания;
  • появление коры полушарий большого мозга.

Имело значение и развитие на поверхности тела роговых чешуй, защищающих от неблагоприятных воздействий окружающей среды, в первую очередь, от иссушающего действия воздуха. Предпосылкой к появлению этого приспособления было освобождение от кожного дыхания в связи с прогрессивным развитием легких.

Типичным представителем рептилий может служить ящерица прыткая. Длина ее 15-20см. У нее хорошо выражена покровительственная окраска: зеленовато-бурая или бурая, в зависимости от среды обитания. Днем ящериц легко увидеть на прогреваемом солнцем участке. На ночь они заползают под камни, в норы и другие укрытия. В таких же укрытиях они проводят зиму. Их пища - насекомые.

На территории СНГ наиболее широко распространены: в лесной зоне - ящерица живородящая, в степной - ящерица прыткая. К ящерицам относится веретеница. Она достигает 30-40см, ног не имеет, чем напоминает змею, это ей нередко стоит жизни. Кожа рептилий всегда сухая, лишенная желез, покрыта роговыми чешуйками, щитками или пластинками.

Строение пресмыкающихся

Скелет . Позвоночный столб уже подразделяется на шейный, грудной, поясничный, крестцовый и хвостовой отделы. Череп костный, голова очень подвижна. Конечности заканчиваются пятью пальцами с коготками.

Мускулатура у рептилий развита значительно лучше, чем у амфибий.


Пищеварительная система . Рот ведет в ротовую полость, снабженную языком и зубами, но зубы еще примитивны, однотипны, служат только для захватывания и удержания добычи. Пищеварительный канал состоит из пищевода, желудка, кишок. На границе толстой и тонкой кишок расположен зачаток слепой кишки. Заканчиваются кишки клоакой. Развиты пищеварительные железы: поджелудочная и печень.

Органы дыхания . Дыхательные пути значительно больше дифференцированы, чем у земноводных. Имеется длинная трахея, которая разветвляется на два бронха. Бронхи входят в легкие, имеющие вид ячеистых, тонкостенных мешков, с большим количеством внутренних перегородок. Увеличение дыхательных поверхностей легких у рептилий связано с отсутствием кожного дыхания.

Выделительная система представлена почками и мочеточниками, впадающими в клоаку. В нее открывается и мочевой пузырь.


Кровеносная система . У рептилий имеется два круга кровообращения, но отделены они друг от друга не полностью, благодаря чему кровь частично смешивается. Сердце трехкамерное, но желудочек разделен неполной перегородкой.

У крокодилов имеется уже настоящее четырехкамерное сердце. Правая половина желудочка - венозная, а левая часть - артериальная - от нее берет начало правая дуга аорты. Сходясь под позвоночным столбом, они соединяются в непарную спинную аорту.


Нервная система и органы чувств

Головной мозг рептилий отличается от мозга земноводных большим развитием полушарий и мозгового свода, а также обособлением теменных долей. Появляется впервые, кора большого мозга. От головного мозга отходят 12 пар черепно-мозговых нервов. Мозжечок развит несколько больше, чем у земноводных, что связано с более сложной координацией движений.

На переднем конце головы ящерицы находится пара ноздрей. Обоняние у пресмыкающихся развито лучше, чем у земноводных.


Глаза имеют веки, верхнее и нижнее, кроме того, существует и третье веко - полупрозрачная мигательная перепонка, постоянно увлажняющая поверхность глаза. Позади глаз расположена округлая барабанная перепонка. Слух хорошо развит. Орган осязания - кончик раздвоенного языка, который ящерица постоянно высовывает изо рта.

Размножение и регенерация

В отличие от рыб и земноводных, имеющих оплодотворение наружное (в воде), у рептилий, как и у всех неземноводных животных, оплодотворение внутреннее, в теле самки. Яйца окружены зародышевыми оболочками, обеспечивающими развитие на суше.

Самка ящерицы прыткой в начале лета откладывает в укромном месте 5-15 яиц. Яйца содержат питательный материал для развивающегося зародыша, снаружи окружены кожистой оболочкой. Из яйца выходит молодая ящерица, похожая на взрослую. Некоторые рептилии, в том числе и некоторые виды ящериц,- яйцеживородящие (т.е. из отложенного яйца тотчас выходит детеныш).

Многие виды ящериц, будучи схвачены за хвост, отламывают его резкими боковыми движениями. Отбрасывание хвоста является рефлекторным ответом на боль. Это следует рассматривать как приспособление, благодаря которому ящерицы спасаются от врагов. На месте утраченного хвоста отрастает новый.


Многообразие современных пресмыкающихся

Современные рептилии разделяются на четыре отряда:

  • Первоящеры;
  • Чешуйчатые;
  • Крокодилы;
  • Черепахи.

Первоящеры представлены единственным видом - гаттерией , которая относится к самым примитивным рептилиям. Обитает гаттерия на островах Новой Зеландии.

Ящерицы и змеи

К чешуйчатым относятся ящерицы, хамелеоны и змеи . Это единственная относительно многочисленная группа пресмыкающихся - около 4 тыс. видов.

Для ящериц характерны хорошо развитые пятипалые конечности, подвижные веки и наличие барабанной перепонки. К этому отряду относятся агамы, ядозубы - ядовитые ящерицы, варановые, настоящие ящерицы и др. Больше всего видов ящериц встречается в тропиках.

Змеи приспособлены к ползанию на брюхе. Шея у них не выражена, так что тело делится на голову, туловище и хвост. Позвоночный столб, в котором бывает до 400 позвонков, благодаря добавочным сочленениям обладает большой гибкостью. Пояса, конечности и грудина атрофированы. Только у некоторых змей сохранился рудимент таза.

Многие змеи обладают двумя ядовитыми зубами на верхних челюстях. В зубе имеется продольная бороздка либо проток, по которым яд при укусе стекает в ранку. Барабанная полость и перепонка атрофированы. Глаза скрыты под прозрачной кожей, без век. Кожа змеи на поверхности ороговевает и периодически сбрасывается, т.е. происходит линька.


Змеи обладают способностью очень широко раскрывать пасть и заглатывать добычу целиком. Достигается это тем, что ряд костей черепа соединен подвижно, а нижние челюсти спереди соединяются весьма растяжимой связкой.

В СНГ наиболее распространенные змеи: ужи, медянки, полозы. Степная гадюка занесена в Красную книгу. Для своего обитания она избегает сельскохозяйственных угодий, а обитает на целинных землях, которых становится все меньше, что грозит ей вымиранием. Питается степная гадюка (как и другие змеи) преимущественно мышевидными грызунами, чем безусловно полезна. Укус ее ядовит, но не смертелен. На человека она может напасть лишь случайно, будучи потревожена им.

Укусы ядовитых змей - кобры, эфы, гюрзы, гремучей и других - могут быть смертельны для человека. Из фауны весьма опасны серая кобра и песчаная эфа, которые водятся в Средней Азии, а также гюрза, встречающаяся в Средней Азии и Закавказье, армянская гадюка, обитающая в Закавказье. Укусы обыкновенной гадюки и щитомордника очень болезненны, но обычно для человека не смертельны.

Наука, которая занимается изучением пресмыкающихся называется герпетология .

В последнее время яд змей используется в лечебных целях. Применяют змеиный яд при различных кровотечениях как кровоостанавливающее средство. Оказалось, что некоторые препараты, полученные из яда змеи, уменьшают боли при ревматизме и заболеваниях нервной системы. Для получения змеиного яда в целях изучения биологии змей их Содержат в специальных питомниках.


Крокодилы - наиболее высокоорганизованные рептилии, обладающие четырехкамерным сердцем. Однако строение перегородок в нем таково, что венозная и артериальная кровь частично смешиваются.

Крокодилы приспособлены к водному образу жизни, в связи с чем имеют плавательные перепонки между пальцами, клапаны, замыкающие уши и ноздри, небную занавеску, закрывающую глотку. Живут крокодилы в пресных водах, на сушу выходят для сна и кладки яиц.

Черепахи - покрыты сверху и снизу плотным панцирем с роговыми щитками. Грудная клетка у них неподвижна, поэтому в акте дыхания принимают участие конечности - при втягивании их воздух выходит из легких, при высовывании - поступает в них. В России живет несколько видов черепах. Некоторые виды употребляются в пищу, в том числе туркестанская черепаха, живущая в Средней Азии.

Древние пресмыкающиеся

Установлено, что в далеком прошлом (сотни миллионов лет назад) на Земле были чрезвычайно распространены различные виды пресмыкающихся. Они населяли сушу, водные пространства и реже - воздух. Большинство видов пресмыкающихся вымерло в связи с изменением климата (похолоданием) и расцветом птиц и млекопитающих, с которыми они не выдержали конкуренции. К вымершим пресмыкающимся относятся отряды динозавров, зверозубых ящеров, ихтиозавров, летающих ящеров и т.д.

Отряд Динозавры

Это наиболее разнообразная и многочисленная группа пресмыкающихся из живших когда-либо на Земле. Среди них были как мелкие животные (размеров с кошку и меньше), так и гиганты, длина которых достигала почти 30м, а масса - 40-50 тонн.

Крупные животные имели маленькую голову, длинную шею и мощный хвост. Одни динозавры были травоядными, другие - хищными. Кожа или не имела чешуй, или была покрыта костным панцирем. Многие динозавры бегали скачками на задних конечностях, опираясь при этом на хвост, другие - передвигались на всех четырех ногах.

Отряд Зверозубые

Среди древних наземных пресмыкающихся были представители прогрессивной группы, которые по строению зубов напоминали зверей. Зубы их дифференцировались на резцы, клыки и коренные. Эволюция этих животных шла в направлении усиления их конечностей и поясов. В процессе эволюции от них возникли млекопитающие.

Происхождение пресмыкающихся

Ископаемые пресмыкающиеся имеют большое значение, так как они когда-то господствовали на земном шаре и от них произошли не только современные пресмыкающиеся, но и птицы и млекопитающие.

Условия жизни в конце палеозоя резко изменились. Вместо теплого и влажного климата появились холодные зимы и установился сухой и жаркий климат. Эти условия были неблагоприятными для существования земноводных. Однако при таких условиях стали развиваться пресмыкающиеся, у которых кожа была защищена от испарения, появились наземный способ размножения, сравнительно высокоразвитый мозг и другие прогрессивные признаки, которые приведены в характеристике класса.

На основании изучения строения земноводных и пресмыкающихся ученые пришли к выводу, что между ними имеется большое сходство. Особенно это было характерно для древних пресмыкающихся и стегоцефалов.

  • У очень древних низших пресмыкающихся позвоночный столб имел такое же строение, как и у стегоцефалов, а конечности - как у рептилий;
  • шейный отдел у пресмыкающихся был такой же короткий, как и у земноводных;
  • грудная кость отсутствовала, т.е. настоящей грудной клетки у них еще не было.

Все это говорит о том, что пресмыкающиеся произошли от земноводных.

Класс Пресмыкающиеся (рептилии) включает около 9000 ныне живущих видов, которых разделяют на четыре отряда: Чешуйчатые, Крокодилы, Черепахи, Клювоголовые. Последний представлен только одним реликтовым видом - гаттерией. К чешуйчатым относятся ящерицы (в том числе хамелеоны) и змеи.

Ящерица прыткая часто встречается в средней полосе России

Общая характеристика рептилий

Пресмыкающиеся считаются первыми настоящими наземными животными, так как они не связаны в своем развитии с водной средой. Если и живут в воде (водные черепахи, крокодилы), то дышат легкими и для размножения выходят на сушу.

Рептилии расселены по суше намного больше, чем амфибии, занимают более разнообразные экологические ниши. Однако из-за холоднокровности они преобладают в теплом климате. При этом могут обитать в засушливых местах.

Пресмыкающиеся появились от стегоцефалов (вымершая группа земноводных) в конце каменноугольного периода палеозойской эры. Черепахи появились раньше, а змеи позже всех.

Расцвет пресмыкающихся пришелся на мезозойскую эру. В это время на Земле жили различные динозавры. Среди них были не только наземные и водные виды, но и летающие. Динозавры вымерли в конце мелового периода.

В отличие от земноводных у пресмыкающихся

    улучшена подвижность головы за счет большего количества шейных позвонков и иного принципа их соединения с черепом;

    кожа покрыта роговыми чешуями, которые защищают тело от высыхания;

    дыхание только легочное; формируется грудная клетка, которая обеспечивает более совершенный механизм дыхания;

    хотя сердце остается трехкамерным, венозный и артериальный кровотоки разделены лучше, чем у земноводных;

    в качестве органов выделения появляются тазовые почки (а не туловищные как у амфибий); такие почки лучше сохраняют воду в организме;

    мозжечок крупнее, чем у амфибий; увеличен объем переднего мозга; появляется зачаток коры больших полушарий;

    внутреннее оплодотворение; пресмыкающиеся размножаются на суше преимущественно путем откладки яиц (некоторые живородящие или яйцеживородящие);

    появляются зародышевые оболочки (амнион и аллантоис).

Кожа пресмыкающихся

Кожа пресмыкающихся состоит из многослойного эпидермиса и соединительно-тканной дермы. Верхние слои эпидермиса ороговевают, образуя чешуи и щитки. Основное назначение чешуй - защита тела от потери воды. В общей сложности кожа более толстая, чем у амфибий.

Чешуя пресмыкающихся не гомологична чешуе рыб. Роговые чешуи образуются эпидермисом, т. е. имеет эктодермальное происхождение. У рыб чешуя образуется дермой, т. е. имеет мезодермальное происхождение.

В отличие от земноводных в коже пресмыкающихся слизистых желез нет, поэтому их кожа сухая. Есть только малочисленные пахучие железы.

У черепах на поверхности тела (сверху и снизу) образуется костный панцирь.

На пальцах появляются когти.

Так как ороговевшая кожа сдерживает рост, то для пресмыкающихся характерна линька. При этом старые покровы отходят от тела.

Кожа рептилий плотно срастается с телом, не образуя лимфатических мешков, как у амфибий.

Скелет пресмыкающихся

По-сравнению с земноводными у пресмыкающихся в позвоночнике выделяют уже не четыре, а пять отделов, так как туловищный отдел подразделяют на грудной и поясничный.

У ящериц шейный отдел состоит из восьми позвонков (у различных видов их от 7 до 10). Первый шейный позвонок (атлант) похож на кольцо. В него заходит зубовидный отросток второго шейного позвонка (эпистрофея). В результате первый позвонок может относительно свободно вращаться вокруг отростка второго позвонка. Это дает большую подвижность головы. Кроме того, первый шейный позвонок соединен с черепом одним мышелком, а не двумя как у земноводных.

Все позвонки грудного и поясничного отдела имеют ребра. У ящериц ребра первых пяти позвонков присоединяются хрящами к грудине. Образуется грудная клетка. Ребра задних грудных и поясничных позвонков не соединены с грудиной. Однако у змей грудины нет, и, следовательно, не образуется грудной клетки. Такое строение связано с особенностями их передвижения.

Крестцовый отдел позвоночника у пресмыкающихся состоит из двух позвонков (а не из одного как у амфибий). К ним прикрепляются подвздошные кости тазового пояса.

У черепах позвонки туловища срастаются со спинным щитом панциря.

Положение конечностей относительно тела - по бокам. У змей и безногих ящериц конечности редуцированы.

Пищеварительная система пресмыкающихся

Пищеварительная система пресмыкающихся сходна с таковой земноводных.

В ротовой полости находится подвижный мускулистый язык, у многих видов раздвоенный на конце. Пресмыкающиеся способны его далеко выбрасывать.

У растительноядный видов появляется слепая кишка. Однако большинство являются хищниками. Например, ящерицы питаются насекомыми.

Слюнные железы содержат ферменты.

Дыхательная система пресмыкающихся

Пресмыкающиеся дышат только легкими, так как из-за ороговения кожа в дыхании принимать участие не может.

Легкие совершенствуются, их стенки образуют многочисленные перегородки. Такое строение увеличивает внутреннюю поверхность легких. Трахея длинная, в конце делится на два бронха. У пресмыкающихся бронхи в легких не ветвятся.

У змей имеется только одно легкое (правое, а левое редуцировано).

Механизм осуществления вдоха и выдоха у пресмыкающихся кардинальным образом отличается от такового у земноводных. Вдох происходит при расширении грудной клетки за счет растягивания межреберных и брюшных мышц. При этом воздух всасывается в легкие. При выдохе мышцы сокращаются, и воздух выталкивается из легких.

Кровеносная система пресмыкающихся

Сердце подавляющего большинства пресмыкающихся остается трехкамерным (два предсердия, один желудочек), и артериальная и венозная кровь все еще частично смешиваются. Но по-сравнению с земноводными у пресмыкающихся венозный и артериальный кровотоки лучше разделены, и, следовательно, кровь смешивается меньше. В желудочке сердца имеется неполная перегородка.

Пресмыкающиеся (как земноводные и рыбы) остаются холоднокровными животными.

У крокодилов в желудочке сердца имеется полная перегородка, и таким образом образуется два желудочка (его сердце становится четырехкамерным). Однако кровь все еще может смешиваться через дуги аорты.

От желудочка сердца пресмыкающихся самостоятельно отходят три сосуда:

    От правой (венозной) части желудочка отходит общий ствол легочных артерий , который далее разделяется на две легочные артерии, идущие к легким, где кровь обогащается кислородом и возвращается по легочным венам в левое предсердие.

    От левой (артериальной) части желудочка отходят две дуги аорты. Одна дуга аорты начинается левее (однако называется правой дугой аорты , так как загибается направо) и несет почти чистую артериальную кровь. От правой дуги аорты берут начало сонные артерии, идущие к голове, а также сосуды, снабжающие кровью пояс передних конечностей. Таким образом, эти части тела снабжаются почти чистой артериальной кровью.

    Вторая дуга аорты отходит не столько от левой части желудочка, сколько из его середины, где кровь смешанная. Эта дуга находится правее правой дуги аорты, но называется левой дугой аорты , так как по выходу загибается налево. Обе дуги аорты (правая и левая) на спинной стороне соединяются в единую спинную аорту, ответвления которой снабжают смешанной кровью органы тела. Оттекающая от органов тела венозная кровь попадает в правое предсердие.

Выделительная система пресмыкающихся

У пресмыкающихся в процессе эмбрионального развития туловищные почки заменяются тазовыми. Тазовые почки имеют длинные канальцы нефронов. Их клетки дифференцированы. В канальцах происходит обратное всасывание воды (до 95%).

Основной продукт выделения пресмыкающихся - мочевая кислота. Она почти не растворяется в воде, поэтому моча кашицеобразная.

От почек отходят мочеточники, впадающие в мочевой пузырь, который открывается в клоаку. У крокодилов и змей мочевой пузырь недоразвит.

Нервная система и органы чувств пресмыкающихся

Совершенствуется головной мозг пресмыкающихся. В переднем мозге появляется кора больших полушарий из серого мозгового вещества.

У ряда видов промежуточный мозг образует теменной орган (третий глаз), который способен воспринимать свет.

Мозжечок у пресмыкающихся лучше развит, чем у амфибий. Это связано с более разнообразной двигательной активностью рептилий.

Условные рефлексы вырабатываются с трудом. Основа поведения - инстинкты (комплексы безусловных рефлексов).

Глаза снабжены веками. Есть третье веко - мигательная перепонка. У змей веки прозрачные и срастаются.

У ряда змей на переднем конце головы есть ямки, воспринимающие тепловое излучение. Они хорошо определяют разницу между температурами окружающих предметов.

Орган слуха образует внутреннее и среднее ухо.

Хорошо развито обоняние. В ротовой полости есть специальный орган, различающий запахи. Поэтому многие пресмыкающиеся высовывают раздвоенный на конце язык, беря пробы воздуха.

Размножение и развитие рептилий

Для всех пресмыкающихся характерно внутреннее оплодотворение.

Большинство откладывают яйца в грунт. Бывает так называемое яйцеживорождение, когда яйца задерживаются в половых путях самки, и при выходе из них сразу вылупляются детеныши. У морских змей наблюдается настоящее живорождение, при этом у зародышей формируется плацента, сходная с плацентой млекопитающих.

Развитие прямое, появляется молодое животное, сходное по строению со взрослым (но с недоразвитой половой системой). Это связано с наличием большого запаса питательных веществ в желтке яйцеклетки.

В яйце пресмыкающихся формируются две эмбриональные оболочки, которых нет в икринках земноводных. Это амнион и аллантоис . Эмбрион окружен амнионом, наполненным амниотической жидкостью. Аллантоис образуется как вырост заднего конца кишечника эмбриона и выполняет функции мочевого пузыря и органа дыхания. Наружная стенка алантоиса прилегает к оболочке яйца и содержит капилляры, через которые осуществляется газообмен.

Забота о потомстве у пресмыкающихся редка, заключается в основном в охране кладки.

В связи с выходом на сушу и более активной жизнедеятельностью характерной для высших позвоночных, все отделы мозга пресмыкающихся достигают более прогрессивного развития.

1. Передний мозг значительно преобладает над другими отделами. Мантия остается тонкой, но на ее поверхности местами появляются медиальное и латеральное скопления нервных клеток – серое вещество, представляющее зачаточную кору больших полушарий. У рептилии кора еще не играет роли высшего отдела мозга, она является высшим обонятельным центром. Но в процессе филогенеза, разрастаясь и принимая другие виды чувствительности, помимо обонятельной, она привела к возникновению коры головного мозга млекопитающих. Полушария переднего мозга пресмыкающихся полностью прикрывают промежуточный мозг. Роль высшего интегративного центра выполняют полосатые тела (зауропсидный тип мозга)

2. Промежуточный мозг образован зрительными буграми и подбугровой областью. На дорсальной его стороне находится эпифиз и особый теменной орган, имеющий глазоподобное строение у ящериц. На вентральной стороне находится гипофиз.

3. Средний мозг довольно большой, имеет вид двухолмия. Это центр зрительных восприятий, приобретающий большое значение для наземных животных.

4. Мозжечок имеет вид полукруглой пластинки, развит слабо, но лучше, чем у амфибий, в связи с усложнением координации движений.

5. Продолговатый мозг образует резкий изгиб, характерный для высших позвоночных. От его ядер берут начало черепно-мозговых нервов.

Всего у рептилий 12 пар черепно-мозговых нервов.

ГОЛОВНОЙ МОЗГ ПТИЦ

Эволюция головного мозга позвоночных: а - рыба; б - земноводное; в - пресмыкающееся; г - млекопитающее; 1 - обонятельные доли; 2 - передний мозг; 3 - средний мозг; 4 - мозжечок; 5 - продолговатый мозг; 6 - промежуточный мозг

1.Передний мозг развит хорошо, полушария имеют значительную величину, частично прикрывают промежуточный мозг. Но увеличение полушарий происходит за счет развития полосатых тел (зауропсидный тип мозга), а не коры. Обонятельные доли очень малы, так как обоняние теряет ведущее значение.

2 Промежуточный мозг мал, прикрыт полушариями переднего мозга. На дорсальной стороне его находится эпифиз (развит слабо), а на вентральной – гипофиз.

3. Средний мозг довольно большой, за счет крупных зрительных долей (двухолмие), что связано с прогрессивным развитием зрения.

4. Мозжечок сильно развит в связи со сложной координацией движений при полете. Он имеет поперечную исчерченность, и свою кору.

5. Продолговатый мозг содержит скопление нервных клеток в виде ядер, от которых берут начало черепно-мозговые нервы от 5-й до 12-й пары.

Всего 12 пар черепно-мозговых нервов.

ГОЛОВНОЙ МОЗГ МЛЕКОПИТАЮЩИХ

Эволюция головного мозга позвоночных: а - рыба; б - земноводное; в - пресмыкающееся; г - млекопитающее; 1 - обонятельные доли; 2 - передний мозг; 3 - средний мозг; 4 - мозжечок; 5 - продолговатый мозг; 6 - промежуточный мозг

1 Передний мозг достигает особенно больших размеров, прикрывая остальные отделы мозга. Его увеличение происходит за счет коры, которая становится главным центром высшей нервной деятельности (маммальный тип мозга). Площадь коры увеличивается за счет образования извилин и борозд. Спереди от больших полушарий у большинства млекопитающих (кроме китообразных, приматов и, в том числе, человека) расположены крупные обонятельные доли, что связано с большим значением обоняния в жизни зверей.

2 Промежуточный мозг, образованный зрительными буграми (thalamus) и подбугровой областью (hypothalamus), скрыт полушариями переднего мозга. На дорсальной его стороне находится эпифиз, а на вентральной – гипофиз.

3 Средний мозг прикрыт полушариями переднего мозга, отличается сравнительно небольшими размерами и представлен не двухолмием, а четверохолмием. Полость среднего мозга, или сильвиев водопровод, представляет собой лишь узкую щель.

4 Мозжечок сильно развит и имеет более сложное строение; состоит из центральной части – червя с поперечными бороздами и парных полушарии. Развитие мозжечка обеспечивает сложные формы координации движений.

5 Продолговатый мозг частично прикрыт мозжечком. Отличается от представителей других классов тем, что потоком четвертого желудочка обособляются продольные пучки нервных волокон – задние ножки мозжечка, а на нижней поверхности имеются продольные валики – пирамиды. От головного мозга отходит 12 пар черепно-мозговых нервов

48. 50. Филогенетически сложившиеся типы и формы иммунного ответа. Характеристика особенностей иммунной системы позвоночных.

Филогенез иммунной системы.

Иммунная система осуществляет защиту организма от проникновения в организм генетически чужеродных тел: микроорганизмов, вирусов, чужих клеток, инородных тел. Ее действие основано на способности отличать собственные структуры от генетически чужеродных, уничтожая их.

В эволюции сформировалось три главных формы иммунного ответа:

1) 1.Фагоцитоз, или неспецифическое уничтожение чужеродного материала;

2) 2.Клеточный иммунитет, основанный на специфическом распознавании и уничтожении такого материала Т-лимфоцитами;

3) 3.Гуморальный иммунитет, осуществляемый путем образования потомками В-лимфоцитов, так называемыми, плазматическими клетками иммуноглобулинов и связывания ими чужеродных антигенов.

В эволюции выделяют три этапа формирования иммунного ответа:

1. 1. Квазииммунное (лат наподобие) распознавание организмов своих и чужеродных клеток. Этот тип реакции наблюдается от кишечнополостных до млекопитающих. Эта реакция не связана с выработкой иммунных тел, и при этом не формируется иммунной памяти, то есть еще не происходит усиления иммунной реакции на повторное проникновение чужеродного материала.

2. 2. Примитивный клеточный иммунитет обнаружен у кольчатых червей и иглокожих. Он обеспечивается целомоцитами – клетками вторичной полости тела, способными уничтожать чужеродный материал. На этом этапе появляется иммунологическая память.

3. 3. Система интегрального клеточного и гуморального иммунитета . Для нее характерны специфические клеточные и гуморальные реакции на чужеродные тела, наличие лимфоидных органов иммунитета, образование антител. Такого типа иммунная система не характерна для беспозвоночных.

Круглоротые способны формировать антитела, но вопрос о наличии у них вилочковой железы, как центрального органа иммуногенеза, является пока открытым. Впервые тимус обнаруживается у рыб.

Эволюционные предшественники лимфоидных органов млекопитающих – тимус, селезенка, скопление лимфоидной ткани обнаруживаются в полном объеме у амфибий. У низших позвоночных (рыбы, амфибии) вилочковая железа активно выделяет антитела, что характерно для птиц и млекопитающих.

Особенность иммунного ответа птиц состоит в налиции особоги лимфоидного органа – фабрициевой сумки. В этом органе образуются В-лимфоциты, которые после антигенной стимуляции способны трансформироваться в плазматические клетки и вырабатывать антитела.

У млекопитающих органы иммунной системы разделяют на два типа: центральные и периферические. В центральных органах созревание лимфоцитов происходит без существенного влияния антигенов. Развитие периферических органов, наоборот, непосредственно зависит от антигенного воздействия – лишь при контакте с антигеном в них начинаются процессы размножения и дифференциации лимфоцитов.

Центральными органами иммуногенеза у млекопитающих являются тимус, где происходит образование и размножение Т-лимфоцитов, а также красный костный мозг, где образуются и размножаются В-лимфоциты.

На ранних стадиях эмбриогенеза и желточного мешка в тимус и красный костный мозг мигрируют стволовые лимфотические клетки. После рождения источником стволовых клеток становится красный костный мозг.

Периферическими лимфоидными органами являются: лимфоузлы, селезенка, миндалины, лимфоидные фолликулы кишечника. К моменту рождения они еще практически не сформированы и образование в них лимфоцитов начинается только после антигенной стимуляции, после того, как они заселяются Т- и В-лимфоцитами из центральгых органов иммуногенеза.

49. 51. Онтогенез, его типы и периодизация.

Онтогенез, или индивидуальное развитие, – это совокупность преобразований, происходящих в организме от момента образования зиготы до смерти. Термин «онтогенез» впервые введен биологом Э.Геккелем в 1866 г. (от греч. онтос- существо и генезис- развитие).

Учение об онтогенезе – это один из разделов биологии, который изучает механизмы, регуляцию и особенности индивидуального развития организмов.

Знание онтогенеза имеет не только общетеоретическое значение. Оно необходимо врачам для понимания особенностей течения патологических процессов в разные возрастные периоды, профилактики заболеваний, а также для решения социально- гигиенических проблем, связанных с организацией труда и отдыха людей различных возрастных групп.

Различают 2 типа онтогенеза: непрямой и прямой. Непрямой протекает в личиночной форме. Личинки ведут активный образ жизни, сами себе добывают пропитание. Для осуществления жизненных функций у личинок имеется ряд провизорных (временных) органов, отсутствующих у взрослых организмов. Этот тип развития сопровождается метаморфозом (превращением) -анатомо-физиологической перестройкой организма. Он свойствен различным группам беспозвоночных (губкам, кишечнополостным, червям, насекомым) и нисшим позвоночным (амфибиям).

Прямое развитие может протекать в неличиночной форме или быть внутриутробным. Неличиночный тип развития имеет место у рыб, пресмыкающихся, птиц, а также беспозвоночных, яйцеклетки которых богаты желтком - питательным материалом, достаточным для завершения онтогенеза. Для питания, дыхания и выделения у зародышей также развиваются провизорные органы.

Внутриутробный тип развития характерен для млекопитающих и человека. Их яйцеклетки почти не содержат питательного материала, и все жизненные функции осуществляются через материнский организм. В связи с этим у зародышей имеются провизорные органы – зародышевые оболочки и плацента, обеспечивающая связь организма матери и плода. Это наиболее поздний в филогенезе тип онтогенеза, и он обеспечивает наилучшим образом выживание зародышей.

Онтогенез включает в себя ряд преемственно связанных и в основных чертах генетически запрограммированных периодов:

1. Предэмбриональный (он же проэмбриональный, или предзиготный период, или прогенез);

2. Эмбриональный (или антенатальный для человека) период;

3. Постэмбриональный (или постнатальный для человека) период.

a. 52. Общая характеристика предзиготного периода, стадии эмбрионального развития. Критические периоды. Тератогенные факторы.

ПРЕДЗИГОТНЫЙ ПЕРИОД

Этот период протекает в организме родителей и выражается в гаметогенезе – образовании зрелых яйцеклеток и сперматозоидов.

В настоящее время известно, что в этот период происходит ряд процессов, имеющих прямое отношение к ранним стадиям эмбрионального развития. Так, в ходе созревания яйцеклеток в пахинеме мейоза наблюдается амплификация генов (образование многочисленных копий), отвечающих за синтез р-РНК, с последующим выделением их из ДНК и накоплением вокруг ядрышек. Эти гены включаются в транскрипцию на ранних стадиях эмбриогенеза, обеспечивая накопление р-РНК, участвующей в образовании рибосом. Кроме того, в предзиготном периоде происходит также накопление как бы впрок и-РНК, включающейся в биосинтез белка только на ранних стадиях дробления зиготы.

Во время овогенеза в яйцеклетках идет накопление желтка, гликогена и жиров, которые расходуются в процессе эмбриогенеза.

По количеству содержания желтка (lecithos) яйцеклетки могут быть:

· олиголецитальными (маложелтковыми);

· мезолецитальными (со средним количеством желтка);

· полилецитальными (многожелтковые).

По характеру распределения желтка в цитоплазме яйцеклетки бывают:

· изолецитальные (греч. Isos – равный, желток распределен в клетке равномерно);

· телолецитальные (греч. thelos – конец, желток смещен ближе к вегетативному полюсу, а клеточное ядро – к анимальному);

· центролецитальные (желток располагается в центральной части яйцеклетки)

Изолецитальные клетки характерны для ланцетника и млекопитающих, телолецитальные – для амфибий (умеренно телолецитальные, для рептилий и птиц – резкотелолецитальные), центролецитальные – для насекомых.

Яйцеклетки некоторых видов животных еще до оплодотворения приобретают билатеральную симметрию, однако она еще неустойчива и может в дальнейшем переориентироваться.

У многих видов животных еще до оплодотворения начинается сегрегация (перераспределение) органоидов и включений в яйцеклетках; отмечается скопление гликогена и и РНК на анимальном полюсе, комплекса Гольджи и аскорбиновой кислоты - на экваторе. Сегрегация продолжается и после оплодотворения.

ЭМБРИОНАЛЬНЫЙ ПЕРИОД

Эмбриональный период начинается с зиготы и заканчивается либо выходом молодых особей из яйцевых оболочек, либо рождением нового организма. Этот период состоит из стадий: зиготы, дробления, гаструляции и гисто- и органогенеза.

ХАРАКТЕРИСТИКА СТАДИЙ ЭМБРИОНАЛЬНОГО РАЗВИТИЯ

НА ПРИМЕРЕ ЧЕЛОВЕКА.

После оплодотворения наступает первая стадия эмбрионального развития - стадия зиготы (стадия одноклеточного зародыша). Зигота, будучи одной клеткой, имеет потенции к развитию целостного многоклеточного организма, т.е. обладает тотипотентностью.

Стадия дробления: начиная с этой стадии, зародыш становится многоклеточным, но по размерам практически не превышает зиготу. Дробление заключается в том, что хотя клетки делятся митозом, они не вырастают до размеров материнских клеток, т.к. у них отсутствует гетеросинтетическая интерфаза, а период G1 аутосинтетической интерфазы приходится на телофазу предшествующего деления. Стадия дробления заканчивается образованием бластулы. Первые бластомеры, как и зигота, обладают свойством тотипотентности, что служит основой рождения монозиготных (однояйцевых) близнецов.

У человека бластула образуется на 6-7 день развития и имеет вид пузырька (бластоциста), стенки которого образованы одним слоем клеток - трофобластом, выполняющих функции питания и выделения. Внутри пузырька имеется скопление клеток - эмбриобласт, из которого в дальнейшем развивается тело зародыша.

На стадия гаструляции (у человека с 7 по 19 день) происходит образование зародышевых листков (эктодермы, энтодермы и мезодермы), и закладывается комплекс осевых органов (хорда, нервная трубка и кишечная трубка).

В период гистогенеза и органогенеза идет закладка временных (провизорных) и окончательных (дефинитивных) органов. У позвоночных животных, в том числе и у человека, провизорные органы называются зародышевыми оболочками. Для всех позвоночных характерно развитие желточного мешка. У рыб, амфибий, рептилий и птиц он содержит желток и выполняет трофическую и кроветворную функции. У истинно наземных животных, кроме желточного мешка, имеется также амнион, наполненный жидкостью, создающей водную среду для развития зародыша. Позвоночные, имеющие амнион (рептилии, птицы и млекопитающие), называются амниотами , а не имеющие его - анамниями (рыбы, амфибии).

У рептилий и птиц, кроме желточного мешка и амниона, закладываются: аллантоис (мочевой мешок, накапливающий мочевину) и серозная оболочка (обеспечивает дыхание зародыша). У млекопитающих вместо серозной оболочки образуется хорион (ворсинчатая оболочка), который обеспечивает зародышу питание, дыхание и выделение. Хорион образуется из трофобласта и соединительной ткани. Со стадии плацентации он участвует в образовании плаценты. Амнион содержит околоплодные воды. В желточном мешке образуются первые кровеносные сосуды и первые клетки крови. Аллантоис у млекопитающих и человека определяет место расположения плаценты.

Гисто- и органогенез у человека начинается на четвертой неделе и заканчивается к рождению.

Вначале из так называемой первичной эктодермы вычленяются клетки, образуя нервную пластинку, из которой в дальнейшем развиваются все органы нервной системы и часть органов чувств. Из оставшейся вторичной эктодермы закладываются эпидермис и его производные - сальные, потовые, молочные железы, ногти, волосы и некоторые другие образования.

Из энтодермы формируются: эпителий желудочно-кишечного тракта, дыхательных путей, печень и поджелудочная железа.

Из мезодермы - скелет, поперечнополосатая и гладкая мускулатура, сердечно-сосудистая система и основная часть мочеполовой системы.

КРИТИЧЕСКИЕ ПЕРИОДЫ РАЗВИТИЯ

В 1921 г. Стоккард Ц.Р. положил начало представлениям о так называемых критических периодах развития животных организмов. Этой проблемой позже у нас в стране занимался Светлов П.Г., который в 1960 г. сформулировал теорию критических периодов развития, проверил ее экспериментально. Сущность ее состоит в том, что каждый этап развития зародыша начинается коротким периодом качественно новой перестройки, сопровождающемся детерминацией, пролиферацией и дифференцировкой клеток. В этот период наблюдается особая восприимчивость к различным повреждающим факторам среды – физическим, химическим и в ряде случаев – биологическим, которые могут ускорять, замедлять и даже приостанавливать развитие.

В онтогенезе человека выделяют следующие критические периоды: 1) гаметогенез; 2)оплодотворение; 3)имплантацию; 4)развитие комплекса осевых органов и формирование плаценты (3-8-я недели) 5) периоды дифференцировки того или иного органа или системы органов, (20-24-я недели);. 6)рождение; 7) период новорожденности (до 1 года); 8) половое созревание.

b. 53. Основные механизмы эмбриогенеза.

ОБЩИЕ МЕХАНИЗМЫ ЭМБРИОГЕНЕЗА

1.Деление клеток
2. Клеточная дифференцировка
3. Дифференциальная активность генов
4. Эмбриональная индукция
5. Межклеточные взаимодействия
6 Миграция клеток.
7.Гибель клеток
8. Клональный принцип развития
9. Рост.
10. Морфогенез.

В основе эмбрионального развития лежат разнообразные процессы /механизмы/, к которым относятся: клеточные деления, дифференцировка, эмбриональная индукция, межклеточные взаимодействия, миграция клеток, гибель клеток, клональный принцип развития, рост, морфогенез и дифференциальная активность генов.

1.Деление клеток лежит в основе пролиферации /разрастания клеток/ и является основным механизмом обеспечения роста, то есть увеличения массы и размеров тела. Кроме того, в ходе клеточных делений в ряде случаев происходит переключение генетических программ и, как следствие этого, - специализация клеток для выполнения определенных функций.

2. Клеточная дифференцировка - это процесс, когда из внешне однообразных клеток и их комплексов возникают специализированные клетки, отличающиеся от материнских морфологическими и функциональными особенностями. Этот процесс носит дивергентный /разнонаправленный/ характер. С биохимической точки зрения, дифференцировка - это выбор из некоего множества возможных путей биосинтеза какого-либо одного (например, клетками-предшественниками эритроцитов выбор пути синтеза гемоглобина, а клетками хрусталика глаза - белка кристалина). С морфологической точки зрения, дифференцировка выражается в приобретении специфических черт строения.

В результате дифференцировки развивается популяция высокоспециализированных клеток либо утративших ядра /эритроциты, ороговевшие клетки эпидермиса/, либо в клетках начинается синтез высокоспецифичных веществ, например, сократимых белков актина и миозина – в мышечных волокнах, определенных гормонов – в клетках желез внутренней секреции, и т. д.

Путь, по которому должна идти дифференцировка тех или иных клеток, генетически детерминирован /предопределен/. На стадии дробления детерминация клеток носит еще неустойчивый характер /лабильна/, и направление дифференцировки можно изменить. Это подтвердил в первой четверти ХХ века Ганс Шпеман в экспериментах на тритонах. Он пересаживал эктодермальные клетки, взятые у тритона одного вида, в энтодерму другого. И хотя клетки донора отличались по цвету от клеток реципиента, они развивались в те же зачатки, что и окружавшие их клетки реципиента. Если донорами были организмы, закончившие процесс гаструляции, то эктодермальные клетки нервной пластинки, пересаженные в кожу, давали зачаток нервной ткани, то есть путь их дифференцировки был уже предопределен.

Сейчас известны некоторые факторы, определяющие дифференцировку тканей. Самым ранним фактором, который проявляется уже на стадии бластулы, является сегрегация /лат. «отделение»/ цитоплазматических структур зиготы, в силу чего во время дробления в первые бластомеры попадают отличающиеся друг от друга участки цитоплазмы. Таким образом, видимо, незначительные качественные различия, имеющиеся в разных участках цитоплазмы ооцитов, влияют на судьбу бластомеров. Есть также данные, что дифференцировка многих тканей зародыша может происходить лишь при наличии некоторого критического числа клеток.

Основным механизмом дифференцировки клеток является дифференциальная активность генов.

3. Эмбриональная индукция – это влияние одной ткани или зачатка органа зародыша /индуктора/ на закладку других зачатков органов. Так, например, у позвоночных закладка хордо-мезодермального комплекса индуцирует /побуждает к развитию/ закладку нервной трубки.

Другой формой индуцирующих воздействий являются межклеточные взаимодействия.

4. Межклеточные взаимодействия осуществляются посредством щелевых контактов, где плазматическая мембрана одних клеток вступает в тесный контакт с плазмалеммой других клеток. В области этих контактов между клетками может передаваться слабый электрический ток, ионы неорганических веществ или даже относительно крупные молекулы органических веществ.

5 Миграция клеток. В ходе эмбриогенеза происходит миграция как отдельных клеток, так и их комплексов, на различные расстояния. Отдельные клетки обычно мигрируют при помощи амебоидного движения, обследуя при этом непрерывно свое окружение.

6.Гибель клеток (апоптоз) является необходимым процессом многих стадий развития зародыша. Так, разделению пальцев ног и рук предшествует гибель клеток, расположенных в межпальцевых промежутках.

7. Клональный принцип развития. Экспериментальным путем показано, что многим клеткам раннего зародыша не суждено участвовать в дальнейшем развитии. Многие структуры зародыша строятся из клеток, которые развиваются в ходе деление только отдельного, небольшого числа клеток.

8. Рост. Под ростом понимается увеличение массы тела и его размеров. Рост носит неравномерный характер, разные ткани и разные части зародыша растут с разной скоростью.

9. Морфогенез. Это процесс пространственного становления внешней и внутренней конфигурации частей тела и органов зародыша. Общепринятой теории, объясняющей механизмы этого процесса, пока нет. Наиболее подходящей является концепция позиционной информации , предложенная Л. Вольпертом /1975/,согласно которой клетки способны воспринимать позиционную информацию, которая содержит указание о местопо­ложении клеток относительно других клеток и тем самым определяется план, в соответствии с которым происходит развитие зародыша.

Пришло время написать о том, каких моделей функционирования и строения мозга я придерживаюсь, чтобы в дальнейшем мы с вами были на одной волне. Естественно, это только модели и их «всеохватность» ограничена рамками их же самих. Но мозг, товарищи, это такой Солярис, что если мы хотя бы приблизительно не будем представлять, как он работает, то мы утонем в ложных предпосылках относительно чужого и своего поведения. Потому что в том, что с нами в жизни происходит, доля осознаваемых действий и логического мышления ничтожно мала, а наше поведение постоянно находится под неосознанным влиянием эмоций. Америку я тут не открою, но иметь общую базу для дальнейшего общения будет полезно. Для начала:

Триединая модель головного мозга МакЛина

Центральная часть, или ствол мозга — это так называемаый древний мозг, мозг рептилий. На него наверх одет средний мозг, старый мозг или лимбическая система; его ещё называют мозгом млекопитающих. И, наконец, сверху собственный мозг человека, точнее, высших приматов, потому что он присутствует не только у человека, но и, например, у шимпанзе. Это неокортекс, или кора головного мозга.

Древний мозг, мозг рептилии отвечает за выполнение простейших базовых функций, за ежедневное, ежесекундное функционирование организма: дыхание, сон, циркуляция крови, сокращение мышц в ответ на внешнюю стимуляцию. Все эти функции сохраняются, даже когда сознание отключено, например во сне или при наркозе. Эта часть мозга называется мозгом рептилии, так как именно рептилии являются простейшими живыми существами, у которых встречается подобная анатомическая структура. Стратегию поведения «бежать или сражаться» тоже часто относят к функциям мозга рептилии.

Средний мозг, лимбическая система надетая на древний мозг встречается у всех млекопитающих. Она участвует в регуляции функций внутренних органов, обоняния, инстинктивного поведения, памяти, сна, бодрствования, но в первую очередь лимбическая система отвечает за эмоции (поэтому эту часть мозга часто называют эмоциональным мозгом). Процессами, происходящими в лимбической системе, мы управлять не можем (за исключением наиболее просветлённых товарищей), но взаимообратная связь между сознанием и эмоциями существует постоянно.

Вот комментарий gavagay по этому же поводу: "Прямой зависимости [между сознанием и эмоциями ] там нет - потому у нас нет выбора, скажем, пугаться нам, или нет. Мы пугаемся автоматически, в ответ на соответствующий стимул извне. А вот опосредованная связь возможна и для некоторых ситуаций она очень значима. Работа лимбической системы зависит от сигналов, поступающих в нее извне, в том числе и от коры головного мозга (через таламус). А в коре как раз гнездится наше сознание. Именно в силу этого мы испугаемся наставленного на нас пистолета - даже если в нас никогда не стреляли. А вот дикарь, который не знает, что такое пистолет, не испугается. И, кстати, именно в силу наличия этой опосредованной зависимости в принципе возможно такое явление как психотерапия."

И наконец, неокортекс, кора больших полушарий головного мозга , отвечает за высшую нервную деятельность. Именно эта часть мозга наиболее сильно развита у Homo sapience и определяет наше сознание. Здесь принимаются рациональные решения, ведется планирование, усваиваются результаты и наблюдения, решаются логические задачи. Можно сказать, что в этой части мозга формируется наше «я». И неокортекс, это единственная часть головного мозга, процессы в которой мы можем осознанно отследить.

У человека все три части мозга развиваются и взрослеют именно в таком порядке. Ребёнок приходит в этот мир с уже сформированным древним мозгом, с практически сформированным средним мозгом и с очень «недоделанной» корой больших полушарий. В течение первого года жизни соотношение мозга новорожденного к размеру взрослого возрастает с 64% до 88% , а масса мозга удваивается, к 3 - 4 годам она утраивается.

Теперь понятно, почему в деле воспитания детей именно эмоции играют решающую роль. Не действуют дети вам назло, не стремятся они вами манипулировать, для манипуляций нужно тщательное планирование. А движимы они базовыми эмоциями: желанием контакта и близости, страхом, тревогой. Когда мы поймём это, понимать ребёнка станет гораздо легче.

Да и сами-то мы, взрослые, не настолько рациональные существа, как нам хотелось бы думать. Об этом замечательно написала Сью Герхардт (Sue Gerhardt, Why Love Matters: how affection shapes a baby"s brain):

«Можно с иронией отметить, что последние открытия нейрофизиологии обнаружили, что чувства играют в нашей жизни большую роль, чем разум. Вся наша рациональность, столь уважаемая наукой, постоена на эмоциях и не может существовать без них. Как указывает Антонио Дамасио, рациональные части нашего мозга не могут работать обособленно, но только одновременно с частями, отвечающими за базовые регуляторные функции и эмоции.«Природа построила рациональную систему (apparatus) не просто на верх системы биологического регулирования, но из неё и неразделимо с ней» (Antonio Damasio, Descarte"s Error)."

Картинка отсюда: Карл Саган «Драконы Эдема».